Towards a Financial Service Rule-Based
Implementation Using Jena and Jboss

Oana NICOLAE, Ton Mircea DIACONESCU, Adrian GIURCA, Gerd
WACNER

Department of Internet Technology
Institute of Informatics
Brandenburg Technical University at Cottbus, Germany
{nicolae, M.Diaconescu, giurca, G.Wagner } @tu-cottbus.de

Abstract. A business rule approach provides the ability to respond
and to quickly adapt to changes. It captures the essence of any busi-
ness mechanism and it is suitable for all scenarios where rules serve to
shape behavior and to guide business processes. These factors motivate
us for choosing the business rule approach on implementing our Finan-
cial Service Use Case (i.e. UServ Product Derby 2005), which emulates
a complete vehicle insurance service. The paper is a practical guide for
those interested on the serialization and deployment of a Business Rules
Model, from some Natural Language description to some target Rule-
Based Platforms/Engines (i.e. JBossRules and JenaRules), via R2ML
markup language. It is not in our intention to provide a comprehensive
discussion about the R2ML to JBossRules or about R2ML to JenaRules
translation, therefore the paper only captures the modeling and trans-
lation basic aspects.

Keywords: business rules, R2ML, RIF, rule interchange, JBossRules,
JenaRules.

Math. Subject Classification 2000: 68T30, 68T35

1 Introduction

On the actual business market context, where constant change is the first
characteristic, business rules are inevitable and the adaptability tends to be-
come a necessity for all professional software products and services. Business
rules are suitable for all cases where there is an acute need for guiding and
influencing the behavior in a desired way. Therefore, business rules are used to
employ different scenarios: from business games to financial services applica-
tions and one of the goals of advanced information system technologies is to
provide a solid support for business rules and business processes.

Business rules, expressed in a declarative way, represent a basic component
of the business IT architecture. There are actually a limited number of rules
engines vendors around (i.e Jess, JRules from ILog). They are seriously com-
peted by open-source rule engines like JBossRules [§] or JenaRules [9]. This

60 O. NICOLAE, 1. M. DIACONESCU, A. GIURCA, G. WAGNER

proves that business market communities, from both UML modelers and ontol-
ogy architects sides, are re-orienting towards open-source business rules tools.

Another trend that regards the business rules adaptability as main char-
acteristic, involves the concept of business rules technology standardization.
Here we mention the efforts of OMG’s MDA inter-operability standards, the
W3C! initiative on rules interchange (i.e. RIF [1]) and last but not least, the
EU network of excellence REWERSE (i.e. R2ML [12]).

This paper describes two rule-based implementations of UServ Product
Derby 2005 Use Case [2] each of them addressing a different target platform
and language area (i.e. Object Oriented Rule Languages via JBossRules? and
Semantic Web Rule Languages via JenaRules?®).

The paper covers the basic steps followed by I1 Rules Framework model
(http://oxygen.informatik.tu-cottbus.de/rewerse-il/?q=I1Framework),
in order to achieve the UServ 2005 Business Rules Model translation into JBoss-
Rules and JenaRules implementations, using R2ML as interchange language.

On Section 2 we motivate the decisions we took vis-a-vis our applications.
Our work follows the principles of OMG’s MDA [6] by considering three dif-
ferent levels of abstractions (CIM*, PIM®, PSM®) for business rules modeling.
These levels will be further explained based on a concrete rule example on
Section 3 which describe the architecture and the implementation of the appli-
cation. Finally, Section 4 presents our conclusions based on the modeling and
implementation stages of our work.

2 DMotivation

JBoss Rules is an open-source, forward-chaining Production Rule System
written entirely in Java language. It provides business logic (rules) and data
(facts) separation which results in reusing the rules across applications and
Service-Oriented Architectures. JBossRules employs a fast and efficient Rule
Engine based on ReteOO, a descendant of Rete algorithm.

JBossRules features such as:

— The runtime provides dynamic assertion and remove of rules.

Employs Conflict Resolutions like salience rule attribute and LIFO.

Light and easy to understand syntax (i.e. DRL syntax) uses Java to express
field constraints, functions and consequences.

— Easy to integrate with the mainstream JEES technologies.

— Collect complex decision-making logic and work with large data sets.

! World Wide Web Consortium - http://wuw.w3.org

2 JBossRules - http: //www. jboss.com/products/rules

3 JenaRules - http://jena.sourceforge.net/

4 CIM - Computation Independent Model - business level modeling.
5 PIM - Platform Independent Model - independent level modeling.
6 PSM - Platform Specific Model - implementation level modeling.

