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Abstract

In the context of the Semantic Web, several ap-
proaches to the combination of ontologies, given
in terms of theories of classical first-order logic,
and rule bases have been proposed. They either
cast rules into classical logic or limit the interac-
tion between rules and ontologies. Autoepistemic
logic (AEL) is an attractive formalism which allows
to overcome these limitations, by serving as a uni-
form host language to embed ontologies and non-
monotonic logic programs into it. For the latter, so
far only the propositional setting has been consid-
ered. In this paper, we present several embeddings
of normal and disjunctive non-ground logic pro-
grams under the stable-model semantics into first-
order AEL, and compare them in combination with
classical theories, with respect to stable expansions
and autoepistemic consequences. Our results reveal
differences and correspondences of the embeddings
and provide a useful guidance in the choice of a par-
ticular embedding for knowledge combination.

1 Introduction

In the context of the ongoing discussion around combina-
tions of rules and ontologies for the Semantic Web, there
have been several proposals for integrating classical knowl-
edge bases (ontologies) and rule bases (logic programs). Gen-
erally speaking, all these approaches try to define a reason-
able semantics for a combined knowledge base consisting of
a classical component and a rules component.

Two trends are currently observable. On the one hand,
approaches such as SWRL [Horrocks and Patel-Schneider,
2004] extend the ontology with Horn formulas in a classical
framework. This approach is straightforward, but prohibits
nonmonotonic rules. On the other hand, existing approaches
which do allow nonmonotonic rules either (a) distinguish be-
tween “classical” and “rules” predicates and limit the domain
of interpretation (e.g., [Rosati, 2006]) or (b) restrict the inter-
action to ground entailment (e.g., [Eiter et al., 2004]). The
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main distinction between these approaches is the type of in-
teraction between the classical knowledge base on the one
hand and the rule base on the other (cf. de Bruijn et al. [2006]

for an examination of this issue).

As for combination, a classical theory and a logic program
should be viewed as complementary descriptions of the same
domain. Therefore, a syntactic separation between predicates
defined in these two components should not be enforced. Fur-
thermore, it is desirable to neither restrict the interaction be-
tween the classical and the rules components nor impose any
syntactic or semantic restrictions on the individual compo-
nents. That is, the classical component may be an arbitrary
theory Φ of some first-order language with equality, and the
rules component may be an arbitrary non-ground normal or
disjunctive logic program P , interpreted using, e.g., the com-
mon stable-model semantics [Gelfond and Lifschitz, 1988].

The goal is a combined theory, ι(Φ, P ), in a uniform log-
ical formalism. Naturally, this theory should amount to Φ
if P is empty, and to P if Φ is empty. Therefore, such
a combination must provide faithful embeddings σ(Φ) and
τ(P ) of Φ and P , respectively, in this formalism, given by
σ(Φ) = ι(Φ, ∅) and τ(P ) = ι(∅, P ), respectively. In turn,
knowledge combination may be carried out on top of such
embeddings σ(·) and τ(·), where in the simplest case one may
choose ι(Φ, P ) = σ(Φ) ∪ τ(P ).

This raises the questions (a) which uniform formalism is
suitable and (b) which embeddings are suitable and, further-
more, how do embeddings relate to each other and how do
they behave under knowledge combination?

Autoepistemic logic (AEL) [Moore, 1985], which extends
classical logic with a modal belief operator, is an attractive
candidate for a uniform formalism. In fact, embedding a
classical theory in AEL is trivial, and several embeddings
of logic programs in AEL have been described [Gelfond
and Lifschitz, 1988; Marek and Truszczyński, 1993; Lifs-
chitz and Schwarz, 1993; Chen, 1993; Przymusinski, 1991].
However, all these embeddings have been developed for the
propositional case only, whereas we need to deal with non-
ground theories and programs. This requires us to consider
first-order autoepistemic logic (FO-AEL) [Konolige, 1991;
Kaminski and Rey, 2002; Levesque and Lakemeyer, 2000],
and non-ground versions of these embeddings. Our main con-
tributions are as follows.

We define several embeddings of non-ground logic pro-
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grams into FO-AEL, taking into account subtle issues of
quantification in FO-AEL. We show that these embeddings
are faithful in the sense that the stable models of the program
and the sets of objective ground atoms in the stable expan-
sions of the embeddings are in a one-to-one correspondence.
However, the embeddings behave differently on formulas be-
yond ground atoms, and when combined with classical theo-
ries, even when considering propositional formulas.

