

Prospective Updating of Theories with Preferences

Luís Moniz Pereira1, Pierangelo Dell'Acqua1,2, Gonçalo Lopes1

1Centro de Inteligência Artificial – CENTRIA
Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
lmp@di.fct.unl.pt, goncaloclopes@gmail.com

2Department of Science and Technology – ITN
Linköping University, 60174 Norrköping, Sweden
pier@itn.liu.se

Abstract

This work focuses on updating and revising theories with preferences within the context of logic
programming. This aim is achieved by first exploiting preferences to reduce the number of
abductive extensions of the initial theory, then by using the observations to confirm or deny the
abduced hypotheses. In case the observations disconfirm the preferred abduced hypotheses, a
revision process is launched in order to revise the theory’s preferences with respect to the new
acquired observations. A methodology for model-based diagnosis is also proffered as an application
of preferential theory revision, using observations to disambiguate among possible relevant revision
scenarios.

1. Introduction

Logic program semantics and procedures have been used to characterize preferences among the
rules of a theory [5]. Whereas the combination of such rule preferences with program updates and
the updating of the preference rules themselves [2] have been tackled, a crucial ingredient had been
missing, namely the consideration of abductive extensions to a theory, and the integration of
revisable preferences among such extensions. The derivations from this preferential theory revision
[6] to prospective reasoning [12] and model-based diagnosis are the main subject of this paper.

We take a theory expressed as a logic program under the stable model semantics, already infused
with pairwise conditional preferences amongst rules. The possible abductive extensions to the
theory can be expressed by a set of abducible literals, over which we should also be able to establish
conditional priority relations.

First we supply some epistemological background to the problem at hand, and describe the general
requirements of model-based diagnosis and its relation to abductive reasoning. We then consider a
real-world example of abductive diagnosis in medical reasoning and proceed to explain the
importance of the proposed approach to prospective logic programming. Then we introduce our
preferential abduction framework, in order to address the issues raised by the medical example in a
context of updatable abductive theories. Some additional examples of preference updating are
presented and we conclude with general epistemic remarks about the entire approach and future
directions of study.

2. Preferences, Rationality, Theory Revision and AI

The theoretical notions of preference and rationality with which we are most familiar are those of
the economists'. Economic preference is a comparative choice between alternative outcomes,
whereby a rational (economic) agent is one whose expressed preferences over a set of outcomes
exhibits the structure of a complete pre-order.

However, preferences themselves may change. Viewing this phenomenon as a comparative choice,
however, entails that there are meta-level preferences whose outcomes are various preference
rankings of beliefs, and that an agent chooses a change in preference based upon a comparative
pairwise choice between the class of first-order preferences [7].

But this is an unlikely model of actual change in preference, since we often evaluate changes --
including whether to abandon a change in preference -- based upon items we learn after a change in
preference is made. Hence, a realistic model of preference change will not be one that is couched
exclusively in decision theoretic terms.

Rather, when a conflict occurs in updating beliefs by new information, the possible items for
revision should include both the set of conflicting beliefs and a reified preference relation
underlying the belief set. The reason for adopting this strategy is that we do not know, a priori, what
is more important -- our data or our theory.

Rather, as Isaac Levi has long advocated [11], rational inquiry is guided by pragmatic
considerations, not a priori constraints on rational belief. On Levi's view, all justification for change
in belief is pragmatic in the sense that justifications for belief fixation and change are rooted in
strategies for promoting the goals of a given inquiry. Setting these parameters for a particular
inquiry fixes the theoretical constraints for the inquiring agent. The important point to stress here is
that there is no conflict between theoretical and practical reasoning on Levi's approach, since the
prescriptions of Levi's theory are not derived from minimal principles of rational consistency or
coherence.

Suppose your scientific theory predicts an observation, o, but you in fact observe ¬o. The problem
of carrying out a principled revision of your theory in light of the observation ¬o is surprisingly
difficult. One issue that must be confronted is what the principle objects of change are. If theories
are simply represented as sets of sentences, and prediction is represented by material implication,
then we are confronted with Duhem's Problem [8]: If a theory entails an observation for which we
have disconfirming evidence, logic alone won't tell you which among the conjunction of accepted
hypotheses to change in order to restore consistency. The serious issue raised by Duhem's problem
is whether disconfirming evidence targets, in a principled manner, the items of a theory in need of
revision.

The AGM conception of belief change differs to Duhem's conception of the problem in important
respects. First, whereas the item of change on Duhem's account is a set of sentences, the item of
change on the AGM conception is a belief state, represented as a pair consisting of a logically
closed set of sentences (a belief set) and of selection function. Second, the revised resulting theories
are not explicitly represented, when replacing Duhem’s account by the AGM postulates approach.
What remains in common is what Hansson [10] has called the input-assimilating model of revision,
whereby the object of change is a set of sentences; the input item is a particular sentence; and the
output is a new set of sentences.

One insight to emerge is that the input objects for change may not be single sentences, but a

sentence-measure pair [13], where the value of the measure represents the entrenchment of the
sentence and thereby encodes the ranking of this sentence in the replacement belief set [13, 17, 18].
But once we acknowledge that items of change are not belief simpliciter, but belief and order
coordinates, then there are two potential items for change: the acceptance or rejection of a belief
and the change of that belief in the ordering. Hence, implicitly, the problem of preference change
appears here as well. Within the AGM model of belief change, belief states are the principal objects
of change: propositional theory (belief set) changed according to the input-assimilating model,
whereby the object of change (a belief set) is exposed to an input (a sentence) and yields a new
belief set.

Computer science has adopted logic as its general foundational tool, while Artificial Intelligence
(AI) has made viable the proposition of turning logic into a bona fide computer programming
language. AI has developed logic beyond the confines of monotonic cumulativity, typical of the
precise, complete, endurable, condensed, and closed mathematical domains, in order to open it up to
the non-monotonic real world domain of imprecise, incomplete, contradictory, arguable, revisable,
distributed, and evolving knowledge. In short, AI has added dynamics to erstwhile statics. Indeed,
classical logic has been developed to study well-defined, consistent, and unchanging mathematical
objects. It thereby acquired a static character.

AI needs to deal with knowledge in flux, and less than perfect conditions, by means of more
dynamic forms of logic. Too many things can go wrong in an open non-mathematical world, some
of which we don't even suspect. In the real world, any setting is too complex already for us to define
exhaustively each time. We have to allow for unforeseen exceptions to occur, based on new
incoming information. Thus, instead of having to make sure or prove that some condition is not
present, we may assume it is not (the Closed World Assumption - CWA), on condition that we are
prepared to accept subsequent information to the contrary, i.e. we may assume a more general rule
than warranted, but must henceforth be prepared to deal with arising exceptions.

