
Proof Explanation in the DR-DEVICE System

Nick Bassiliades1, Grigoris Antoniou2 and Guido Governatori3

1 Aristotle University of Thessaloniki, Greece
nbassili@csd.auth.gr

2 FORTH-ICS, Greece and University of Crete, Greece
antoniou@ics.forth.gr

3University of Queensland, Australia
guido@itee.uq.edu.au

Abstract. Trust is a vital feature for the Semantic Web: If users (humans and
agents) are to use and integrate system answers, they must trust them. Thus, sys-
tems should be able to explain their actions, sources, and beliefs, and this issue is
the topic of the proof layer in the design of the Semantic Web. This paper presents
the design of a system for proof explanation on the Semantic Web, based on de-
feasible reasoning. The basis of this work is the DR-DEVICE system that is ex-
tended to handle proofs. A critical aspect is the representation of proofs in an
XML language, which is achieved by a RuleML language extension.

1 Introduction

The development of the Semantic Web proceeds in steps, each step building a layer on
top of another. At present, the highest layer that has reached sufficient maturity is the
ontology layer in the form of the description logic-based language OWL [8]. The next
step in the development of the Semantic Web will be the logic and proof layers. The
implementation of these two layers will allow the user to state any logical principles,
and permit the computer to infer new knowledge by applying these principles on the
existing data. Rule systems appear to lie in the mainstream of such activities.

Many recent studies have focused on the integration of rules and ontologies, and
various solutions have been proposed. The Description Logic Programs is the approach
followed in [13]; DLPs derive from the intersection of Description Logics and Horn
Logic, and enable reasoning with available efficient LP inferencing algorithms over
large-scale DL ontologies. We also distinguish the approaches presented in [16] and
[20], which study the integration of Description Logics and Datalog rules. Two repre-
sentative examples of rule languages for the Semantic Web are TRIPLE [22] and SWRL
[14]. They both provide a model for rules on the Semantic Web. TRIPLE is based on F-
Logic and provides support for RDFS and a subset of OWL Lite, while SWRL extends
OWL DL with Horn-style rules.

Different, but equally interesting research efforts, deal with the standardization of
rules for the Semantic Web. Works in this direction include (a) the RuleML Markup
Initiative [9], whose ultimate goal is to develop a canonical Web language for rules us-
ing XML markup, formal semantics, and efficient implementations; and (b) the research

M. Marchiori, J.F. Pan and C. de Sainte Marie (eds)
Web Reasoning and Rule Systems. LNCS 4524, pp. 249-258
© Springer-Verlag 2007
The original publication is available at www.springerlink.com

http://dx.doi.org/10.1007/978-3-540-72982-2_19
http://dx.doi.org/10.1007/978-3-540-72982-2_19

conducted by the Rule Interchange Format (RIF) Working Group, which was recently
launched by W3C.

Apart from classical rules that lead to monotonic logical systems, recently research-
ers started to study systems capable of handling conflicts among rules and reasoning
with partial information. Recently developed nonmonotonic rule systems for the Seman-
tic Web include DR-Prolog [1], SweetJess [12], dlvhex [10] and DR-DEVICE [5], a
defeasible reasoning system for the Semantic Web, implemented in CLIPS, which inte-
grates well with RuleML and RDF.

The upper levels of the Semantic Web have not been researched enough and contain
critical issues, like accessibility, trust and credibility. The next step in the architecture of
the Semantic Web is the proof layer and little has been written and done for this layer.
The main difference between a query posed to a traditional database system and a se-
mantic web system is that the answer in the first case is returned from a given collection
of data, while for the semantic web system the answer is the result of a reasoning proc-
ess. While in some cases the answer speaks for itself, in other cases the user will not be
confident in the answer unless he/she can trust the reasons why the answer has been
produced. In addition it is envisioned that the semantic web is a distributed system with
disparate sources of information. Thus a semantic web answering system, to gain the
trust of a user must be able, if required, to provide an explanation or justification for an
answer. Since the answer is the result of a reasoning process, the justification can be
given as a derivation of the conclusion with the sources of information for the various
steps.