Motivated by these differences, we compare the embed-
dings along two dimensions:

1. We determine correspondences between the stable ex-
pansions of different possible embeddings, with respect
to various classes of formulas. This is done for the
embeddings themselves, as well as for combinations
with theories from different fragments of classical logic
which are important in ontology representation.

2. We present inclusion relations between the sets of au-
toepistemic consequences of the embeddings.

Compared to other well-known nonmonotonic formalisms
like Reiter’s default logic, FO-AEL offers a uniform language
in which (nonmonotonic) rules themselves can be expressed
at the object level. This conforms with the idea of treating an
ontology and a logic program together as a unified theory.

Arguably, none of the embeddings can a priori be consid-
ered to be superior to the others. Our results give useful in-
sight into the properties of the different embeddings, both on
its own right and for knowledge combination. They provide
a helpful guidance for the selection of an embedding for a
particular scenario.

Proofs of all results are available in an extended version of
this paper.

2 Preliminaries

First-Order Logic A first-order (FO) language L consists
of all formulas over a signature Σ = (F ,P), where F and P
are countable sets of function and predicate symbols, respec-
tively. Function symbols with arity 0 are called constants.
V is a countably infinite set of variable symbols. Terms
and atomic formulas (atoms) are constructed as usual for
first-order logic with equality. Ground terms are also called
names; NΣ is the set of names of a given signature Σ. Com-
plex formulas are constructed as usual using the symbols ¬,
∧, ∨, ⊃, ∃, ∀,(, and ). A sentence is a formula with no free
variables. The universal closure of a formula φ is denoted by
∀φ. Lg is the restriction of L to ground formulas; Lga is the
restriction of Lg to atomic formulas. An FO theory Φ ⊆ L is
a set of sentences.

An interpretation of a language L is a tuple w = 〈U, ·I〉,
where U is a nonempty set, called the domain, and ·I is a
mapping which assigns a function f I : Un → U to every n-
ary function symbol f ∈ F and a relation pI ⊆ Un to every
n-ary predicate symbol p ∈ P . A variable assignment B for
w is a mapping which assigns an element xB ∈ U to every
variable x ∈ V . The interpretation of a term t, denoted tw,B,
is defined as usual; if t is ground, we write tw instead of tw,B.

An individual k with at least one name t ∈ N such that
tw = k is called a named individual, and unnamed otherwise.

In case names are interpreted distinctly, the unique-names as-
sumption applies. If, additionally, every individual is named,
the standard-names assumption applies.

A variable substitution β is a set {x1/t1, ..., xk/tk}, where
x1, ..., xk are distinct variables and t1, ..., tk are names. β is
total if it contains some x/n for every variable x ∈ V . Given
variable assignment B and substitution β, if β = {x/t | x ∈
V , tw = xB , for some name t}, then β is associated with B.
The application of a variable substitution β to some term,
formula, or theory, denoted by appending β to it, is defined
as syntactical replacement, as usual. Clearly, if the unique-
names assumption applies, each variable assignment has a
unique associated substitution; if the standard-names assump-
tion applies, each associated substitution is total.

Example 1. Consider a language L with constants F = {a,
b, c}, and an interpretation w = 〈U, ·I〉 with U = {k, l, m}
such that aw = k, bw = l, and cw = l, and the variable
assignment B: xB = k, yB = l, and zB = m. B has
two associated variable substitutions, β1 = {x/a, y/b} and
β2 = {x/a, y/c}, which are not total.

Logic Programs A disjunctive logic program P consists of
rules of the form

h1 | . . . | hl ← b1, . . . , bm, not c1, . . . , not cn, (1)

where h1, . . . , hl, b1, . . . , bm, c1, . . . , cn are (equality-free)
atoms. H(r) = {h1, . . . , hl} is the set of head atoms of r,
B+(r) = {b1, . . . , bm} is the set of positive body atoms of r,
and B−(r) = {c1, . . . , cn} is the set of negative body atoms
of r. If l = 1, then r is normal. If B−(r) = ∅, then r is posi-
tive. If every variable in r occurs in B+(r), then r is safe. If
every rule r ∈ P is normal (resp., positive, safe), then P is
normal (resp., positive, safe).