Much of this has been the focus of research in logic programming. This is a field which uses logic
directly as a programming language, and provides specific implementation methods and efficient
working systems to do so. Logic programming is, moreover, much used as a staple implementation
vehicle for logic approaches to AI.

3. Model-Based Diagnosis and Future Prospecting

Abduction can also have an important rule in model-based diagnosis. In diagnosis, we are
concerned with developing precise methodologies and techniques that can determine whether the
behaviour of a system (or artefact) is correct. The artefact can in itself be a knowledge theory, in
which case we are trying to ascertain whether the conclusions inferred from the theory are valid.

If the system is not functioning correctly, the diagnosis technique should be able to determine, as
accurately as possible, which part of the system is failing, and the kind of fault it is facing. The
process of diagnosis is usually based on observations which provide information on the current
behaviour of the system.

Model-based diagnosis is an example of abductive reasoning using a model of the system that is to
be diagnosed. This model describes the behaviour of the system, or artefact. The model can itself be
the subject of diagnosis. This model is usually an abstraction of the behaviour of the system and can
be incomplete. The faulty behaviour may also be unknown (e.g. no fault model is represented).
Given the set of observations about the system, the diagnoser simulates the system using the model,
and compares the observations actually made to the observations predicted by the simulation.

Construction of the model can be expressed by rules indicating those cases in which the behaviour
of the system is normal or abnormal:

Abnormal(S) ⇒ InternalBehaviour(Int1), Observable(Obs1).
¬Abnormal(S) ⇒ InternalBehaviour(Int2), Observable(Obs2).

Given the set of observations Obs, the problem is to determine whether the system behaviour is
normal or not (i.e. ¬Abnormal(S) or Abnormal(S)). A system is said to be diagnosable if we are able
to determine, without ambiguity, a single diagnosis, independently of the behaviour it exhibits.

However, since the model of our system can be incomplete, this means that there may exist faults
and behaviours unaccounted for by the model. Abductive reasoning in the context of evolving logic
programs [3, 6, 12] can help us extend the theory to account for unforeseen situations, using
expectations to generate the possible scenarios for diagnosis.

This involves a notion of simulation, in which the diagnoser is capable of conjuring up hypothetical
what-if scenarios and formulating abductive explanations for both external and internal
observations. Since we may have multiple possible scenarios to choose from, we need some form of
preference specification, which can be either a priori or a posteriori. A priori preferences are
embedded in the knowledge representation theory using the framework presented below and can be
used to produce the most relevant hypothetical abductions for a given state and observations, in
order to conjecture possible future states. A posteriori preferences represent choice mechanisms,
which enable the program to commit to one of the hypothetical scenarios engendered by the
relevant abductive theories. These mechanisms may trigger additional simulations in order to posit
which new information to acquire, so more informed choices can be enacted, in particular by
restricting and committing to some of the abductive explanations along the way.

3.1. Differential Medical Diagnosis

In medicine, differential diagnosis is the systematic method physicians use to identify the disease
causing a patient's symptoms. Before a medical condition can be treated it must first be correctly
diagnosed. The physician begins by observing the patient's symptoms, taking into consideration the
patient's personal and family medical history and performing additional examinations if current
information is lacking. Then the physician lists the most likely causes. The physician asks questions
and performs tests to eliminate possibilities until he or she is satisfied that the single most likely
cause has been identified. The term differential diagnosis also refers to medical information
specially organized to aid in diagnosis, particularly a list of the most common causes of a given
symptom, annotated with advice on how to narrow down the list.

Figure 1: The three components of model-based diagnosis.

This listing of the most likely causes is clearly an abduction process, supported by initial
observations. Encoding this process in logic programming would result in a set of literals and rules
representing both the expected causes and the knowledge representation theory leading up to them.
This set could be subsequently refined through a method of prospection with a priori and a
posteriori preferences, like the one described above. This prospective process can result in the
decision to perform additional observations on the external environment, and be iterated.

In this case, the external observations correspond to the disease's signs and other examinations
performed by the physician during the process of diagnosis. The abductive explanations correspond
to the possible causes (e.g. medical conditions or simply bad habits) responsible for the symptoms.
A priori preferences and expectations are necessarily determined according to the patient's
symptoms and they can be updated during the course of the prospection mechanism. An appropriate
knowledge representation theory can be derived from current medical knowledge about the causes
of a given disease.

It being such a good example of abduction, we provide further on a practical example of iterated
differential diagnosis, based upon real medical knowledge from the field of dentistry, in order to
better illustrate the capabilities of abductive reasoning systems. An encoding of the problem in the
ACORDA1 system will then be proffered, along with results from an interactive diagnosis session.

4. Framework

4.1. Language

Let L be a first order language. A domain literal in L is a domain atom A or its default negation not
A, the latter expressing that the atom is false by default (CWA). A domain rule in L is a rule of the
form:

A ← L1,...,Lt (t ≥ 0)

where A is a domain atom and L1,...,Lt are domain literals. To express preference information, L
contains priority rules. Let N = {nr1,...,nrk} be a name set containing a unique name for every
domain rule in L. Given a domain rule r, we write nr to indicate its name. A priority atom is an atom
of the form nr < nu, where {nr,nu} ∈ N. nr < nu means that rule r is preferred to rule u. We assume
that names in N do not include “<” itself. A priority rule in L is a rule of the form:

nr < nu ← L1,...,Lt (t ≥ 0)

where nr < nu is a priority atom and every Li (1 ≤ i ≤ t) is a domain literal or a priority literal.

We use the following convention. Given a rule r of the form L0 ← L1,...,Lt, we write H(r) to indicate
L0, B(r) to indicate the conjunction L1,...,Lt. We write B+(r) to indicate the conjunction of all
positive literals in B(r), and B–(r) to indicate the conjunction of all negated literals in B(r).When t =
0 we write the rule r simply as L0.

A (logic) program P over L is a finite set of domain rules and priority rules. Every program P has
associated a set of abducibles AP, without rules in P. Abducibles may be thought of as hypotheses
that can be used to extend the current theory of the agent, in order to provide hypothetical solutions

1 ACORDA is a self-evolving prospective logic programming system which uses abduction to generate its own

possible future scenarios, using a theory of preferences among these hypotheses to guide the process of finding the
best explanations for present observations. For more details concerning its implementation see [12].

or possible explanations for given queries.