Towards a Financial Service Rule-Based Implementation 61

makes it a good candidate for implementing applications like UServ.

Jena is a Java framework for building Semantic Web applications. It pro-
vides a programmatic environment for RDF”, RDFS®, OWL?, and SPARQL!?
Jena includes JenaRules, a rule-based inference engine. Implementing Userv
with JenaRules allows the application to be integrated in other Semantic Web
applications by sharing knowledge on the Web.

A tutorial'* about UServ Product Derby rule-based implementation in
JBossRules and JenaRules is available online. You can also test the application
at http://oxygen.informatik.tu-cottbus.de/userv/ in both JBossRules
and JenaRules implementations.

To expose the translation process of the rules from plain English language
to target platforms implementations, the application provides Rules Browser'?,
where the rules, grouped in logical rulesets can be visualized. For each rule is
available an URML (See [10] Chapter 1 and [3]) Model created with Strelka'?
[11], the corresponding R2ML Code, JenaRules implementation and JBoss-
Rules implementation. A view of the vocabulary model of the UServ Product
Derby 2005 is also available.

3 Userv rule-based implementation

The use case expresses the rules in plain English language, and provides a
scenario which emulates a complete vehicle insurance service. The final goal
of the scenario is the computation of the UServ annual premium for a vehicle
insurance policy, which belongs to an eligible client.

In order to achieve this purpose, UServ divides its business rules into busi-
ness rules sets, each of them addressing different goals and contexts i.e.

— Automobile Eligibility - establishes the eligibility category for a car;

— Driver Eligibility - sets the eligibility category for a driver;

— Eligibility Scoring - determines the client’s eligibility category based on
a scoring system, by testing the risk ratings for: driver, car and client
categories. If the client is eligible for vehicle insurance, then the annual
premium is calculated;

— Automobile Premiums - calculates the car premium, based on model
year, fabrication year, medical or uninsured motorist coverage;

" Resource Description Framework (RDF) - http://http://www.w3.org/TR/
rdf-syntax-grammar/
8 Resource Description Framework Schema (RDFS) - http://http://www.w3.org/
TR/rdf-schema/
 Ontology Web Language (OWL) - http://www.w3.org/2004/0WL/
1% Query Language for RDF (SPARQL) - www.w3.org/TR/rdf-sparql-query/
1 UServ Tutorial - http://oxygen.informatik.tu-cottbus.de/rewerse-il/?q=
node/33
12 Rules Browser - http://oxygen.informatik.tu-cottbus.de/userv/index.html
13 Strelka - http://oxygen. informatik.tu-cottbus.de/rewerse-i1/?q=Strelka

62 O. NICOLAE, 1. M. DIACONESCU, A. GIURCA, G. WAGNER

— Driver Premiums - calculates the premium for every particular driver;

— Automobile Discounts - lowers the car premium with specific percents,
if the car has or not airbags or alarm system;

— Market Discounts - which lowers the total premium (sum of car premium
and driver premium) based on client segmentation (elite or preferred).

UServ business rules document address the OMG’s Model Driven Architec-
ture CIM level. Lets look together to the following rule AE_PTC04 from 2005
Product Derby Case Study:

Rule AE_PTCO04: If all of the following are true, then the car’s Potential
Theft Rating is moderate:

— car’s price is between $20000 and $45000.
— car model is not on the list of ”High Theft Probability Auto”.

From the plain English rule description, we can identify:

— The concepts referenced in the rule (i.e. car, car model).

— The concepts object /data types properties (i.e. potential TheftRating, price,
hasHighTheftProbability).

— The properties constraints (i.e. 20000 <= price, price <= 45000 and
hasHighTheftprobability == false).

Therefore, the UServ Product Derby business rules needs a rule language,
based on vocabulary, in order to be represented.

Car

CarModel y

; “is alarmSystem : Boolean
hasePremium : Double carEligibility : String
highTheftProkakility : Boolean corvertible : Boolean
modelType : String = driverAirbag : Boolean
fabrication¥ear : Integer
modelYear : Integer
4 huilds newCar : Boolean
1 passengerAirbag : Boolean
patential0 coupantinjuryRating © String
patentiamheftRating : String
price : Double
rollBar : Boolean
sideAirbag ; Boolean =

-
=

=

Manufacturer

Fig. 1. An excerpt of the UServ Vocabulary

The I1 Rules Framework models, serializes and deploys rules according with
the following steps:

Towards a Financial Service Rule-Based Implementation 63

— Rules are modeled visually using Strelka.