In this work we describe the design of an extension of the nonmonotonic rules sys-
tem DR-DEVICE, to extract and present explanations of answers. This work can be
viewed as a contribution to the realization of a proof layer for a nonmonotonic rule lan-
guage on the semantic web.

2 Defeasible Logics

The root of defeasible logics lies on research in knowledge representation, and in par-
ticular on inheritance networks. Defeasible logics can be seen as inheritance networks
expressed in a logical rules language. In fact, they are the first nonmonotonic reasoning
approach designed from its beginning to be implementable.

Being nonmonotonic, defeasible logics deal with potential conflicts (inconsistencies)
among knowledge items. Thus they contain classical negation, contrary to usual logic
programming systems. They can also deal with negation as failure (NAF), the other type
of negation typical of nonmonotonic logic programming systems; in fact, [24] argues
that the Semantic Web requires both types of negation. In defeasible logics, often it is
assumed that NAF is not included in the object language. However, as [3] argues, it can
be easily simulated when necessary. Thus, we may use NAF in the object language and
transform the original knowledge to logical rules without NAF exhibiting the same be-
havior.

Conflicts among rules are indicated by a conflict between their conclusions. These
conflicts are of local nature. The simpler case is that one conclusion is the negation of
the other. The more complex case arises when the conclusions have been declared to be
mutually exclusive, a very useful representation feature in practical applications.

Defeasible logics are skeptical in the sense that conflicting rules do not fire. Thus
consistency of drawn conclusions is preserved.

Priorities on rules may be used to resolve some conflicts among rules. Priority infor-
mation is often found in practice, and constitutes another representational feature of
defeasible logics.

The logics take a pragmatic view and have low computational complexity. This is,
among others, achieved through the absence of disjunction and the local nature of pri-
orities: only priorities between conflicting rules are used, as opposed to systems of for-
mal argumentation where often more complex kinds of priorities (e.g. comparing the
strength of reasoning chains) are incorporated.

Generally speaking, defeasible logics are closely related to Courteous Logic Pro-
grams [11], as discussed in, e.g., [5].

The Language

A defeasible theory D is a couple (R,>) where R a finite set of rules, and > a superiority
relation on R. Rules containing free variables are interpreted as the set of their variable-
free instances.

There are three kinds of rules: Strict rules are denoted by A → p, and are interpreted
in the classical sense: whenever the premises are indisputable then so is the conclusion.
An example of a strict rule is “Professors are faculty members”. Written formally: pro-
fessor(X) → faculty(X). Inference from strict rules only is called definite infer-
ence. Strict rules are intended to define relationships that are definitional in nature, for
example ontological knowledge.

Defeasible rules are denoted by A ⇒ p, and can be defeated by contrary evidence. An
example of such a rule is faculty(X) ⇒ tenured(X) which reads as follows: “Pro-
fessors are typically tenured”.

Defeaters are denoted as A ~> p and are used only to prevent some conclusions, not
to actively support conclusions. An example of such a defeater is assistantProf(X)
~> ¬tenured(X) which reads as follows: “Assistant professors may be not tenured”.

A superiority relation on R is an acyclic relation > on R (that is, the transitive closure
of > is irreflexive). When r1 > r2, then r1 is called superior to r2, and r2 inferior to r1.
This expresses that r1 may override r2. For example, given the defeasible rules
r: professor(X) => tenured(X)
r’: visiting(X) => ¬tenured(X)

which contradict one another, no conclusive decision can be made about whether a visit-
ing professor is tenured. But if we introduce a superiority relation > with r’ > r, then we
can indeed conclude that a visiting professor is not tenured.

The system works roughly in the following way: to prove a conclusion A defeasibly,
there must be a firing rule with A as its head (that is, all literals in the rule body have

already been proved); in addition, we must rebut all attacking rules with head the
(strong) negation of A. For each such attacking rule we must establish either (a) that this
rule cannot fire because we have already established that one of the literals in its body
cannot be proved defeasibly (finite failure), or (b) that there is a firing rule with head A
superior to the attacking rule.

A formal definition of the proof theory is found in [3]. A model theoretic semantics is
found in [17].

3 System Functionality

In this section we mainly concentrate on the functionality of the proof explanations fa-
cility of the DR-DEVICE system (Fig. 1). More details on the architecture and the im-
plementation of the system can be found in [5].

