A System for Modal and Deontic Defeasible Reasoning

Grigoris Antoniou'and Nikos Dimaresis'and Guido Governatori?

I Institute of Computer Science, FO.R.T.H., Vassilika Voutwn
P.O. Box 1385, GR 71110, Heraklion, Greece
2 School of ITEE, The University of Queensland, Australia

1 Introduction

The first source of motivation for our work is the modelling of multi-agent systems. In
particular, we follow the approach of [1]] that combines two perspectives: (a) a cognitive
account of agents that specifies motivational attitudes, using the BDI architecture [2],
and (b) modelling of agent societies by means of normative concepts [3].

Commonly, both motivational attitudes and normative aspects are logically captured
through the use of modal logics which are, by definition, monotonic. Therefore, they
cannot deal properly with inconsistencies, that may easily arise in multi-agent and web
environments. As argued in [1]], reasoning about intentions and other mental attitudes
has defeasible nature, and defeasibility is a key aspect for normative reasoning.

In our work, we adopt the well-known defeasible logic [4]. It is a simple, rule-based
and computationally cheap approach. The main objective of this paper is to extend
defeasible logic with modal and deontic operators, and to report on an implementation.

The second important source for motivation for our work is the modelling of poli-
cies. Policies play crucial roles in enhancing security, privacy and usability of dis-
tributed services and extensive research has been done in this area, including the Se-
mantic Web community. It encompasses the notions of security policies, trust manage-
ment, action languages and business rules. As for modelling multi-agent systems, our
formalism of choice is defeasible reasoning.

The expressive power of formal specification languages required by the business
rules community is high and includes deontic notions like obligation, permission and
prohibition. Thus, this task is compatible with the first aim to model multi-agent sys-
tems. Again, we will rely on deontic extensions of defeasible logic.

The two scenarios outlined above can be combined with the semantic web initiative
[S], which aims at enhancing the current state of the web through the use of semantic
information. Semantic web languages and technologies support the issue of semantic
interoperability, which is important both for multi-agent systems and for policies. Our
language of choice, defeasible logic, is compatible with developments in this area. Now
that the layers of metadata (RDF) and ontology (OWL) are stable, an important focus
is on rule languages for the semantic web. While initially the focus has been on mono-
tonic rule systems [6[7U8]], nonmonotonic rule systems are increasingly gaining attention
[OU1OU11]. In particular, there are implementations of defeasible logic that interoperate
with semantic web standards [[10/11]].

As already stated, the aim of this paper is to propose modal and deontic extensions
of defeasible logic, and to describe the basic characteristics of an implemented system.

M.A. Orgun and J. Thornton (eds)

20th Australian Joint Conference on Artificial Intelligence, AI 2007, pp. lﬂ 2007.
(© Springer 2007.

The original publication is available at www.springerlink.com,


http://www.springerlink.com

We base our implementation on the system DR-Prolog [[11]], which uses XSB [12]] as
the underlying logical engine.

2 Defeasible Logic

A defeasible theory is a triple (F, R, >), where F is a set of literals (called facts), R a
finite set of rules, and > a superiority relation on R.

There are three kinds of rules: Strict rules are denoted by A — p, where A is a finite
set of literals and p is a literal, and are interpreted in the classical sense: whenever the
premises are indisputable (e.g. facts) then so is the conclusion. Defeasible rules are
denoted by A = p, and can be defeated by contrary evidence. Defeaters are denoted by
A ~~ p and are used to prevent some conclusions. In other words, they are used to defeat
some defeasible rules by producing evidence to the contrary.

A superiority relation is an acyclic relation > on R (that is, the transitive closure of
> is irreflexive).

A formal definition of the proof theory is found in [4].

3 Extension of Defeasible Logic with Modalities

Recent work [1]] shows that Defeasible Logic is a nonmonotonic approach that can
be extended with modal and deontic operators. This paper presents a computationally
oriented nonmonotonic logical framework that deals with modalities. It combines two
independent perspectives about cognitive agents, belief-desire-intention(BDI) agent ar-
chitecture and agent models that are based on social and normative concepts. This ap-
proach has many similarities with the Beliefs-Obligations-Intentions-Desires architec-
ture (BOID) [3]. In BOID conflicts may arise among informational and motivational
attitudes. The way these conflicts are resolved determines the type of the agent.
The logical framework deals with the following modalities:

. knowledge - the agent’s theory about the world

. intention - policy-based intentions, that is the agent’s general policies
. agency - agent’s intentional actions

. obligation - obligations from the agent’s normative system

O N

We consider an additional deontic modality, permission. This component represents
what an agent is permitted to do, according to his normative system. We extend defea-
sible logic with the permission operator, in order to represent and reason with business
rules and policies properly, in Semantic Web applications.