— Strelka tool generates the serialization of rules in R2ML language.

— Next step is to use the R2ML-to-JBossRules translator and R2ML-to-Jena
translator in order to obtain JBossRules translation, respectively JenaRules
implementation.

— Finally, we use JBossRules and JenaRules execution platforms to execute
the obtained UServ business rules.

3.1 Visual rule modeling with Strelka

Strelka allows visual rule modeling on top of UML vocabularies, therefore
the first step is to create an UML class diagram model in order to obtain the
UServ vocabulary. At this stage, a PIM model is built. An excerpt of this model
is depicted in Figure 1.

The complete model can be found at
http://oxygen.informatik.tu-cottbus.de/userv/data/tmp78154785/pim.
png.

The visual representation of the rule AE_PTC04 is the following:

ialTheftRating="moderate'

PR
id: AE_PTCO4

20000==price and price==45000

A po

Car

alarmBSystern : Boolean

carEligibility : String

convertible : Boaolean

driverAirbag : Boolean
fahricationyear : Integer

modeltear : Integer

newiar: Boolean

passengerdirhag | Boolean
potentialOccupantinjuryRating : String

highTheftProhahilitye=false

CarMaoilel

potentialTheftRating : String
price : Douhkle
rollBar: Boolean

hasePremium : Double
highTheftProbahility : Boolean
modelType : String

carModel

sideAirhag : Boolean =

Fig. 2. UServ Product Derby - rule AE_PTCO04.

Strelka is based on URML, an extension of UML class diagrams with addi-
tional concepts and graphical signs to represent rule specific elements. Visually

— A Production Rule is represented as an ellipse with an internal label PR
and an additional rule identifier: AE_PTCO4.

— The rule conditions are OCL filter expressions such as
(20000 <= price and price <= 45000) representing price attribute con-
straints on car object or (highTheftProbability = false) representing
an attribute constraint on carModel object. The conditions are represented
by an incoming condition arrow.

64 O. NICOLAE, 1. M. DIACONESCU, A. GIURCA, G. WAGNER

— The rule action is: potentialTheftRating = ’moderate’ and is repre-
sented by an outgoing, double headed, action arrow, together with the A
letter symbol.

3.2 R2ML markup

The next step is to provide a serialization into the rule interchange format
R2ML. Strelka tool is used to serialize rule models into the rule interchange
format R2ML. Starting from this format by applying R2ML translators we
obtain rules for different rule-based languages (i.e. JBoss Rules and Jena).

R2ML language is capable to express rules which don’t require any con-
ceptual changes in order to be implemented in Object Oriented Rule Systems
such as: JBossRules, JRules (ILOG) or Semantic Web Rule Languages (i.e.
JenaRules). In order to achieve this, R2ML has to comply Web naming con-
cepts like (URI and Namespaces), datatype concepts of RDF and ontological
distinction between objects and data.

An R2ML rule always refers to a vocabulary which can be R2ML own
vocabulary or an imported one (RDF(S) and OWL). R2ML vocabulary is a
serialization of an UML fragment of class diagrams. In our implementation
every R2ML rule contains its own R2ML vocabulary i.e. elements from the
vocabulary:

xmlns:r2mlv="http://www.rewerse.net/I1/2006/R2ML/R2MLV".
Below is an excerpt from AE_PTCO04 rule vocabulary:

<r2ml:RuleBase xmlns:r2ml="http://www.rewerse.net/I1/2006/R2ML"
xmlns:r2mlv="http://www.rewverse.net/I1/2006/R2ML/R2MLV"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://oxygen.informatik.tu-cottbus.de/R2ML/0.4/R2ML.xsd">
<r2mlv:Vocabulary>
<r2mlv:Class r2mlv:ID="Car">
<r2mlv:Attribute r2mlv:ID="price">
<r2mlv:range><r2mlv:Datatype r2mlv:ID="xs:integer"/></r2mlv:range>
</r2mlv:Attribute>
<r2mlv:Attribute r2mlv:ID="potentialTheftRating">
<r2mlv:range><r2mlv:Datatype r2mlv:ID="xs:sting"/></r2mlv:range>
</r2mlv:Attribute>
</r2mlv:Class>
</r2mlv:Vocabulary>
<t== .. ==>
</r2mlv:RuleBase>

An R2ML Production Rule has conditions, an action and a post-condition.
In R2ML framework the conditions and the post-condition of a production rule
are Logical Formulas (i.e. the content of r2ml: conditions and r2ml:postcond-
ition role elements), which corresponds to a general first order formula such
as quantified formula (i.e. existentially quantified or universally quantified).