A 2-valued interpretation M of L is any set of literals from L that satisfies the condition that, for any
atom A, precisely one of the literals A or not A belongs to M. We say that an interpretation M
satisfies a conjunction of literals L1,...,Lt, if every literal Li in the conjunction belongs to M.

4.2. Declarative Semantics

In the remainder of this section we let P be a program over L, AP the set of abducibles of P, and M
an interpretation of L. We write least(P) to indicate the least model of P. We adopt the following
two definitions from [9], and Definitions 4 and 5 from [2], and refer the reader to those sources for
a detailed exposition.

Definition 1. The set of default assumptions of P with respect to M is:

Default(P,M) = {not A : ¬∃r ∈ P such that H(r) = A and M |= B(r)}

Definition 2. M is a stable model of P iff M = least(P ∪ Default(P,M)).

Definition 3. Let ∆ ⊆ AP. M is an abductive stable model with hypotheses ∆ of P iff:

M = least(P+ ∪ Default(P+,M)), where P+ = P ∪ ∆.

Note that the abducibles in AP are defined false by default whenever they are not abduced. Given a
program P, to compute which of its abductive stable models are preferred according to the priority
relation < , we remove (from the program) all the unsupported rules together with the less preferred
rules defeated by the head of some more preferred one, in a priority rule. Unsupported rules are
those whose head is true in the model but whose body is defeated by the model, i.e. some of its
default negated atoms are false in it.

Definition 4. The set of unsupported rules of P and M is:

Unsup(P,M) = {r ∈ P : M |= H(r), M |= B+(r) and M |≠ B–(r)}.

Definition 5. Unpref(P,M) is a set of unpreferred rules of P and M iff:

Unpref(P,M) = least(Unsup(P,M) ∪ Q), where

Q = {r ∈ P : ∃u ∈ (P - Unpref(P,M)) such that M |= nu < nr, M |= B+(u), and [not H(u) ∈ B–(r) or

(not H(r) ∈ B–(u), M |= B(r))] }.

A rule r is unpreferred if it is unsupported or there exists a more preferred rule u (which is not itself
unpreferred) such that the positive literals in B(u) hold, and r is defeated by u or r attacks (i.e.,
attempts to defeat) u. Note that only domain rules can be unpreferred since it is required that M |=
nu < nr holds, where nr and nu are names of domain rules.

The following definition introduces the notion of preferred abductive stable model. Given a
program P and a set ∆ of hypotheses, a preferred abductive stable model with hypotheses ∆ of P is a
stable model of the program that contains all the hypotheses in ∆, and all those rules in P that are
not unpreferred.

Definition 6. Let ∆ ⊆ AP and M an abductive stable model with hypotheses ∆ of P. M is a preferred

abductive stable model with hypotheses ∆ of P iff:

1. if M |= nr1 < nr2, then M |≠ nr2 < nr1
2. if M |= nr1 < nr2 and M |= nr2 < nr3, then M |= nr1 < nr3

3. M = least(P+ – Unpref(P+, M) ∪ Default(P+, M)), with P+ = P ∪ ∆.

Conditions 1 and 2 state that the preference relation < is required to be a strict partial order. When
the language contains only domain rules and priority rules (that is, there are no abducibles), the
semantics reduces to the Preferential semantics of Brewka and Eiter [5]. If integrity constraints are
introduced, this semantics generalizes to the Updates and Preferences semantics of Alferes and
Pereira [2], which extends updatable logic programs with updatable preferences. Our semantics
takes the latter, without formally addressing updating, and complements it with modifiable
abducibles.

Definition 7. An abductive explanation for a query G is any set ∆ ⊆ AP of hypotheses such that
there exists a preferred abductive stable model M with hypotheses ∆ of P for which M |= G.

A program may have several abductive explanations for a query G.

5. Preferring Abducibles

The evaluation of alternative explanations is a central problem in abduction, because of the
combinatorial explosion of possible explanations to handle. Thus, it is important to generate only
the explanations that are relevant for the problem at hand. Several approaches have thus far been
proposed, often based on some global criteria, which has the drawback of generally being domain
independent and computationally expensive. An alternative to global criteria for competing
alternative assumptions is to allow the theory to contain rules encoding domain specific information
about the likelihood that a particular assumption is true.

In our approach, preferences among abducibles can be expressed in order to discard unwanted
assumptions. Technically, preferences over alternative abducibles are coded into even cycles over
default negation, and preferring one of the rules will break the cycle in favour of one abducible or
another. The notion of expectation is employed to express preconditions for assuming abducibles.
An abducible can be assumed only if it is confirmed, i.e. there is an expectation for it, and there is
not an expectation to the contrary (expect_not).

To express preference criteria among abducibles, we introduce the language L*. A relevance atom is
one of the form a < b, where a and b are abducibles. a < b means that the abducible a is more
relevant than the abducible b. A relevance rule is a rule of the form:

a < b ← L1,...,Lt (t ≥ 0)

where a < b is a relevance atom and every Li (1 ≤ i ≤ t) is a domain literal or a relevance literal. Let
L* be a language consisting of domain rules and relevance rules.

Example 1. Consider a situation where an agent Claire drinks either tea or coffee (but not both).
Suppose that Claire prefers coffee over tea when sleepy. This situation can be represented by a
program Q over L* with set of abducibles AQ = {tea, coffee}:

drink ← tea
drink ← coffee
expect(tea)

expect(coffee)
expect_not(coffee) ← blood_pressure_high
coffee < tea ← sleepy

Having the notion of expectation allows one to express the preconditions for an expectation or
otherwise about an assumption a, and express which possible expectations are confirmed (or go
through) in a given situation. If the preconditions do not hold, then expectation a cannot be
confirmed, and therefore a will never be assumed. By means of expect_not one can express
situations where one does not expect something. In this case, when blood pressure is high, coffee
will not be confirmed or go through because of the contrary expectation arising as well (and
therefore tea will be assumed).

