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Abstract. Trust  is a vital feature for the Semantic Web: If users (humans and 
agents) are to use and integrate system answers, they  must trust them. Thus, sys-
tems should be able to  explain their actions, sources, and beliefs, and this issue is 
the topic of the proof layer in the design of the Semantic Web. This paper presents 
the design of a system for proof explanation on the Semantic Web, based on de-
feasible reasoning. The basis of this work is the DR-DEVICE system that is ex-
tended to handle proofs. A critical  aspect is the representation of proofs in an 
XML language, which is achieved by a RuleML language extension.

1   Introduction

The development of the Semantic Web proceeds in steps, each step building a layer on 
top of another. At present, the highest layer that has reached sufficient maturity is the 
ontology layer in the form of the description logic-based language OWL [8]. The next 
step in the development of the Semantic Web will be the logic and proof layers. The 
implementation of these two layers will allow the user to state any logical principles, 
and permit the computer to infer new knowledge by applying these principles on the 
existing data. Rule systems appear to lie in the mainstream of such activities.

Many recent studies have focused on the integration of rules and ontologies, and 
various solutions have been proposed. The Description Logic Programs is the approach 
followed in [13]; DLPs derive from the intersection of Description Logics and Horn 
Logic, and enable reasoning with available efficient LP inferencing algorithms over 
large-scale DL ontologies. We also distinguish the approaches presented in [16] and 
[20], which study the integration of Description Logics and Datalog rules. Two repre-
sentative examples of rule languages for the Semantic Web are TRIPLE [22]  and SWRL 
[14]. They both provide a model for rules on the Semantic Web. TRIPLE is based on F-
Logic and provides support for RDFS and a subset of OWL Lite, while SWRL extends 
OWL DL with Horn-style rules.

Different, but equally interesting research efforts, deal with the standardization of 
rules for the Semantic Web. Works in this direction include (a) the RuleML Markup 
Initiative [9], whose ultimate goal is to develop a canonical Web language for rules us-
ing XML markup, formal semantics, and efficient implementations; and (b) the research 
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conducted by the Rule Interchange Format (RIF) Working Group, which was recently 
launched by W3C.

Apart from classical rules that lead to monotonic logical systems, recently research-
ers started to study systems capable of handling conflicts among rules and reasoning 
with partial information. Recently developed nonmonotonic rule systems for the Seman-
tic Web include DR-Prolog [1], SweetJess [12], dlvhex [10] and DR-DEVICE [5], a 
defeasible reasoning system for the Semantic Web, implemented in CLIPS, which inte-
grates well with RuleML and RDF.

The upper levels of the Semantic Web have not been researched enough and contain 
critical issues, like accessibility, trust and credibility. The next step in the architecture of 
the Semantic Web is the proof layer and little has been written and done for this layer. 
The main difference between a query posed to a traditional database system and a se-
mantic web system is that the answer in the first case is returned from a given collection 
of data, while for the semantic web system the answer is the result of a reasoning proc-
ess. While in some cases the answer speaks for itself, in other cases the user will not be 
confident in the answer unless he/she can trust the reasons why the answer has been 
produced. In addition it is envisioned that the semantic web is a distributed system with 
disparate sources of information. Thus a semantic web answering system, to gain the 
trust of a user must be able, if required, to provide an explanation or justification for an 
answer. Since the answer is the result of a reasoning process, the justification can be 
given as a derivation of the conclusion with the sources of information for the various 
steps.

In this work we describe the design of an extension of the nonmonotonic rules sys-
tem DR-DEVICE, to extract and present explanations of answers. This work can be 
viewed as a contribution to the realization of a proof layer for a nonmonotonic rule lan-
guage on the semantic web.

2   Defeasible Logics

The root of defeasible logics lies on research in knowledge representation, and in par-
ticular on inheritance networks. Defeasible logics can be seen as inheritance networks 
expressed in a logical rules language. In fact, they are the first nonmonotonic reasoning 
approach designed from its beginning to be implementable. 