R2ML rules also have an optional attribute (e.g. r2ml:ruleID = "AE_PTC04")
which unique identifies a rule in a Production Rule Set.

The r2ml:conditions attribute is used to capture the R2ML conditions.
The r2ml :0bjectClassificationAtom expresses the instance0f relationship
between objects and classes.

Towards a Financial Service Rule-Based Implementation 65

Any R2ML object classification atom consists into a mandatory attribute
r2ml:classID="Car" (xs:QName) and an object term as argument:
i.e. r2ml:0bjectVariable r2ml:name="car".
1.<r2ml:0bjectClassificationAtom r2ml:classID="Car">

2. <r2ml:ObjectVariable r2ml:name="car"/>
3.</r2ml:0bjectClassificationAtom>

The markup of the condition (20000 <= price) is the following:

4.<r2ml:DatatypePredicateAtom r2ml:datatypePredicateID="swrlb:lessThanOrEqual">
5. <r2ml:dataArguments>

6. <r2ml:TypedLiteral r2ml:datatypeID="xs:integer" r2ml:lexicalValue="20000"/>
7 <r2ml:AttributeFunctionTerm r2ml:attributeID="price">

8 <r2ml:contextArgument>

9. <r2ml:0bjectVariable r2ml:name="car" r2ml:classID="Car"/>

10. </r2ml:contextArgument>

11. </r2ml:AttributeFunctionTerm>

12. </r2ml:dataArguments>

13.</r2ml:DatatypePredicateAtom>

The (<=) operation corresponds to the value of the
r2ml:datatypePredicate ID="swrlb:lessThanOrEqual" attribute.

The r2ml:attributelID of the r2ml:AttributeFunctionTerm is used to
represent the price attribute.

R2ML actions are built according with the OMG PRR Specification [7].
The actions part of an R2ML rule is represented by r2ml:producedAction
role element:

14 .<r2ml :producedAction>

15. <r2ml:AssignActionExpression r2ml:propertyID="potentialTheftRating">
16. <r2ml:contextArgument>

17. <r2ml:0bjectVariable r2ml:name="car" r2ml:classID="Car"/>

18. </r2ml:contextArgument>

19. <r2ml:TypedLiteral r2ml:lexicalValue="moderate"

20. r2ml:datatypeID="xs:string"/>

21. </r2ml:AssignActionExpression>

22.</r2ml:producedAction>

The r2ml:AssignActionExpression is used in order to markup the setting
of the value moderate for the r2ml:propertyID="potentialTheftRating"
attribute.

When referring to the above R2ML code, further in this paper, we will use
the numbered code lines notation.

3.3 UServ architecture approach

Our approach involves a Web Application which runs under the Tomcat
Application Server and was designed using MyEclipse. The Web Application
exposes two users interfaces, one for JBossRules implementation and the other
one for JenaRules implementation. These users interfaces consist in fact in one
HTML pattern which collects the users inputs.

For each user, a new session is created. The sessions store information about
the type of the module which is invoked (i.e. JBossRules module or JenaRules
module). The users data are collected from the HTML forms and further pro-
cessed and validated with the help of the JSP code. Then, the users inputs

66 O. NICOLAE, 1. M. DIACONESCU, A. GIURCA, G. WAGNER

are stored in the Knowledge Base(s) of the appropriate Rule Engine which is
further invoked (JBossRules or JenaRules).

The UServ solution we propose is based on some modular software ar-
chitecture that can be seen in the Figure 3 and implies at its basis, two
rule-based implementations. Each of the implementations addresses different
rule languages (Drools Rule Language (DRL) syntax for JBossRules and RDF
triples for JenaRules) and distinct rule engine behaviors. JBossRules is a Rete-
based forward chaining Production Rule Engine, meanwhile JenaRules (also
a Rete-based Rule Engine) allows different types of reasoning behavior (i.e.
forward-chaining, backward-chaining and hybrid).

The Jena rules provided in UServ Product Derby were executed using the
hybrid mode of the inference engine, even they are implemented as forward
rules. The reason the default rule sets use the hybrid mode is a performance
trade-off trying to balance the better performance of forward reasoning with
the cost of computing all possible answers when an application might only want
a few.