The following definition exploits the relevancy relation < of a program Q to distinguish which of its
abductive stable models are relevant.2

Definition 8. Let Q be a program over L* with set of abducibles AQ and M an interpretation of L*.
Let ∆ ⊆ AQ. M is a relevant abductive stable model of Q with hypothesis ∆ iff:

1. for every x,y ∈ AQ , if M |= x < y then M |≠ y < x
2. for every x,y,z ∈ AQ, if M |= x < y and M |= y < z, then M |= x < z
3. M = least(Q+ ∪ Default(Q+, M)), with Q+ = Q ∪ ∆
4. ∆ is the empty set or a singleton ∆ = {a}, for some a ∈ AQ

5. if ∆ = {a}, then M |= expect(a) and M |≠ expect_not(a)
6. if ∆ = {a}, then there exists no relevance rule r in Q such that:

• H(r) is x < a
• M |= H(r)
• M |= expect(x) and M |≠ expect_not(x)

By allowing ∆ to be the empty set, or a singleton (condition 4 above) we are stating that the
abducibles in AQ are mutually exclusive. This notion can be generalized to sets of abducibles, by an
adequate adaptation of the preference order to one among such sets. It is possible, however, to
consider that a set of literals is, in itself, an abducible, so we could even express different interesting
combinations of multiple literals for a given problem domain.

Example 2. Let Q be the program of Example 1. Q has two alternative explanations ∆1 = {coffee}
and ∆2 = {tea} for the query drink. In fact, Q has two relevant abductive stable models:

M1 = {expect(tea), expect(coffee), coffee, drink} with hypotheses ∆1

M2 = {expect(tea), expect(coffee), tea, drink} with hypotheses ∆2

for which M1 |= drink and M2 |= drink. The number of models reduces to one if we add sleepy to Q.
In this case, coffee being an abducible more relevant than tea and consequently the only relevant
model of Q is M1 ∪ {sleepy}.

In order to obtain a proof procedure for the language L*, a syntactical transformation Σ that maps
programs over L* into programs over L has been given in [6], and its soundness demonstrated. The
next example illustrates its use.

2 See [6] for a more detailed exposition and implementation of the abductive stable models semantics in logic

programming.

Example 3. Let Q be the program of Example 1. The transformation Σ maps Q into the program P
with abducibles AP = {abduce} :

 drink ← tea
 drink ← coffee

 expect(tea)
 expect(coffee)

 expect_not(coffee) ← blood_pressure_high

 coffee ← abduce, not tea, confirm(coffee) (1)
 tea ← abduce, not coffee, confirm(tea) (2)

 confirm(tea) ← expect(tea), not expect_not(tea)
 confirm(coffee) ← expect(coffee), not expect_not(coffee)

 1 < 2 ← sleepy

The role of the abducible abduce is to enact the assumption of one of the alternative assumptions
tea or coffee needed to prove drink. The rules (1) and (2) code the alternative assumptions tea and
coffee into cycles over negation. Rule (1) says that coffee can be assumed if abduce has been
abduced, tea is not assumed, and coffee is confirmed. The last rule in P is a priority rule stating that
rule (1) is preferable to rule (2) if sleepy holds. P has two preferred abductive stable models with
hypotheses ∆ = {abduce}:

M1 = {abduce, confirm(tea), confirm(coffee), expect(tea), expect(coffee), coffee, drink}

M2 = {abduce, confirm(tea), confirm(coffee), expect(tea), expect(coffee), tea, drink}

The number of preferred abductive stable models reduces to one if sleepy holds. In that case, the
unique preferred abductive stable model would be:

 M3 = {abduce, confirm(tea), confirm(coffee), expect(tea), expect(coffee), coffee, drink, 1 < 2}

6. Exploratory Data Analysis

Another application of expressing preferences over abducibles is that of exploratory data analysis,
which aims at suggesting a pattern for further inquiry, and contributes to the conceptual and
qualitative understanding of a phenomenon.

Assume that an unexpected phenomenon, x, is observed by an agent Bob, and that Bob has three
possible hypotheses (abducibles) a, b, c, capable of explaining it. In exploratory data analysis, after
observing some new facts, we abduce explanations and explore them to check predicted values
against observations. Though there may be more than one convincing explanation, we abduce only
the more plausible of them. The next example illustrates exploratory data analysis.

Example 4. Let the program Q over L*, with abducibles AQ = {a,b,c}, be the theory of agent Bob:

x ← a
x ← b
x ← c
expect(a)
expect(b)
expect(c)
a < c ← not e
b < c ← not e
b < a ← d

meaning:
x - the car does not start
a - the battery has problems
b- the ignition is damaged
c - there is no gasoline in the car
d - the car's radio works
e - Bob's wife has used the car
exp - test if the car's radio works.

Q has two relevant abductive stable models capable of explaining observation x:

M1 = {expect(a), expect(b), expect(c), a < c, b < c, a, x} with hypothesis ∆1 = {a}

M2 = {expect(a), expect(b), expect(c), a < c, b < c, b, x} with hypothesis ∆2 = {b}

In this example, we have only a partial relevancy theory over abducibles. Thus, we cannot select
exactly one abducible (i.e., one model), as it were the case had we a complete relevancy relation
over all abducibles in AQ. To prefer between a and b, one can perform some experiment exp to
obtain confirmation (by observing the environment) about the most plausible hypothesis. To do so,
we can employ active rules that are rules of the form:

L1,...,Lt ⇒ α : A

where L1,...,Lt are domain literals, and α : A is an action literal. This rule states to update the theory
of an agent α with A if its body L1,...,Lt is satisfied in all relevant abductive stable models. For
example, we can add the following rules (where env plays the role of the environment) to the theory
Q of Bob:

choose ← a
choose ← b

a ⇒ Bob : chosen
b ⇒ Bob : chosen
choose ⇒ Bob : (not chosen ⇒ env : exp)

Initially Bob has two hypotheses, a and b, that are capable of explaining the observed phenomena x.
Hence, Bob must discover the correct one. Bob chooses some hypothesis if a or b hold. In this case,
Bob still has two relevant abductive stable models: M3 = M1 ∪ {choose} and M4 = M2 ∪ {choose}.
As choose holds in both models, the last active rule is triggerable. When triggered, it will add (at the
next state) the active rule not chosen ⇒ env : exp to the theory of Bob, and, if not chosen holds,
Bob will perform the experiment exp. The first two active rules are needed to prevent Bob from
performing exp when Bob has chosen one of the abducibles.

7. Modelling Observations

In order to allow specification of model-based diagnosis using the proposed preferential theory
framework, it is useful to provide a means to encode observations in the system, both external and

internal, respectively, those experiments that the system can perform on the environment, and the
observations for which it wants to find a reasonable explanation. The notion of observable is used
to represent knowledge about such observations.