Being nonmonotonic, defeasible logics deal with potential conflicts (inconsistencies) 
among knowledge items. Thus they contain classical negation, contrary to usual logic 
programming systems. They can also deal with negation as failure (NAF), the other type 
of negation typical of nonmonotonic logic programming systems; in fact, [24] argues 
that the Semantic Web requires both types of negation. In defeasible logics, often it is 
assumed that NAF is not included in the object language. However, as [3] argues, it can 
be easily simulated when necessary. Thus, we may use NAF in the object language and 
transform the original knowledge to logical rules without NAF exhibiting the same be-
havior.



Conflicts among rules are indicated by a conflict between their conclusions. These 
conflicts are of local nature.  The simpler case is that one conclusion is the negation of 
the other. The more complex case arises when the conclusions have been declared to be 
mutually exclusive, a very useful representation feature in practical applications. 

Defeasible logics are skeptical in the sense that conflicting rules do not fire. Thus 
consistency of drawn conclusions is preserved.

Priorities on rules may be used to resolve some conflicts among rules. Priority infor-
mation is often found in practice, and constitutes another representational feature of 
defeasible logics. 

The logics take a pragmatic view and have low computational complexity. This is, 
among others, achieved through the absence of disjunction and the local nature of pri-
orities: only priorities between conflicting rules are used, as opposed to systems of for-
mal argumentation where often more complex kinds of priorities (e.g. comparing the 
strength of reasoning chains) are incorporated.

Generally speaking, defeasible logics are closely related to Courteous Logic Pro-
grams [11], as discussed in, e.g., [5].

The Language

A defeasible theory D is a couple (R,>) where R a finite set of rules, and > a superiority 
relation on R. Rules containing free variables are interpreted as the set of their variable-
free instances.

There are three kinds of rules: Strict rules are denoted by A → p, and are interpreted 
in the classical sense: whenever the premises are indisputable then so is the conclusion. 
An example of a strict rule is “Professors are faculty members”. Written formally: pro-
fessor(X) → faculty(X). Inference from strict rules only is called definite infer-
ence. Strict rules are intended to define relationships that are definitional in nature, for 
example ontological knowledge. 

Defeasible rules are denoted by A ⇒ p, and can be defeated by contrary evidence. An 
example of such a rule is faculty(X) ⇒ tenured(X) which reads as follows: “Pro-
fessors are typically tenured”.

Defeaters are denoted as A ~> p and are used only to prevent some conclusions, not 
to actively support conclusions. An example of such a defeater is assistantProf(X) 
~> ¬tenured(X) which reads as follows: “Assistant professors may be not tenured”. 

A superiority relation on R is an acyclic relation > on R (that is, the transitive closure 
of > is irreflexive). When r1 > r2, then r1 is called superior to r2, and r2 inferior to r1. 
This expresses that r1 may override r2. For example, given the defeasible rules
r:  professor(X) =>  tenured(X)
r’: visiting(X)  => ¬tenured(X)

which contradict one another, no conclusive decision can be made about whether a visit-
ing professor is tenured. But if we introduce a superiority relation > with r’ > r, then we 
can indeed conclude that a visiting professor is not tenured.

The system works roughly in the following way: to prove a conclusion A defeasibly, 
there must be a firing rule with A as its head (that is, all literals in the rule body have 



already been proved); in addition, we must rebut all attacking rules with head the 
(strong) negation of A. For each such attacking rule we must establish either (a) that this 
rule cannot fire because we have already established that one of the literals in its body 
cannot be proved defeasibly (finite failure), or (b) that there is a firing rule with head A 
superior to the attacking rule. 

A formal definition of the proof theory is found in [3]. A model theoretic semantics is 
found in [17]. 

3    System Functionality

In this section we mainly concentrate on the functionality of the proof explanations fa-
cility of the DR-DEVICE system (Fig. 1). More details on the architecture and the im-
plementation of the system can be found in [5]. 