Defeasible Logic is the suitable formalism that can deal with these components.
The reason being ease of implementation, flexibility and it is efficient. A rule-based
nonmonotonic formalism was developed that extends defeasible logic and represents
and reasons with these modal operators. It has as main feature the introduction of the
mode for every rule, which determines the modality of rule’s conclusion. It also supports
modalised literals that can be defined in defeasible theories as facts or as part of the
antecedents of rules.



4 Translation Into Logic Programs

We use the approach proposed in [13]], [14], to perform reasoning over a defeasible the-
ory. According to this, we translate a defeasible theory D into a logic program P(D), and
we use a logic metaprogram that simulates the proof theory of the formalism that ex-
tents defeasible logic, to reason over the defeasible theory. In the following we describe
a sample of the metaclauses used.

Cclauses for definite provability: a literal is strictly (or definitely) provable in knowl-
edge, if it is a fact and strictly provable in other modalities, if the corresponding modal
literal is a fact. A modalised literal is represented as prefixed with a modal operator
(agency, intention, obligation or permission). An unmodalised literal belongs to the
knowledge of the environment. A literal is also strictly provable in a modality, if it is
supported by a strict rule, with the same mode and the premises of which are strictly
provable. A definite provable literal in intention is defined as

strictly(P,intention) :-fact(intention(P)).

The next clauses define defeasible provability: a literal is defeasibly provable in
a modality, either if it is strictly provable in the same modality, or if the literal, for
this modality, is consistent, it is supported by a rule, and there is not an undefeated
applicable conflicting rule.

defeasibly(P,Operator) :-strictly(P,Operator) .
defeasibly(P,Operator) :-consistent (P,Operator) ,supported(R,Operator,P),
negation(P,P1) ,not(undefeated_applicable(S,Operator,P1)).

A literal is consistent in a modality, if its complementary literal is not strictly provable
in the same modality and in any of the attacking modalities. For example, in a strongly
independent agent, a literal is consistent in intention, if its complementary is not strictly
provable in intention, knowledge and agency:

consistent(P,intention) :-negation(P,P1) ,not(strictly(P1,knowledge)),
not(strictly(P1,intention)) ,not(strictly(P1,agency)).

A literal is supported in a modality, if it is supported by a supportive rule with the
same mode, the premises of which are defeasibly provable.

supported(R,Operator,P) : -supportive_rule(R,Operator,P,A) ,defeasibly(4).

A rule is undefeated applicable in a modality, if it is a supportive rule or a defeater
in a mode that attacks the modality, the premises of the rule are defeasibly provable, and
it is not defeated neither by a supported literal in the modality nor by an applicable rule
for the rule ’s mode. For example, in a strongly independent type, a rule is undefeated
applicable in agency, if it is a rule in knowledge which is not defeated neither by a
supported literal in agency nor by an applicable rule in knowledge.

undefeated_applicable(S,agency,P):-rule(S,knowledge,P,A) ,defeasibly(4),
not (defeated_by_supported(S,agency,P)) ,not (defeated_by_applicable(S,knowledge,P)).

A literal, supported by a rule R, is defeated by a supported literal in a modality, if
the latter is complementary, it is supported in the same modality by a rule S and S is
superior to R.



defeated_by_supported(R,X,P) :-negation(P,P1),supported(S,X,P1),
superior(S,R).

A literal, supported by a rule R, is defeated by an applicable rule in a modality, if
this rule is conflicting to R, it is applicable in the same modality and superior to R.

defeated_by_applicable(R,X,P):-negation(P,P1),applicable(S,X,P1),
superior(S,R).

A rule is applicable in a modality, if it is a supportive rule or a defeater for an
attacking modality and its premises are defeasibly provable; it is also applicable even
it has a mode that can be converted to an attacking modality with the feature of rule
conversion. For example, a rule is applicable in knowledge, if it is a rule in agency, the
premises of which are defeasibly provable:

applicable(R,knowledge,P):-rule(R,agency,P,A) ,defeasibly(A).

S Implementation

Our nonmonotonic rule-based system supports reasoning in defeasible logic, extended
with the modalities. It provides automated decision support, when running a specific
case with the given logic programs and ontological knowledge to get a correct answer.

An additional functionality that the system supports, is that it has the ability to treat
RDF data as facts of the user’s defeasible theories, in order to be processed by the
organization’s rules. The RDF/S documents are retrieved from the Web, and validated
by the Semantic & Syntactic Validator, before being loaded to the system. This validator
is an embedded version of VRP parser [15]]. The system employs the SWI RDF parser
to load the valid RDF/S data and translate them into RDF triples. The triples are then
translated into Prolog facts and rules, which are passed to the Reasoning Engine.