An observable is a quaternary relation amongst the observer, i.e. that which is performing the
observation; the observed, that which is the target of the observation; the result of the observation
itself; and the truth value associated with the observation. This relation is adequate both to express
program based self-triggering of internal queries, as well as observations requested from an exterior
oracle to the program, and from the program directly to the environment. For example, the
observable

observable(prog,prog,Query,true)

represents an observation in which the observer is the program, that which is observed is also the
program, the observation is the specified Query and the positive truth value means the observation
must be proven true. In this case, we expect that such an observable, by becoming active via special
on_observable rules, triggers the self-evaluation of Query in the current knowledge state, in the
process resorting to any relevant and expected abducibles that can account for the observation.

Under certain conditions, these observations can represent not only experiments performed on the
environment, but also questions to external agents to acquire additional information with which to
prefer among relevant hypotheses. These agents are called oracles, and they can be just about
anything that is able to interact with the system in order to provide additional information, be it
facts or rules. This may represent an instance of learning by being told, with the agent being
informed of new pieces of knowledge which allow it to make better choices. The oracle-agent
relation can be further complicated in order to include an encoding of levels of trust, or even limited
time-spans for the validity of the obtained information, after which further checks will be performed
in order to ascertain whether (or to what extent) the knowledge has proven itself useful.

For now, information derived from oracles can be regarded as an event, following the concept
introduced in the language for updates LUPS [4]. In the more declarative semantics of updates,
EVOLP [3], we can consider an event as an update of a literal or rule which is immediately
followed by a deletion of that very same literal or rule.

8. Differential Diagnosis in Dentistry: A Use Case

The process of generating possible explanations to given observations and committing to the
resulting choices can be integrated on a larger computational reasoning system, as the one described
in Figure 2. Starting from some state of an evolving knowledge base, we begin by selecting the
observations that we would like to explain. We are then able to come up with possible abductive
hypotheses that allow us to explain those observations. A priori and a posteriori preferences are
used to filter out the most relevant explanatory scenarios, allowing once again the realization of
experiments to disambiguate among abducibles.

Considering such an evolving logic system, we are now ready to tackle the process of encoding a
real-life situation of medical differential diagnosis using the proposed framework. Consider the
following setting from the field of dentistry.

Example 5. A patient shows up at the dentist with signs of pain upon teeth percussion. The expected
causes for the observed signs are:

• Periapical lesion (endodontic or periodontal source)
• Horizontal Fracture of the root and/or crown
• Vertical Fracture of the root and/or crown

Several additional examinations can be conducted to determine the exact cause, namely:

• X-Ray for determination of radiolucency or fracture traces
• X-Ray for determination of periapical lesion source
• Check for tooth mobility
• Measurement of gingival pockets

Aside from presenting multiple hypotheses for diagnosis, the knowledge exhibited by the
practitioner must necessarily evolve in time, as he or she performs relevant examinations which will
attempt to disqualify all but one of the possible explanations. Current examinations depend on
knowledge acquired in the past, which, in turn, will end up influencing the observations and
inferences which will be drawn in the future. Developing a system that is capable of modelling the
evolution of a program in order to draw such inferences is a demanding but obviously useful
challenge.

This setup can be intuitively modelled on top of an abductive logic program:

Initial Signs

on_observable(prog,prog,percussion_pain_cause) ← percussion_pain. (A)

First Phase of Differential Diagnosis

percussion_pain_cause ← periapical_lesion.
percussion_pain_cause ← vertical_fracture.

Figure 2: An evolving abductive knowledge base.

percussion_pain_cause ← horizontal_fracture.

periapical_lesion ← confirm(periapical_lesion).
expect(periapical_lesion) ← profound_caries.
expect(periapical_lesion) ← on_observable(prog,prog,percussion_pain_cause). (B)
expect_not(periapical_lesion) ← fracture_traces, not radiolucency.

vertical_fracture ← confirm(vertical_fracture).
expect(vertical_fracture) ← on_observable(prog,prog,percussion_pain_cause).
expect_not(vertical_fracture) ← radiolucency, not fracture_traces.

horizontal_fracture ← confirm(horizontal_fracture).
expect(horizontal_fracture) ← on_observable(prog,prog,percussion_pain_cause).
expect_not(horizontal_fracture) ← radiolucency, not fracture_traces.

periapical_lesion < horizontal_fracture ← profound_caries, not percussion_pain.
periapical_lesion < vertical_fracture ← profound_caries, not percussion_pain.

horizontal_fracture < vertical_fracture ← low_mobility.
vertical_fracture < horizontal_fracture ← high_mobility.

Second Phase of Differential Diagnosis

on_observable(prog,prog,periapical_lesion_source) ← periapical_lesion. (C)

periapical_lesion_source ← endodontic_lesion.
periapical_lesion_source ← periodontal_lesion.

endodontic_lesion ← confirm(endodontic_lesion).
expect(endodontic_lesion) ← on_observable(prog,prog,periapical_lesion_source).
expect(endodontic_lesion) ← devitalization.
expect(endodontic_lesion) ← not gingival_pockets.
expect_not(endodontic_lesion) ← gingival_pockets, not devitalization. (D)

periodontal_lesion ← confirm(periodontal_lesion).
expect(periodontal_lesion) ← on_observable(prog,prog,periapical_lesion_source).
expect(periodontal_lesion) ← devitalization.
expect(periodontal_lesion) ← gingival_pockets.
expect_not(periodontal_lesion) ← neg_gingival_pockets.

periodontal_lesion < endodontic_lesion ← gingival_pockets.

Available Experiments

radiolucency ← observable(prog,xray,radiolucency).
fracture_traces ← observable(prog,xray,fracture_traces). (E)
high_mobility ← observable(prog,mobility_check,high_mobility).
low_mobility ← observable(prog,mobility_check,low_mobility).
gingival_pockets ← observable(prog,pockets_check,gingival_pockets).
neg_gingival_pockets ← observable(prog,pockets_check,gingival_pockets,false).
devitalization ← observable(prog,periapical_xray,devitalization).

Available Oracles

observable(prog,xray,Q,S) ← oracle,prolog((oracleQuery(xray(Q),T),S = T)).
observable(prog,mobility_check,Q,S) ←

oracle,prolog((oracleQuery(mobility_check(Q),T),S = T)).
observable(prog,pockets_check,Q,S) ←

oracle,prolog((oracleQuery(pockets_check(Q),T),S = T)).
observable(prog,periapical_xray,Q,S) ←
oracle,prolog((oracleQuery(periapical_xray(Q),T),S = T)).

General Confirmation Rule

confirm(X) ← expect(X), not expect_not(X).