Fig. 1. Functionality of the DR-DEVICE system.

The DR-DEVICE system accepts as input a defeasibe logic rulebase (step 4) in a 
RuleML-like syntax [9]. The rulebase has been created by a user (step 1) and its address 
is submitted to the DR-DEVICE system (step 3) through the stand-alone user interface 
of the system [6], or through a web-based interface hat we are currently developing. The 
rulebase contains only rules; the facts for the rule program are (input) RDF documents, 
whose addresses are declared in the rulebase header (step 2). The rule conclusions are 
materialized inside DR-DEVICE as objects (step 5)  and when the inference procedure 
terminates, the instances of designated derived classes are exported as an RDF docu-
ment (step 6). The RDF document includes:
• The RDF Schema definitions for the exported derived classes. 
• Those instances of the exported derived classes, which have been proven, either posi-

tively or negatively, either defeasibly or definitely. 
Furthermore, the system exports the grounds for all derived objects in a separate 

RuleML document (steps 6, 7). To this end we have extended RuleML with an XML 
schema for proofs of both classically (definitely) derived objects and defeasibly derived 



objects, which is discussed in the next section. DR-DEVICE returns to the user (step 8) 
the address of the RDF document with the results and the address of the RuleML docu-
ment with the proof traces. Finally, the user can access the results (step 9) and the proofs 
(step 10) through a web browser or through a specialized software that can customize 
the visualization. Notice, that DR-DEVICE can also provide explanations about non-
proved objects.

4   Proof Schema

The XML Schema for proof traces1 explaining DR-DEVICE’s results is an extension of 
the RuleML’s 0.91 schema2. Actually, the rule language of DR-DEVICE is also an ex-
tension of RuleML. Extensions (for the rule language) deal with two aspects of DR-
DEVICE, namely defeasible logic and its CLIPS implementation. Defeasible logic ex-
tensions include rule types, superiority relation among rules and conflicting literals, 
while CLIPS-related extensions deal with constraints on predicate arguments and func-
tions. More details about the rule language can be found in [5]. 

The top-level element of the proof schema is the optional Grounds element, which is 
a top-level element of a RuleML document, although it should actually be an alternative 
to an Assert element. The latter could not be achieved using the redefinition mecha-
nism of XML Schema, since element extensions deal only with sequences and not 
choices. Grounds consist of multiple proved or even not proved rule conclusions. Proofs 
can be either definite, i.e. using classical strict rules, or defeasible, which can use all 
three rule types of defeasible logic.

Definitely proved literals consist of the literal itself and the definite proof tree. The 
literal can be a positive atom or its negation, or even a reference to an RDF resource. 
Notice that DR-DEVICE uses RDF resources as facts and its conclusions are also mate-
rialized as RDF resources. A literal is definitely proved if there is a strict clause, either a 
strict rule or a fact, whose body literals are also definitely proven. Rules can either be 
in-lined in the proof tree or an external reference can exist to rules in another RuleML 
document. Similarly, the proofs for body literals can either be encapsulated in the proof 
tree of the rule head or can be referenced from another place of the proof document.

On the other hand, defeasible proofs are more complicated since they require either a 
defeasible or a strict rule (collectively called supportive rules), whose body literals are 
defeasibly proven. Notice that a definite proof subsumes a defeasible proof, that is why 
the Definite_Proof element is an alternative to the Defeasible_Proof element. 
Furthermore, the defeasibe conclusion must not be strongly attacked, i.e. the negation of 
the conclusion must not be definitely proved. Finally, the rules that defeasibly attack the 
current one must all be blocked, so the defeasible conclusion of this rules prevails.

A rule can be blocked in three ways. A defeasible rule (or a defeater) is blocked either 
when its body literals are not defeasibly proven or when it is attacked by another supe-

1 http://lpis.csd.auth.gr/systems/dr-device/dr-device-0.91.xsd

2 http://www.ruleml.org/0.91/xsd/nafnegdatalog.xsd



rior defeasible rule, whose body literals are defeasibly proven. A strict rule is blocked if 
its body literals are not definitely proven. Finally, inferior defeasible rules are consid-
ered as blocked.