The Reasoning Engine compiles the metaprogram, corresponding to the agent type
we use, and the logic programs, representing the rules and contain the ontological
knowledge. Then it evaluates the answers to user’s queries expressed in Prolog syn-
tax and applied to the compiled programs. The Reasoning Engine was implemented by
using the Java programming library of InterProlog [16]]. This is an open-source Java
front-end that supports the Prolog engines of YAP [17], SWI and XSB. It provides
access to Prolog engines over TCP/IP sockets and launches Prolog processes in the
background, outside the Java Virtual Machine. Thus InterProlog provides the interface
to pass logic programs and process queries to YAP and XSB, the engines that make the
reasoning, and RDF/S data to SWI, which translates them in logic programs.

Finally the system provides a Graphical User Interface based on Java Foundation
Classes (Swing). By interacting with the GUI, the user can import logic programs, load
RDF/S ontologies and query the system.

6 Conclusion

We argued that defeasible reasoning is a computationally efficient way of dealing with
issues related to the modelling of policies and multi-agent systems. We have described



how to enhance standard defeasible logic with agency, intention, permission and obli-
gation operators, and briefly outlined an implemented system that is also compatible
with semantic web technologies.

In future work, we intend to provide an experimental evaluation, experiment with

other logical underlying engine, and develop realistic applications.

References

10.

11.

12.

13.

14.

15.

16.
17.

. Governatori, G., Rotolo, A.: Defeasible Logic: Agency, Intention and Obligation.| In: DEON.

(2004) 114-128

. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In Allen, J.,

Fikes, R., Sandewall, E., eds.: Proceedings of the 2nd International Conference on Principles
of Knowledge Representation and Reasoning (KR’91), Morgan Kaufmann publishers Inc.:
San Mateo, CA, USA (1991) 473484

. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID architecture:

conflicts between beliefs, obligations, intentions and desires. In: AGENTS ’01: Proceedings
of the fifth international conference on Autonomous agents, New York, NY, USA, ACM
Press (2001) 9-16

. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-

sible logic. ACM Trans. Comput. Logic 2(2) (2001) 255-287

. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5)

(2001) 3444

Grosof, B.N., Horrocks, 1., Volz, R., Decker, S.: Description logic programs: combining
logic programs with description logic. In: WWW. (2003) 48-57

Horrocks, 1., Patel-Schneider, P.F.: A proposal for an OWL Rules Language. In: WWW ’04:
Proceedings of the 13th international conference on World Wide Web, New York, NY, USA,
ACM Press (2004) 723-731

. Rosati, R.: On the decidability and complexity of integrating ontologies and rules. WSJ 3(1)

(2005) 41-60

Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: dlvhex: A System for Integrating Multiple
Semantics in an Answer-Set Programming Framework. In: WLP. (2006) 206-210
Bassiliades, N., Antoniou, G., Vlahavas, I.P.: DR-DEVICE: A Defeasible Logic System for
the Semantic Web. In: PPSWR. (2004) 134-148

Antoniou, G., Bikakis, A.: DR-Prolog: A System for Defeasible Reasoning with Rules and
Ontologies on the Semantic Web. IEEE Transactions on Knowledge and Data Engineering
19(2) (2007) 233-245

XSB - Logic Programming and Deductive Database System for Unix and Windows.
http://xsb.sourceforge.net (2007)

Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible logic into
logic programming, Theory Pract. Log. Program. 6(6) (2006) 703-735

Mabher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient defeasible reasoning
systems. International Journal on Artificial Intelligence Tools 10(4) (2001) 483-501

VRP - The ICS-FORTH Validating Rdf Parser. http://139.91.183.30:9090/RDF/VRP (2007)
InterProlog - a Prolog-Java interface. http://www.declarativa.com/interprolog (2007)

YAP Prolog. http://www.ncc.up.pt/ vsc/Yap (2007)


http://espace.uq.edu.au/eserv.php?pid=UQ:9638&dsID=deon04.pdf
http://espace.uq.edu.au/eserv.php?pid=UQ:9620&dsID=tocl.pdf
http://espace.uq.edu.au/eserv.php?pid=UQ:9620&dsID=tocl.pdf
http://espace.uq.edu.au/eserv.php?pid=UQ:8942&dsID=embedding.pdf
http://espace.uq.edu.au/eserv.php?pid=UQ:8942&dsID=embedding.pdf