Both JBoss and Jena modules are written in Java code and each of them
embed an Inference Engine which apply reasoning on data stored in the Knowl-
edge Base against the rules from the Rules Base (i.e. Production Memory in
JBossRules).

When facts match the rules conditions, the rules are activated and eventu-
ally executed. The obtained results refer the client eligibility for auto insurance,
and if the case, the annual premium for its vehicle insurance policy/policies.

During the Inference process, each of the rule implementations dynamically
generates an execution log containing information such as which rules were
executed, the rule sets they belong, what facts changes they implied an so on.

Tomcat Application Server
= Request
Client > 1SP Application
(Web Browser) | <% Response (compiled to servlets)
/ Y
/ kS
JBossRules JenaRules
implementation implementation
Inference | |Execution Inference Execution
Log Log
kKnowdlege Knowledge
Base Base

Fig. 3. UServ - Application Architecture

Towards a Financial Service Rule-Based Implementation 67

3.4 JBossRules experiences

The Drools/JBossRules system of JBoss provides a PSM for the represen-
tation of Production Rules.

JBossRules is designed to use Java Beans instances as facts. These facts
represent the domain of the rules, meaning the rules vocabulary. Therefore, the
input data from the HTML forms represent values for the properties of some
JavaBeans instances.

Using vocabulary classes from R2ML, corresponding Java Beans are gen-
erated and all needed beans are imported into the DRL rule file through the
import declarations, which are specified inside of the rules file (drl files). Assum-
ing the namespace xmlns:ex=http://www.drools.org/userv and the quali-
fied name ex:Car, this translates into JBoss declaration:
import org.drools.userv.Car.

JBoss rules are stored in text files usually having the drl extension.
The JBossRules representation for the ” AE_PTC04” rule is the following;:

import org.drools.userv.Car;
import org.drools.userv.CarModel;

rule "AE_PTCO4"

when
$carModel:CarModel (highTheftProbability == false)
$car:Car(carModel == $carModel, price >= 20000, price <= 45000)

then
$car.setPotentialTheftRating(PotentialTheftRating.MODERATE) ;
modify ($car);

end

The JBoss central concept for conditions is the Column. It consists of zero
or moreField Constraints, meaning the Column terms i.e.
(highTheftProbability == false) or (price >= 20000). For example, the
construct price >= 20000 represents the translation of R2ML markup from
lines 4-13. Field Constraints can be combined with a conjunctive logical oper-
ator (i.e. comma).

$car represents an instance of Car class. It is a bound variable constraint,
named declaration in JBoss terminology. This instance give us the possibility
to call attributes and functions of CarModel class in RHS part of the rule. It
also represents the JBossRules translation from the R2ML markup (i.e. lines
1-3). Analogous explanations are for $carModel.

According with the R2MLtoJBoss mapping [5], the action expression from
the above R2ML markup (see lines 14-22) translates into the following RHS
setter:
$car.setPotentialTheftRating(PotentialTheftRating.HIGH).

Additionally, a JBoss Rules specific structure: modify($car) is used in
order to update the facts from working memory.

68 O. NICOLAE, 1. M. DIACONESCU, A. GIURCA, G. WAGNER

3.5 JenaRules experiences

JenaRules is a Semantic Web rule-based engine. RDF triples are used to
represent the conditions and the conclusions or produced actions. An optional
RDF Schema can be provided for facts in order to have a valid knowledge base.

JenaRules can use user defined built-ins in order to define some actions
or to make some calculations or tests. Jena built-ins are Java classes with a
predefined structure, and registered into a general built-ins register.

In our rules, disjunction can be also simulated by using many rules. For
example, if we have in the condition driver is from New York or driver is
from Vancouver, this splits in two rules, with the same conclusion but in the
condition part of the first rule we have driver is from New York and in the
second rule we have driver is from Vancouver.

Rules are divided into logical rule sets following the rule sets defined by the
use case document. Each rule set is loaded into the memory the applied over

the knowledge base.
The JenaRules syntax for the ”AE_PTC04” rule is the following:

@prefix xs: http://www.w3.org/2001/XMLSchema
1. [AE_PTCO04:

2. (?car rdf:type Car)

3. (?car carModel ?carModel)

4. (?carModel highTheftProbability ’false’”"xs:boolean)
5. (%7car price ?price)

6. ge(?price,20000)

7 le(?price,45000)

8. ->

9. (7car potentialTheftRating ’moderate’)]

In JenaRules the condition part of a rule is expressed by triples such
as: (?carModel highTheftProbability ’false’”"xs:boolean) or built-ins
(e.g. le or ge). Produced actions are also expressed by triple or built-ins. Built-
ins can be the ones provided by the API or defined by user in the form of a
Java class.