8.1. Interaction Results

Using the above program as the initial knowledge base, we can provide the patient's signs (i.e.
percussion_pain) as external updates to the system. Running an abduction cycle over the ACORDA
system produces the reasoning steps detailed below. The question marks are used to indicate queries
to an external oracle, followed by the answer instances that the oracle generated. Next to each
evaluation step we present the number codes relating to the phases from Figure 2.

1. About to launch new introspection on selected active observables:
[on_observable(prog,prog,percussion_pain_cause)]

2. Relevant abducibles for current introspection:

[horizontal_fracture,periapical_lesion,vertical_fracture]

3. Partial models remaining after a priori preferences:
[[horizontal_fracture],[periapical_lesion],[vertical_fracture]]

4. About to launch new introspection on selected active observables:

[on_observable(prog,prog,percussion_pain_cause)]

5. Confirm observation: xray(fracture_traces) (true, false or unknown)? false.

5. Confirm observation: xray(radiolucency) (true, false or unknown)? true.

5. Relevant abducibles for current introspection: [periapical_lesion]

5. Partial models remaining after a priori preferences: [[periapical_lesion]]

The event percussion_pain triggers the active observable percussion_pain_cause (cf. rule A) which
is a program-to-program generated observation, that is, it will cause a top-down query to be
launched in order to attempt an explanation of the observable. The system goes down the rule
derivation tree for percussion_pain_cause, encountering the different possible alternatives derived
from the expectation and counter-expectation rules, i.e. the literals that are output in 2. In this case,
the expectations are triggered only in the context of the currently active observation (cf. rule B).

Afterwards, the a priori preferences concerning the relevant abducibles come into play in order to
filter out less preferred hypothesis. These preferences can themselves be supported by abducibles or
further observations. The abductive stable models of the program are then computed, resulting in at

least a model for each abducible that could not be defeated by the contextual preference rules.

In our current case, no relevant preferences are present in the model, so the resulting stable models
correspond to all the confirmed abducibles: periapical_lesion, horizontal_fracture and
vertical_fracture. Since the system was not able to abduce just one model from a priori preferences,
it means that the current information is insufficient to provide an adequate informed choice. The
prospective search is then relaunched in order to acquire new information from the available
oracles, in order to search for ways to defeat some of the models.

This means that the oracle mechanisms are activated, and for the new observations the system
decrees that experiments can now be performed. A new top-down query is launched, and as the
derivation tree is traversed for new confirmation of relevant abducibles, opportunities to perform
experiments are encountered. This is the case for the satisfaction of expect_not(periapical_lesion)
which depends on fracture_traces and not radiolucency.

In an attempt to satisfy fracture_traces, the ACORDA encounters an observable clause (cf. rule E).
This clause depends on fracture traces being found on X-Ray imaging, so it probes the environment
for just such an exam. No fracture traces are found, so periapical lesion can be confirmed under
support from the oracle experiment. However, the subsequent experiment for radiolucency reveals
positive results which can guarantee defeat of the other two abducibles, meaning that
periapical_lesion is now the only expected and confirmed abducible. ACORDA can now
successfully commit to a single diagnosis.

In the cases where the system cannot guarantee a single abductive stable model after exhausting all
the introspections, it can query the user to perform the final choice over the list of surviving
abducibles, or to provide additional information or experiments to perform in order to continue the
diagnosis process. This behaviour could even be refined to launching separate simulations assuming
each of the remaining solutions, and performing extra levels of prospective lookahead for additional
ways to defeat further models. This addition is considered in future work.

After the abduction of periapical lesion as the most likely cause for the sign of percussion pain on
the patient's tooth, the attention of the system turns to satisfy a new observation for the source of
such lesion. As such, a new cycle of introspection on top of these results can produce a more
detailed diagnosis, as depicted below:

1. About to launch new introspection on selected active observables:
[on_observable(prog,prog,periapical_lesion_source)]

2. Relevant abducibles for current introspection: [endodontic_lesion,periodontal_lesion]

3. Partial models remaining after a priori preferences:

[[endodontic_lesion],[periodontal_lesion]]

4. About to launch new introspection on selected active observables:
[on_observable(prog,prog,periapical_lesion_source)]

5. Confirm observation: pockets_check(gingival_pockets) (true, false or unknown)? true.

5. Confirm observation: periapical_xray(devitalization) (true, false or unknown)? true.

5. Relevant abducibles for current introspection: [endodontic_lesion,periodontal_lesion]

5. Partial models remaining after a priori preferences: [[periodontal_lesion]]

This time, the commitment to the abduction of periapical_lesion triggers the activation of program-
to-program observable periapical_lesion_source (cf. rule C). The relevant expected abducibles that
satisfy this observation are endodontic_lesion and periodontal_lesion, both being confirmed under
the current knowledge state. Again, no active preferences hold a priori, that is, there are no
preference rules relevant to the current abducibles which do not depend on any external
observations. As a result, the Abductive Stable Models of the program correspond once again to all
available abducibles.

The choice mechanisms are activated and the top goal is relaunched in an attempt to acquire
additional information, activating the oracles for external environment probing. The attempt to
defeat endodontic_lesion calls for a gingival pockets measurement (cf. rule D), which reveals the
existence of pockets in the vicinity of the patient's tooth. On the other hand, a periapical X-Ray is
needed to confirm that no endodontic therapy was performed on that tooth. This experiment,
however, reveals just that, and so ACORDA is unable to defeat the endodontic_lesion abducible
using this expect_not clause.

Attempting to defeat periodontal_lesion by means of expect_not clauses proves impossible as well,
due once again to the ambiguous results from the experiments. Both abducibles are again
confirmed. However, a preference for periodontal_lesion is now in place, given the existence of
gingival pockets, so a unique Abductive Stable Model emerges, yielding the final diagnosis of
periodontal_lesion.

The system could now be extended to handle different treatment hypotheses according to the result
of the diagnosis. It would just be a matter of adding new triggers for additional observations that
would represent the adequate treatment. Abducibles in this case would be the expected treatments
and the preference model could be extended to include the patient's own preferences.

9. Revising Relevancy Relations

Relevancy relations are subject to be modified when new information is brought to the knowledge
of an individual, or one needs to represent and reason about the simultaneous relevancy relations of
several individuals. The resulting relevancy relation may not satisfy the required properties (e.g., a
strict partial order - spo) and must therefore be revised. We investigate next the problem of revising
relevancy relations by means of declarative debugging, via abductive diagnosis.