Not proved conclusions follow a similar structure, i.e. the supportive rule that could 
not prove something must be included along with the reason why this happened. In the 
case of a defeasible non-proof, reasons include either the non-proof of some of the body 
literals or a definitely proved negated literal or an undefeated defeasible attacker. A de-
feasible attacker can be a defeasible rule or a defeater, whose body literals are proven 
and whose possible attackers have been blocked. Notice that in order for a conclusion to 
not be defeasibly provable it must also be not definitely provable. The latter is similar to 
the blocked strict rule case above. 

5   Proof Example

In this section we include a full example of the functionality of DR-DEVICE concern-
ing both the inferencing and proof provision procedures. Assume that the user wants to 
submit the following rulebase (shown in simple logical notation) and wants to find out 
why the conclusion rich(antonis) is defeasibly derived.
wins_lotto(antonis) owns(antonis)

r1: wins_lotto(X) ⇒ rich(X) r2: paid_well(X) ⇒ rich(X)

r3: owns(X) ⇒ ¬rich(X) r1 > r3

r4: gamble(X) ⇒ ¬rich(X)

The rulebase is submitted to DR-DEVICE as a RuleML document (Fig. 2). Notice 
that facts are not directly included in the RuleML document but in a separate input RDF 
document (Fig. 3), as indicated by the rdf_input attribute of the top-level RuleML 
element in Fig. 2. The rdf_export_classes attribute indicates which are the ex-
ported conclusions, the rdf_export attribute designates the output RDF document 
(Fig. 4)  and the proof attribute designates the output RuleML document (Fig. 5) that 
contains the proofs for the exported conclusions.

DR-DEVICE atoms follow an object-oriented structure; the operator is a class name 
and the arguments are named slots. The DR-DEVICE system employs an object-
oriented RDF data model ([5], [7]), where properties as normal encapsulated attributes 
of resource objects. The operator of an atom corresponds to the type of an RDF re-
source, the oid element to the URI of the resource and the slot arguments to the re-
source’s properties.

The exported results in Fig. 4 contain the materialization of the derived object as an 
RDF resource, which also contains some system-defined properties, such as truthSta-
tus that indicates if the conclusion was definitely or defeasibly proven, and proof that 
references the proof ID of the corresponding proof tree in the output proof document 
(Fig. 5). The latter indicates that the corresponding RDF resource was defeasibly proved 
using defeasible rule r1, whose body literal was also defeasibly proved via a definitive 
proof due to the existence of a fact (RDF resource of the input RDF document). Fur-



thermore, the negated conclusion was not definitely proven, because there are no appro-
priate strict rules, which is indicated by the fact that the not_strongly_attacked 
element is empty. Finally, defeasible rules r3 and r4 which attack r1 are both blocked; 
r3 is blocked because it is attacked by the superior rule r1 and r4 is blocked because its 
body literal cannot be proved.

<RuleML	

rdf_import="http://.../ex1.rdf" rdf_export_classes="rich"
	

 	

 	

 	

 rdf_export="export-ex1.rdf" proof="http://.../proof-ex1.ruleml"
	

 	

 	

 	

 xsi:schemaLocation="http://www.ruleml.org/0.91/xsd
              http://.../dr-device/dr-device-0.91.xsd">
	

 <Assert>
	

 	

 <Implies ruletype="defeasiblerule">
	

 	

 	

 <oid><Ind uri="&ex_rb;r1">r1</Ind></oid>
	

 	

 	

 <head>	

 <Atom>	

 <op><Rel>rich</Rel></op>
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 <slot><Ind>person</Ind>	

<Var>x</Var></slot>	

</Atom>	

</head>
	

 	

 	

 <body>	

 <Atom>	

 <op><Rel uri="ex:person"/></op>
	

 	

 	

 	

 	

 	

 	

 	

 <slot><Ind>ex:name</Ind><Var>x</Var></slot>
	

 	

 	

 	

 	

 	

 	

 	

 <slot>	

 <Ind>ex:wins_lotto</Ind>
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 <Data xsi:type="xs:string">true</Data>	

 </slot>	

</Atom>	

</body>
	

 	

 	

 <superior>	

 <Ind uri="&ex_rb;r3"/>	

 </superior>
	

 	

 </Implies>
...
	