In the above example, the condition part contains triples which represent
conditions (line 4) and triple which help to define the condition part(line 2,3,5).
In order to express data types in JenaRules, XML Datatypes are used.

According with R2MLtoJena mapping (See [4]), triples representing
instanceOf (see line 2) corresponds to r2ml:0ObjectClassificationAtom.
Triples representing conditions such as those from line 5 and 9 correspond to
r2ml:AttributionAtom, those from line 3 to r2ml:ReferencePropertyAtom
and those from line 6 and 7 to r2ml:DatatypePredicateAtom.

4 Conclusions

The paper traces the UServ 2005 Business Rules Model from plain English
language descriptions based on core ontological concepts like classes and vari-
ables, to target rule systems like JBossRules and JenaRules, via the R2ML
markup language.

Towards a Financial Service Rule-Based Implementation 69

Following the inter-operability principles of W3C and EU network of ex-
cellence REWERSE (i.e. RIF [1] and R2ML [12] respectively), our approach
provides a platform independent syntax in order to further express the UServ
production rules in two rule-based languages that came from distinct areas:
Object-Oriented Rule Systems (i.e. JBossRules) and Semantic Web Rule Sys-
tems (i.e. JenaRules).

References

[1] H. Boley, M. Kifer (Eds.):- RIF Core Design, W3C Working Draft, March 30,
2007 http://www.w3.org/TR/rif-core/

[2] ***:- Business Rules Forum. UServ Product Derby 2005 Use Case http://www.
businessrulesforum.com/2005_Product_Derby.pdf

[3] S. Lukichev, G. Wagner:- UML-Based Rule Modeling with Fu-
jaba, In: H. Giese, B. Westfechtel (Eds.), Proceedings of the 4th In-
ternational Fujaba Days 2006, University of Bayreuth, Germany. 28-
30 September-2006. pp. 3135, http://oxygen.informatik.tu-cottbus.de/
ilpapers/LukichevWagnerFujabaDevDays2006 .pdf

[4] O. Nicolae, M. Diaconescu, A. Giurca, G.Wagner:- Sharing rules between
JBoss and Jena, Proc. of 9th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC’2007), September 26-29, 2007,
Timisoara, Romania.(to appear)

[5] O. Nicolae, A. Giurca, G. Wagner:- On Interchange between JBossRules and
Jess, In: C. Badica, M. Paprzycki (Eds.) Proc. of 1st International Symposium on
Intelligent and Distributed Computing (IDC’2007), October 18-20, 2007, Craiova,
Romania. (to appear in Studies in Computational Intelligence, Springer)

[6] ***:- Model Driven Architecture (MDA), 2005, http://www.omg.org/mda/

[7] ***:- Production Rule Representation Ver. 1.0, March 5, 2007 http://www.ong.
org/docs/bmi/07-03-05.pdf

[8] ***:- JBossRules, http://labs. jboss.com/jbossrules/docs

[9] D. Reynolds:- JenaRules, Jena User Conference, May 10-11, 2006, Bristol, UK.,
http://jena.hpl.hp.com/juc2006/proceedings/reynolds/rules-slides.ppt

[10] G. Wagner, A. Giurca, S. Lukichev, G. Antoniou, C. V. Dama-
sio, N. E. Fuchs:- Language Improvements and Extensions. REWERSE IST
506779 Report I1-D8, April 2006, Munchen, Germany, http://rewerse.net/
deliverables-restricted/i1-d8.pdf

[11] G. Wagner, A. Giurca, S. Lukichev, G. Antoniou, M. Berndtsson:-
Strelka - A Visual Rule Modeling Tool, REWERSE IST 506779 Report 11-D4,
April 2006, http://rewerse.net/deliverables-restricted/il-d4.pdf

[12] G. Wagner, A. Giurca and S. Lukichev:- R2ML: A General Approach for
Marking up Rules, Dagstuhl Seminar Proceedings 05371, In: F. Bry, F. Fages, M.
Marchiori, H. Ohlbach (Eds.), Principles and Practices of Semantic Web Reason-
ing, ISSN:1862-4405, 2005, http://drops.dagstuhl.de/opus/volltexte/2006/
479/pdf/056371.GiurcaAdrian.Paper.479.pdf