Example 6. Consider the boolean composition of two relevancy relations, that is, < = <1 ∪ <2. The
relevancy relation < may not be a strict partial order, since antisymmetry and transitivity are not
necessarily preserved. Consider the following program Q over L* with abducibles AQ = {a,b,c}:

x ← a
x ← b
x ← c
expect(a)
expect(b)
expect(c)

u < v ← u <1 v
u < v ← u <2 v
a <1 b
b <1 c

b <2 a

where u and v are variables ranging over the abducibles in AQ. The program Q does not have any
relevant abductive stable model since < is not a strict partial order and therefore conditions 1 and 2
of Definition 8 are not met.

In order to account revising relevancy relations, we introduce the language L+ extending L* to
contain integrity constraints.

An integrity constraint is a rule of the form:

⊥ ← L1,...,Lt (t ≥ 0)

where ⊥ is a domain atom denoting contradiction, and L1,...,Lt are domain or relevance literals. The
language L+ consists of domain rules, relevance rules, and integrity constraints. In L+ there are no
abducibles, and therefore its meaning is characterized in terms of stable models. Given a program T
over L+ and a literal L, we write T |= L if L is true in every stable model of T. The program T is
contradictory if T |= ⊥.

Given a contradictory program T, to revise its contradiction (⊥) we modify T by adding and
removing rules. In this framework, the diagnostic process reduces to finding such rules.

Given a set C of predicate symbols of L+, C induces a partition of T into two disjoint parts: T = Tc ∪
Ts. Tc is the changeable part and Ts the stable one. Let D be a pair <U, I> where U ∩ I = Ø, U ⊆ C
and I ⊆ Tc. We say that D is a diagnosis for T iff (T – I) ∪ U |= ⊥. D = <U, I> is a minimal
diagnosis if there exists no diagnosis D2 = <U2, I2> for T such that (U2 ∪ I2) ⊂ (U ∪ I).

Example 7. Consider the following extension of the previous program Q, now expressed over L+
with the introduction of integrity constraints:

x ← a
x ← b
x ← c
expect(a)
expect(b)
expect(c)

u < v ← u <1 v
u < v ← u <2 v
a <1 b
b <1 c
b <2 a

⊥ ← u < u
⊥ ← u < v, v < u
⊥ ← u < v, v < z, not u < z

In this case, it holds that T |= ⊥. Let C = {C1, C2}. T admits three minimal diagnoses:

D1 = <{ },{a <1 b}>

D2 = <{ }, {b <1 c, b <2 a}>
D3 = <{a <1 c}, {b <2 a}>

To compute the minimal diagnoses of a contradictory program T, we employ the contradiction
removal method presented in [14], adapted here to handle relevancy relations. The contradiction
removal method is based on the idea of revising (to false) some of the default atoms not A. A
default atom not A can be revised to false by simply adding A to T. According to [14] the default
literals not A that are allowed to change their truth value are those for which there exists no rule in T
defining A. Such literals are called revisable.

Definition 9. Let T be a program over L+. An atom A ≠ ⊥ is a revisable of T iff there is no rule
defining A in T.

Definition 10. Let T be a program over L+ and V a set of revisables of T. A set Z ⊆ V is a revision
of T iff T ∪ Z |≠ ⊥.

In order to apply the algorithm in [14], we need to transform our original program to one equivalent
program which is suitable for contradiction removal.

Definition 11. Let T be a program over L+ and C a set of predicate symbols in L+. The
transformation Γ that maps T into a program T' is obtained by applying to T the following two
operations:

• Add not incorrect(A ← Body) to the body of each rule A ← Body in Tc.
• Add the rule p(x1,...,xn) ← uncovered(p(x1,...,xn)) for each predicate symbol p with arity n in

C, where x1,...,xn are variables.

We assume the predicate symbols incorrect and uncovered do not occur in T.3

Example 8. Let T be the program of Example 7. Then, the program Γ(T) is:

x ← a
x ← b
x ← c
expect(a)
expect(b)
expect(c)

u < v ← u <1 v
u < v ← u <2 v

⊥ ← u < u
⊥ ← u < v, v < u
⊥ ← u < v, v < z, not u < z

a <1 b ← not incorrect(a <1 b)
b <1 c ← not incorrect(b <1 c)
b <2 a ← not incorrect(b <2 a)

3 The proof procedure for the correctness of the transformation Γ is detailed in [6].

u <1 v ← uncovered(u <1 v)
u <2 v ← uncovered(u <2 v)

Γ(T) admits three minimal revisions with respect to the revisables of the form incorrect(.) and
uncovered(.):

Z1 = {incorrect(a <1 b)}
Z2 = {incorrect(b <1 c), incorrect(b <2 a)}
Z3 = {uncovered(a <1 c), incorrect(b <2 a)}

The following result relates the minimal diagnoses of a program T with the minimal revisions of
Γ(T).

Theorem 1. Let T be a program over L+. The pair D = <U, I> is a diagnosis for T iff

 Z = {uncovered(A): A ∈ U} ∪ {incorrect(A ← Body): A ← Body ∈ I}

is a revision of Γ(T), where the revisables are literals of the form incorrect(.) and uncovered(.).
Furthermore, D is a minimal diagnosis iff Z is a minimal revision.

To compute the minimal diagnosis of a program T we consider the transformed program Γ(T) and
compute its minimal revisions. An algorithm for computing minimal revisions in such logic
programs is given in [14].

10. Concluding Remarks

We have shown that preferences and priorities (they too a form of preferential expressiveness) can
enact choices amongst rules and amongst abducibles, which are dependant on the specifics of
situations, all in the context of theories and theory extensions expressible as logic programs with
updates. These programs are executable by means of publicly available state-of-the-art systems,
using available transformations provided here and elsewhere [14]. We have furthermore shown how
preferences about knowledge extensions can be integrated with knowledge updates, and how they
too fall under the purview of updating, again in the context of logic programs. Preferences about
preferences are also adumbrated therein.

Although we have based our approach on the Stable Model semantics, we could just as easily have
used the Well-Founded Semantics for a more skeptical preferential reasoning. Other logic program
semantics are available too, such as the Revised Stable Model semantics, a two-valued semantics
which resolves odd loops over default negation, arising from the unconstrained expression of
preferences, by means of reductio ad absurdum [15]. Indeed, when there are odd loops over default
negation in a program, Stable Model semantics does not afford the program with semantics.