Fig. 1. Functionality of the DR-DEVICE system.

The DR-DEVICE system accepts as input a defeasibe logic rulebase (step 4) in a
RuleML-like syntax [9]. The rulebase has been created by a user (step 1) and its address
is submitted to the DR-DEVICE system (step 3) through the stand-alone user interface
of the system [6], or through a web-based interface hat we are currently developing. The
rulebase contains only rules; the facts for the rule program are (input) RDF documents,
whose addresses are declared in the rulebase header (step 2). The rule conclusions are
materialized inside DR-DEVICE as objects (step 5) and when the inference procedure
terminates, the instances of designated derived classes are exported as an RDF docu-
ment (step 6). The RDF document includes:
• The RDF Schema definitions for the exported derived classes.
• Those instances of the exported derived classes, which have been proven, either posi-

tively or negatively, either defeasibly or definitely.
Furthermore, the system exports the grounds for all derived objects in a separate

RuleML document (steps 6, 7). To this end we have extended RuleML with an XML
schema for proofs of both classically (definitely) derived objects and defeasibly derived

objects, which is discussed in the next section. DR-DEVICE returns to the user (step 8)
the address of the RDF document with the results and the address of the RuleML docu-
ment with the proof traces. Finally, the user can access the results (step 9) and the proofs
(step 10) through a web browser or through a specialized software that can customize
the visualization. Notice, that DR-DEVICE can also provide explanations about non-
proved objects.

4 Proof Schema

The XML Schema for proof traces1 explaining DR-DEVICE’s results is an extension of
the RuleML’s 0.91 schema2. Actually, the rule language of DR-DEVICE is also an ex-
tension of RuleML. Extensions (for the rule language) deal with two aspects of DR-
DEVICE, namely defeasible logic and its CLIPS implementation. Defeasible logic ex-
tensions include rule types, superiority relation among rules and conflicting literals,
while CLIPS-related extensions deal with constraints on predicate arguments and func-
tions. More details about the rule language can be found in [5].

The top-level element of the proof schema is the optional Grounds element, which is
a top-level element of a RuleML document, although it should actually be an alternative
to an Assert element. The latter could not be achieved using the redefinition mecha-
nism of XML Schema, since element extensions deal only with sequences and not
choices. Grounds consist of multiple proved or even not proved rule conclusions. Proofs
can be either definite, i.e. using classical strict rules, or defeasible, which can use all
three rule types of defeasible logic.

Definitely proved literals consist of the literal itself and the definite proof tree. The
literal can be a positive atom or its negation, or even a reference to an RDF resource.
Notice that DR-DEVICE uses RDF resources as facts and its conclusions are also mate-
rialized as RDF resources. A literal is definitely proved if there is a strict clause, either a
strict rule or a fact, whose body literals are also definitely proven. Rules can either be
in-lined in the proof tree or an external reference can exist to rules in another RuleML
document. Similarly, the proofs for body literals can either be encapsulated in the proof
tree of the rule head or can be referenced from another place of the proof document.

On the other hand, defeasible proofs are more complicated since they require either a
defeasible or a strict rule (collectively called supportive rules), whose body literals are
defeasibly proven. Notice that a definite proof subsumes a defeasible proof, that is why
the Definite_Proof element is an alternative to the Defeasible_Proof element.
Furthermore, the defeasibe conclusion must not be strongly attacked, i.e. the negation of
the conclusion must not be definitely proved. Finally, the rules that defeasibly attack the
current one must all be blocked, so the defeasible conclusion of this rules prevails.

A rule can be blocked in three ways. A defeasible rule (or a defeater) is blocked either
when its body literals are not defeasibly proven or when it is attacked by another supe-

1 http://lpis.csd.auth.gr/systems/dr-device/dr-device-0.91.xsd

2 http://www.ruleml.org/0.91/xsd/nafnegdatalog.xsd

rior defeasible rule, whose body literals are defeasibly proven. A strict rule is blocked if
its body literals are not definitely proven. Finally, inferior defeasible rules are consid-
ered as blocked.