 	

 <Implies ruletype="defeasiblerule">
	

 	

 	

 <oid><Ind uri="&ex_rb;r3">r3</Ind></oid>
	

 	

 	

 <head>	

 <Neg>	

<Atom>	

 <op><Rel>rich</Rel></op>
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 <slot><Ind>person</Ind><Var>x</Var></slot>	

</Atom>	

</Neg>	

 </head>
	

 	

 	

 <body>	

 <Atom>	

 <op><Rel uri="ex:person"/></op>
	

 	

 	

 	

 	

 	

 	

 	

 <slot><Ind>ex:name</Ind><Var>x</Var></slot>
	

 	

 	

 	

 	

 	

 	

 	

 <slot>	

 <Ind>ex:owns</Ind>
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 <Data xsi:type="xs:string">true</Data>	

 </slot>	

</Atom>	

</body>
	

 	

 </Implies>
...
	

 </Assert>
</RuleML>

Fig. 2. Rulebase example parts.

<rdf:RDF ... >
	

 	

 <ex:person	

	

 	

 rdf:ID="Inst_6" 
	

 	

 	

 	

 ex:name="antonis"	

	

 	

 	

 	

 ex:owns="false" 
	

 	

 	

 	

 ex:paid_well="true"	

	

 	

 	

 ex:wins_lotto="true"/>
</rdf:RDF>

Fig. 3. Input RDF document example.

<rdf:RDF	

 xmlns:defeasible="http://.../defeasible.rdfs#" 
	

 	

 	

 	

 	

 xmlns:dr-device="http://.../export-ex1.rdf#" ... >
...
	

 <dr-device:rich rdf:about="http://.../export-ex1.rdf#rich1">
	

 	

 <dr-device:person>antonis</dr-device:person>
	

 	

 <defeasible:truthStatus>defeasibly-proven</defeasible:truthStatus>
	

 	

 <defeasible:proof 
	

 	

 	

 	

 rdf:datatype="&xsd;anyURI">'http://.../proof-ex1.ruleml#proof1'</defeasible:proof>
	

 </dr-device:rich>
</rdf:RDF>

Fig. 4. Output RDF document example.

6   Related Work

Besides teaching logic [4], not much work has been centered around explanation in rea-
soning systems so far. Rule-based expert systems have been very successful in applica-
tions of AI, and from the beginning, their designers and users have noted the need for 



explanations in their recommendations. In expert systems like [21] and Explainable 
Expert System [23], a simple trace of the program execution rule firing appears to pro-
vide a sufficient basis on which to build an explanation facility and they generate expla-
nations in a language understandable to its users.

<RuleML rdf_import="http://.../ex1.rdf"     rdf_export="http://.../export-ex1.rdf" 
    rulebase="http://.../dr-device/proof/ex/ex1.ruleml"
    xsi:schemaLocation="http://www.ruleml.org/0.91/xsd http://.../dr-device-0.91.xsd">
 <Grounds>
  <Proved>