Also, we need not necessarily insist on a strict partial order for preferences, but have indicated that
different conditions may be provided. The possible alternative revisions, required to satisfy the
conditions, impart a non-monotonic or defeasible reading of the preferences given initially. Such a
generalization permits us to go beyond a simply foundational view of preferences, and allows us to
admit a coherent view as well, inasmuch several alternative consistent stable models may obtain for
our preferences, as a result of each revision.

The abductive process and the system of a priori preferences can be improved as well, in order to
allow for the abduction of a set of abducibles. It will be necessary to specify new ways in which we
can express preferences over these sets, but work is already well underway in this regard.

Abduction of multiple literals is, however, already possible in the current system, by making single
abducibles themselves stand for sets of “abducible” literals. One just needs to carefully model all
the relevant combinations of literals that one would be inclined to expect.

Concerning model-based diagnosis, the integration of actions as possible abductions is also a must
in order to tackle even more complex problems and applications, especially in diagnosis and
prospective logic programming, as we must necessarily deal with pre- and post-conditions. Namely,
the pre-conditions for an action to be abduced must be evaluated before the update for the action
actually takes place, but the post-conditions must also be taken in consideration during the
simulation and before the real action is executed.

Preferences over observables will also be desirable, since not every observation costs the same for
the agent. Performing an X-Ray costs more than checking for tooth mobility or gingival pockets,
and these differences should be modelled directly in the system. It would also be interesting to
study more general ways of selecting the most interesting internal observations to pay attention to at
each diagnosis step. Furthermore, abductive reasoning can be used to generate hypotheses of
observations of events possibly occurring in the future along the lines of [1]. This ability will allow
us to foresee the occurrence of new events which may or may not occur within some time interval,
and thereby confirm or disprove an abduced explanation.

In [17], arguments are given as to how epistemic entrenchment can be explicitly expressed as
preferential reasoning. And, moreover, how preferences can be employed to determine believe
revisions, or, conversely, how belief contractions can lead to the explicit expression of preferences.
[7] provides a stimulating survey of opportunities and problems in the use of preferences, reliant on
AI techniques.

We advocate that the logic programming paradigm (LP) provides a well-defined, general,
integrative, encompassing, and rigorous framework for systematically studying computation, be it
syntax, semantics, procedures, or attending implementations, environments, tools, and standards.
LP approaches problems, and provides solutions, at a sufficient level of abstraction so that they
generalize from problem domain to problem domain. This is afforded by the nature of its very
foundation in logic, both in substance and method, and constitutes one of its major assets.

Indeed, computational reasoning abilities such as assuming by default, abducing, revising beliefs,
removing contradictions, preferring, updating, belief revision, learning, constraint handling, etc., by
dint of their generality and abstract characterization, once developed can readily be adopted by, and
integrated into, distinct topical application areas. No other computational paradigm affords us with
the wherewithal for their coherent conceptual integration, all the while being the very vehicle that
enables testing its specification, when not outright its very implementation [16]. Consequently, it
merits sustained attention from the community of researchers addressing the issues we have
considered and outlined.

11. Acknowledgements

We thank Gregory Wheeler for extended discussion and comment on the philosophical material in
this paper. We thank Joana Nogueira for preparing and supplying scientific information for the case
study on differential medical diagnosis, and also a number of colleagues at DEIS, U. Bologna, for
prior stimulating discussions.

References

1. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Abduction with Hypotheses
Confirmation. Poster paper. Proc. Intl. Joint Conf. on Artificial Intelligence (IJCAI-05),
pages 1545-1546, 2005.

2. J. J. Alferes and L. M. Pereira. Updates plus preferences. In M. O. Aciego, I. P. de Guzmán,
G. Brewka, and L. M. Pereira, editors, Logics in AI, Procs. JELIA'00, LNAI 1919, pages
345–360, Springer 2000..

3. J. J. Alferes, A. Brogi, J. A. Leite, L. M. Pereira. Evolving logic programs. In S. Flesca, S.
Greco, N. Leone, G. Ianni, editors, Procs. of the 8th European Conf. on Logics in Artificial
Intelligence (JELIA'02), LNCS 2424, pages 50–61, Springer, 2002.

4. J. J. Alferes, L. M. Pereira, H. Przymusinska and T. C. Przymusinski. LUPS – a language
for updating logic programs. Artificial Intelligence, 138(1–2), 2002.

5. G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. Artificial
Intelligence, 109:297–356, 1999.

6. P. Dell'Acqua and L. M. Pereira. Preferential theory revision. Journal of Applied Logic.
Forthcoming, 2007.

7. Jon Doyle. Prospects for preferences. Computational Intelligence, 20(2):111–136, 2004.
8. Pierre Duhem. The Aim and Structure of Physical Theory. Princeton University Press, 2nd

edition, 1954.
9. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R.

Kowalski and K. A. Bowen, editors, ICLP'88, pages 1070–1080. MIT Press, 1988.
10. Sven Hansson. Ten philosophical problems in belief revision. Journal of Logic and

Computation, 13:37–49, 2003.
11. Isaac Levi. Mild Contraction. Clarendon Press, Oxford, 2004.
12. G. Lopes and L. M. Pereira. Prospective Logic Programming with ACORDA. In

Empirically Successful Computerized Reasoning (ESCoR'06) workshop at the 3rd
International Joint Conference on Automated Reasoning (IJCAR'06), August 2006.

13. Nayak. Iterated belief change based on epistemic entrenchment. Erkenntnis, 41:353–390,
1994.

14. L. M. Pereira, C. Damásio and J. J. Alferes. Debugging by Diagnosing Assumptions. In P.
Fritzson, editor, 1st Int. Ws. on Automatic Algorithmic Debugging, AADEBUG'93, LNCS
749, pages 58–74, Springer, 1993.

15. L. M. Pereira and A. M. Pinto. Revised Stable Models - a Semantics for Logic Programs.
12th Portuguese Intl. Conf. on Artificial Intelligence (EPIA'05), LNAI 3808, pages 29–42,
Springer, 2005.

16. L. M. Pereira, Philosophical Incidence of Logical Programming, in: Handbook of the Logic
of Argument and Inference, D. Gabbay et al. (eds.), pages 425–448, Studies in Logic and
Practical Reasoning series, volume 1, Elsevier Science 2002.

17. Hans Rott. Change, Choice and Inference. Oxford University Press, Oxford, 2001.
18. Wolfgang Spohn. Ordinal conditional functions: A dynamic theory of epistemic states. In

William L. Harper and Brian Skyrms, editors, Causation in Decision, Belief Change and
Statistics, volume 2, pages 105–134, Reidel, 1987.