Not proved conclusions follow a similar structure, i.e. the supportive rule that could
not prove something must be included along with the reason why this happened. In the
case of a defeasible non-proof, reasons include either the non-proof of some of the body
literals or a definitely proved negated literal or an undefeated defeasible attacker. A de-
feasible attacker can be a defeasible rule or a defeater, whose body literals are proven
and whose possible attackers have been blocked. Notice that in order for a conclusion to
not be defeasibly provable it must also be not definitely provable. The latter is similar to
the blocked strict rule case above.

5 Proof Example

In this section we include a full example of the functionality of DR-DEVICE concern-
ing both the inferencing and proof provision procedures. Assume that the user wants to
submit the following rulebase (shown in simple logical notation) and wants to find out
why the conclusion rich(antonis) is defeasibly derived.
wins_lotto(antonis) owns(antonis)

r1: wins_lotto(X) ⇒ rich(X) r2: paid_well(X) ⇒ rich(X)

r3: owns(X) ⇒ ¬rich(X) r1 > r3

r4: gamble(X) ⇒ ¬rich(X)

The rulebase is submitted to DR-DEVICE as a RuleML document (Fig. 2). Notice
that facts are not directly included in the RuleML document but in a separate input RDF
document (Fig. 3), as indicated by the rdf_input attribute of the top-level RuleML
element in Fig. 2. The rdf_export_classes attribute indicates which are the ex-
ported conclusions, the rdf_export attribute designates the output RDF document
(Fig. 4) and the proof attribute designates the output RuleML document (Fig. 5) that
contains the proofs for the exported conclusions.

DR-DEVICE atoms follow an object-oriented structure; the operator is a class name
and the arguments are named slots. The DR-DEVICE system employs an object-
oriented RDF data model ([5], [7]), where properties as normal encapsulated attributes
of resource objects. The operator of an atom corresponds to the type of an RDF re-
source, the oid element to the URI of the resource and the slot arguments to the re-
source’s properties.

The exported results in Fig. 4 contain the materialization of the derived object as an
RDF resource, which also contains some system-defined properties, such as truthSta-
tus that indicates if the conclusion was definitely or defeasibly proven, and proof that
references the proof ID of the corresponding proof tree in the output proof document
(Fig. 5). The latter indicates that the corresponding RDF resource was defeasibly proved
using defeasible rule r1, whose body literal was also defeasibly proved via a definitive
proof due to the existence of a fact (RDF resource of the input RDF document). Fur-

thermore, the negated conclusion was not definitely proven, because there are no appro-
priate strict rules, which is indicated by the fact that the not_strongly_attacked
element is empty. Finally, defeasible rules r3 and r4 which attack r1 are both blocked;
r3 is blocked because it is attacked by the superior rule r1 and r4 is blocked because its
body literal cannot be proved.

<RuleML	

rdf_import="http://.../ex1.rdf" rdf_export_classes="rich"
	

 	

 	

 	

 rdf_export="export-ex1.rdf" proof="http://.../proof-ex1.ruleml"
	

 	

 	

 	

 xsi:schemaLocation="http://www.ruleml.org/0.91/xsd
 http://.../dr-device/dr-device-0.91.xsd">
	

 <Assert>
	

 	

 <Implies ruletype="defeasiblerule">
	

 	

 	

 <oid><Ind uri="&ex_rb;r1">r1</Ind></oid>
	

 	

 	

 <head>	

 <Atom>	

 <op><Rel>rich</Rel></op>
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 <slot><Ind>person</Ind>	

<Var>x</Var></slot>	

</Atom>	

</head>
	

 	

 	

 <body>	

 <Atom>	

 <op><Rel uri="ex:person"/></op>
	

 	

 	

 	

 	

 	

 	

 	

 <slot><Ind>ex:name</Ind><Var>x</Var></slot>
	

 	

 	

 	

 	

 	

 	

 	

 <slot>	

 <Ind>ex:wins_lotto</Ind>
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 <Data xsi:type="xs:string">true</Data>	

 </slot>	

</Atom>	

</body>
	

 	

 	

 <superior>	

 <Ind uri="&ex_rb;r3"/>	

 </superior>
	

 	

 </Implies>
...
	