   <Defeasibly_Proved> <oid><Ind uri="&pr_ex;proof1">proof1</Ind></oid>
    <Literal> <RDF_resource uri="http://.../export-ex1.rdf#rich1"/>
    <Defeasible_Proof>
     <supportive_rule> <rule_ref rule="&ex_rb;r1"/> </supportive_rule>
     <defeasible_body_grounds>
      <Defeasibly_Proved>
       <Literal> <Atom> <op><Rel uri="ex:person"/></op>
             <slot> <Ind>ex:name</Ind>
                 <Data xsi:type="xs:string">Antonis</Data></slot>
             <slot> <Ind>ex:wins_lotto</Ind>
                 <Data xsi:type="xs:string">true</Data> </slot> </Atom>
       </Literal>
       <Definite_Proof>
        <strict_clause>
         <Fact> <RDF_resource uri="http://...ex1.rdf#Inst_6"/> </Fact>
        </strict_clause>
       </Definite_Proof>
      </Defeasibly_Proved>
     </defeasible_body_grounds>
     <not_strongly_attacked/>
     <defeasible_attackers_blocked>
      <Blocked>
       <Blocked_Defeasible_rule>
        <rule_ref rule="&ex_rb;r3"/>
        <Attacked_by_Superior> <rule_ref rule="&ex_rb;r1"/>
        </Attacked_by_Superior> </Blocked_Defeasible_rule> </Blocked>
      <Blocked>
       <Blocked_Defeasible_rule>
        <rule_ref rule="&ex_rb;r4"/>
        <not_defeasible_body_grounds>
         <Not_Defeasibly_Proved>
          <Literal> <Atom> <op><Rel uri="ex:person"/></op>
                <slot> <Ind>ex:name</Ind>
                    <Data xsi:type="xs:string">Antonis</Data></slot>
                <slot> <Ind>ex:gambles</Ind>
                    <Data xsi:type="xs:string">true</Data> </slot>
          </Atom>  </Literal>
          <Not_Defeasible_Proof/>
          <Not_Definite_Proof/>
...
</RuleML>

Fig. 5. Proof example.

Work has also been done in explaining the reasoning in description logics [18]. This 
research presents a logical infrastructure for separating pieces of logical proofs and 
automatically generating follow-up queries based on the logical format.

The most prominent work on proofs in the Semantic Web context is Inference Web 
[19]. The Inference Web (IW) is a Semantic Web based knowledge provenance infra-
structure that supports interoperable explanations of sources, assumptions, learned in-
formation, and answers as an enabler for trust. It supports provenance, by providing 
proof metadata about sources, and explanation, by providing manipulation trace infor-
mation. It also supports trust, by rating the sources about their trustworthiness.

IW simply requires inference rule registration and PML format. It does not limit itself 
to only extracting deductive engines. It provides a proof theoretic foundation on which 



to build and present its explanations, but any question answering system may be regis-
tered in the Inference Web and thus explained. So, in order to use the Inference Web 
infrastructure, a question answering system must register in the IWBase its inference 
engine along with its supported inference rules, using the PML specification format. The 
IW supports proof generation service that facilitates the creation of PML proofs by in-
ference engines.

Closest to this paper is the work [2]  that also focuses on explanation extraction and 
presentation for defeasible reasoning on the semantic web, but relies on an XSB-based 
reasoning engine and is embedded in a multi-agent environment, while it provides few 
details regarding the extensions of RuleML.

7   Conclusion and Future Work

This work presented a new system that aims to increase the trust of the users for Seman-
tic Web applications. The system automatically generates an explanation for every an-
swer to user’s queries, in a formal and useful representation. It can be used by individ-
ual users who want to get a more detailed explanation from a reasoning system in the 
Semantic Web, in a more human readable way. Also, an explanation could be fed into a 
proof checker to verify the validity of a conclusion; this is important in a multi-agent 
setting. Our reasoning system is based on defeasible logic (a nonmonotonic rule system) 
and we used the related reasoning engine DR-DEVICE. One contribution of our work is 
a RuleML extension for a formal representation of an explanation using defeasible 
logic.

In future work, we intend to improve the explanation facility to make it more intui-
tive and human-friendly, to suit users unfamiliar with logic. This effort includes proof 
visualization and visual rule execution tracing through integrating the work described in 
this paper with a tool for rule visualization [15] we have developed. Also, integration 
with the Inference Web infrastructure will be explored. Finally, we will investigate the 
use of the system in semantic web applications in which explanation and trust are essen-
tial elements.
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