 	

 <Implies ruletype="defeasiblerule">
	

 	

 	

 <oid><Ind uri="&ex_rb;r3">r3</Ind></oid>
	

 	

 	

 <head>	

 <Neg>	

<Atom>	

 <op><Rel>rich</Rel></op>
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 <slot><Ind>person</Ind><Var>x</Var></slot>	

</Atom>	

</Neg>	

 </head>
	

 	

 	

 <body>	

 <Atom>	

 <op><Rel uri="ex:person"/></op>
	

 	

 	

 	

 	

 	

 	

 	

 <slot><Ind>ex:name</Ind><Var>x</Var></slot>
	

 	

 	

 	

 	

 	

 	

 	

 <slot>	

 <Ind>ex:owns</Ind>
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 <Data xsi:type="xs:string">true</Data>	

 </slot>	

</Atom>	

</body>
	

 	

 </Implies>
...
	

 </Assert>
</RuleML>

Fig. 2. Rulebase example parts.

<rdf:RDF ... >
	

 	

 <ex:person	

	

 	

 rdf:ID="Inst_6"
	

 	

 	

 	

 ex:name="antonis"	

	

 	

 	

 	

 ex:owns="false"
	

 	

 	

 	

 ex:paid_well="true"	

	

 	

 	

 ex:wins_lotto="true"/>
</rdf:RDF>

Fig. 3. Input RDF document example.

<rdf:RDF	

 xmlns:defeasible="http://.../defeasible.rdfs#"
	

 	

 	

 	

 	

 xmlns:dr-device="http://.../export-ex1.rdf#" ... >
...
	

 <dr-device:rich rdf:about="http://.../export-ex1.rdf#rich1">
	

 	

 <dr-device:person>antonis</dr-device:person>
	

 	

 <defeasible:truthStatus>defeasibly-proven</defeasible:truthStatus>
	

 	

 <defeasible:proof
	

 	

 	

 	

 rdf:datatype="&xsd;anyURI">'http://.../proof-ex1.ruleml#proof1'</defeasible:proof>
	

 </dr-device:rich>
</rdf:RDF>

Fig. 4. Output RDF document example.

6 Related Work

Besides teaching logic [4], not much work has been centered around explanation in rea-
soning systems so far. Rule-based expert systems have been very successful in applica-
tions of AI, and from the beginning, their designers and users have noted the need for

explanations in their recommendations. In expert systems like [21] and Explainable
Expert System [23], a simple trace of the program execution rule firing appears to pro-
vide a sufficient basis on which to build an explanation facility and they generate expla-
nations in a language understandable to its users.

<RuleML rdf_import="http://.../ex1.rdf" rdf_export="http://.../export-ex1.rdf"
 rulebase="http://.../dr-device/proof/ex/ex1.ruleml"
 xsi:schemaLocation="http://www.ruleml.org/0.91/xsd http://.../dr-device-0.91.xsd">
 <Grounds>
 <Proved>

 <Defeasibly_Proved> <oid><Ind uri="&pr_ex;proof1">proof1</Ind></oid>
 <Literal> <RDF_resource uri="http://.../export-ex1.rdf#rich1"/>
 <Defeasible_Proof>
 <supportive_rule> <rule_ref rule="&ex_rb;r1"/> </supportive_rule>
 <defeasible_body_grounds>
 <Defeasibly_Proved>
 <Literal> <Atom> <op><Rel uri="ex:person"/></op>
 <slot> <Ind>ex:name</Ind>
 <Data xsi:type="xs:string">Antonis</Data></slot>
 <slot> <Ind>ex:wins_lotto</Ind>
 <Data xsi:type="xs:string">true</Data> </slot> </Atom>
 </Literal>
 <Definite_Proof>
 <strict_clause>
 <Fact> <RDF_resource uri="http://...ex1.rdf#Inst_6"/> </Fact>
 </strict_clause>
 </Definite_Proof>
 </Defeasibly_Proved>
 </defeasible_body_grounds>
 <not_strongly_attacked/>
 <defeasible_attackers_blocked>
 <Blocked>
 <Blocked_Defeasible_rule>
 <rule_ref rule="&ex_rb;r3"/>
 <Attacked_by_Superior> <rule_ref rule="&ex_rb;r1"/>
 </Attacked_by_Superior> </Blocked_Defeasible_rule> </Blocked>
 <Blocked>
 <Blocked_Defeasible_rule>
 <rule_ref rule="&ex_rb;r4"/>
 <not_defeasible_body_grounds>
 <Not_Defeasibly_Proved>
 <Literal> <Atom> <op><Rel uri="ex:person"/></op>
 <slot> <Ind>ex:name</Ind>
 <Data xsi:type="xs:string">Antonis</Data></slot>
 <slot> <Ind>ex:gambles</Ind>
 <Data xsi:type="xs:string">true</Data> </slot>
 </Atom> </Literal>
 <Not_Defeasible_Proof/>
 <Not_Definite_Proof/>
...
</RuleML>

Fig. 5. Proof example.

Work has also been done in explaining the reasoning in description logics [18]. This
research presents a logical infrastructure for separating pieces of logical proofs and
automatically generating follow-up queries based on the logical format.

The most prominent work on proofs in the Semantic Web context is Inference Web
[19]. The Inference Web (IW) is a Semantic Web based knowledge provenance infra-
structure that supports interoperable explanations of sources, assumptions, learned in-
formation, and answers as an enabler for trust. It supports provenance, by providing
proof metadata about sources, and explanation, by providing manipulation trace infor-
mation. It also supports trust, by rating the sources about their trustworthiness.

IW simply requires inference rule registration and PML format. It does not limit itself
to only extracting deductive engines. It provides a proof theoretic foundation on which

to build and present its explanations, but any question answering system may be regis-
tered in the Inference Web and thus explained. So, in order to use the Inference Web
infrastructure, a question answering system must register in the IWBase its inference
engine along with its supported inference rules, using the PML specification format. The
IW supports proof generation service that facilitates the creation of PML proofs by in-
ference engines.

Closest to this paper is the work [2] that also focuses on explanation extraction and
presentation for defeasible reasoning on the semantic web, but relies on an XSB-based
reasoning engine and is embedded in a multi-agent environment, while it provides few
details regarding the extensions of RuleML.

7 Conclusion and Future Work

This work presented a new system that aims to increase the trust of the users for Seman-
tic Web applications. The system automatically generates an explanation for every an-
swer to user’s queries, in a formal and useful representation. It can be used by individ-
ual users who want to get a more detailed explanation from a reasoning system in the
Semantic Web, in a more human readable way. Also, an explanation could be fed into a
proof checker to verify the validity of a conclusion; this is important in a multi-agent
setting. Our reasoning system is based on defeasible logic (a nonmonotonic rule system)
and we used the related reasoning engine DR-DEVICE. One contribution of our work is
a RuleML extension for a formal representation of an explanation using defeasible
logic.

In future work, we intend to improve the explanation facility to make it more intui-
tive and human-friendly, to suit users unfamiliar with logic. This effort includes proof
visualization and visual rule execution tracing through integrating the work described in
this paper with a tool for rule visualization [15] we have developed. Also, integration
with the Inference Web infrastructure will be explored. Finally, we will investigate the
use of the system in semantic web applications in which explanation and trust are essen-
tial elements.

Acknowledgments

This work was partially supported by the REWERSE Network of Excellence, and a
GSRT Greek-Australian Project “Defeasible Reasoning for Semantic Web e-Commerce
Applications”.

References
[1] Antoniou G., Bikakis A., "DR-Prolog: A System for Defeasible Reasoning with Rules and

Ontologies on the Semantic Web", IEEE Tran. on Knowledge and Data Engineering, 19(2),
pp. 233-245, 2007.

[2] Antoniou G. et al. “Proof Explanation for the Semantic Web Using Defeasible Logic”, sub-
mitted.

[3] Antoniou G., Billington D., Governatori G. and Maher M.J., “Representation results for
defeasible logic”, ACM Trans. on Computational Logic, 2(2), 2001, pp. 255-287.

[4] Barwise J. and Etchemendy J., The Language of First-Order Logic. Center for the study of
Language and Information 1993.

[5] Bassiliades N., Antoniou G., Vlahavas I., "A Defeasible Logic Reasoner for the Semantic
Web", Int. Journal on Semantic Web and Information Systems, 2(1), pp. 1-41, 2006.

[6] Bassiliades N., Kontopoulos E., Antoniou G., “A Visual Environment for Developing De-
feasible Rule Bases for the Semantic Web”, Proc. RuleML-2005, pp. 172-186, Springer-
Verlag, LNCS 3791, Galway, Ireland, 2005.

[7] Bassiliades N., Vlahavas I., “R-DEVICE: An Object-Oriented Knowledge Base System for
RDF Metadata”, Int. Journal on Semantic Web and Information Systems, 2(2), pp. 24-90,
2006.

[8] Bechhofer S., van Harmelen F., Hendler J., Horrocks I., McGuinness D.L., Patel-Schneider
P.F., Stein L.A., OWL web ontology language reference, www.w3.org/TR/ owl-ref/,
W3C Recommendation, 10 February 2004.

[9] Boley H., Tabet S., The Rule Markup Initiative, www.ruleml.org.
[10] Eiter T., Ianni G., Schindlauer R., Tompits H., "dlvhex: A System for Integrating Multiple

Semantics in an Answer-Set Programming Framework.". Proc. WLP 2006, pp. 206-210.
[11] Grosof B. N., “Prioritized conflict handing for logic programs”, Proc. of the 1997 Int. Sym-

posium on Logic Programming, pp. 197-211, 1997.
[12] Grosof B. N., Gandhe M. D. and Finin T. W., “SweetJess: Translating DAMLRuleML to

JESS“, Proc. RuleML 2002.
[13] Grosof B. N., Horrocks I., Volz R. and Decker S., “Description Logic Programs: Combining

Logic Programs with Description Logic”, Proc. 12th Intl. Conf. on the World Wide Web
(WWW-2003), ACM Press, 2003, pp. 48-57.

[14] Horrocks I., Patel-Schneider P. F., Bechhofer S., Tsarkov D., “OWL Rules: A Proposal and
Prototype Implementation”, Journal of Web Semantics, 3(1), pp. 23-40, 2005.

[15] Kontopoulos E., Bassiliades N., Antoniou G., “Visualizing Defeasible Logic Rules for the
Semantic Web”, 1st Asian Semantic Web Conf. (ASWC'06), Beijing, China, 2006, Springer-
Verlag, LNCS 4185, pp. 278-292.

[16] Levy A. and Rousset M.-C., “Combining Horn rules and description logics in CARIN”,
Artificial Intelligence, 104(1-2), 1998, pp. 165 – 209.

[17] Maher M.J., “A Model-Theoretic Semantics for Defeasible Logic”, Proc. Workshop on Par-
aconsistent Computational Logic, pp. 67-80, 2002.

[18] McGuinness D. L. and Borgida A., “Explaining Subsumption in Description Logics”, Proc.
IJCAI 1995, pp. 816-821.

[19] McGuinness D. L. and da Silva P., “Explaining answers from the Semantic Web: the Infer-
ence Web approach”, Journal of Web Semantics, 1(4), 2004, pp. 397-413.

[20] Rosati R., “On the decidability and complexity of integrating ontologies and rules”, Journal
of Web Semantics, 3(1), 2005, pp. 41-60.

[21] Shortliffe E., Computer-based medical consultations: MYCIN, Elsevier, 1976.
[22] Sintek M. and Decker S., “TRIPLE - A Query, Inference, and Transformation Language for

the Semantic Web", Proc. Int. Semantic Web Conference, 2002, pp. 364-378.
[23] Swartout W., Paris C. and Moore J., “Explanations in Knowledge Systems: Design for Ex-

plainable Expert Systems”, IEEE Expert, 6(3), 1991, pp. 58-64.
[24] Wagner G., “Web Rules Need Two Kinds of Negation”, In Proc. First Workshop on Seman-

tic Web Reasoning, LNCS 2901, Springer 2003, pp. 33-50.

http://espace.uq.edu.au/eserv.php?pid=UQ:9620&dsID=tocl.pdf
http://espace.uq.edu.au/eserv.php?pid=UQ:9620&dsID=tocl.pdf
http://espace.uq.edu.au/eserv.php?pid=UQ:9620&dsID=tocl.pdf
http://espace.uq.edu.au/eserv.php?pid=UQ:9620&dsID=tocl.pdf