By a first-order signature, ΣP , we understand a superset of
the function and predicate symbols which occur in P . LetLP

denote the first-order language based on ΣP . We assume that
ΣP contains at least one 0-ary function symbol or only 0-ary
predicate symbols. The Herbrand base, BH , of LP is the set
of ground atomic formulas of LP . Subsets of BH are called
Herbrand interpretations.

The grounding of a logic program P , denoted gr(P ), is the
union of all possible ground instantiations of P , obtained by
replacing each variable in a rule r with a name in NΣP

, for
each rule r ∈ P .

Let P be a positive program. A Herbrand interpretation M
of P is a model of P if, for every rule r ∈ gr(P ), B+(r) ⊆
M implies H(r)∩M �= ∅. A Herbrand model M is minimal
iff for every model M ′ such that M ′ ⊆M , M ′ = M .

Following Gelfond and Lifschitz [1991], the reduct of a
logic program P with respect to an interpretation M , denoted
PM , is obtained from gr(P ) by deleting (i) each rule r with
B−(r) ∩M �= ∅, and (ii) not c from the body of every re-
maining rule r with c ∈ B−(r). If M is a minimal Herbrand
model of PM , then M is a stable model of P .

3 First-order Autoepistemic Logic

We adopt the definition of first-order autoepistemic logic
(FO-AEL) under the any- and all-name semantics following
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Konolige [1991], using a novel characterization with associ-
ated variable substitutions. The benefit of these semantics
is that they allow quantification over arbitrary domains and
generalize classical first-order logic with equality, thereby
allowing a trivial embedding of first-order theories. Other
approaches [Kaminski and Rey, 2002; Levesque and Lake-
meyer, 2000] restrict the domains of interpretations to unique
or standard names and therefore do not allow such direct em-
beddings.

An FO-AEL languageLL is defined relative to a first-order
language L: (i) any atomic formula in L is a formula in LL;
(ii) if φ is a formula in LL, then Lφ, called a modal atom,1 is
a formula in LL; and (iii) complex formulas are constructed
as in first-order logic. A formula without modal atoms is an
objective formula. Standard autoepistemic logic is FO-AEL
without variables.

An autoepistemic interpretation is a pair 〈w, Γ〉, where
w = 〈U, ·I〉 is a first-order interpretation and Γ ⊆ LL is a
set of sentences, called the belief set. Satisfaction of objec-
tive atomic formulas in w is as in first-order logic.

Satisfaction of a formula Lφ in an interpretation 〈w, Γ〉
with respect to a variable assignment B under the any-name
semantics (resp., all-name semantics) is defined as follows:

w, B |=Γ Lφ iff, for some (resp., all) variable substitu-
tion(s) β, associated with B, φβ is closed and φβ ∈ Γ.

This extends to complex formulas in the usual way. Notice
that in case the unique-names assumption applies, the any-
and all-name semantics coincide.
〈w, Γ〉 is a model of φ, denoted w |=Γ φ, if w, B |=Γ φ

for every variable assignment B of w. This extends to sets of
formulas in the usual way. A set A ⊆ LL of formulas entails
a sentence φ with respect to a belief set Γ, denoted A |=Γ φ,
if for every interpretation w such that w |=Γ A, w |=Γ φ.

Example 2. Consider a language with constant symbols a, b
and unary predicate symbol p, and an interpretation 〈w, Γ〉
with w = 〈{k}, ·I〉 and Γ = {p(a)}. Under the any-name
semantics, w |=Γ ∃x.Lp(x); under the all-name semantics,
w �|=Γ ∃x.Lp(x), because bw = aw = k, but p(b) /∈ Γ.

We deem this behavior of the all-name semantics counterin-
tuitive; so, following Konolige [1991], we use the any-name
semantics in what follows, unless stated otherwise.

Example 3. Consider the formula φ = ∀x(p(x) ⊃ Lp(x))
and some interpretation 〈w, Γ〉. Then: w |=Γ φ iff for every
variable assignment B, w, B |=Γ p(x) ⊃ Lp(x) iff w, B �|=Γ

p(x) or w, B |=Γ Lp(x). Now, w, B |=Γ Lp(x), with xB =
k, iff for some t ∈ NΣ, tw = k, and p(t) ∈ Γ. Thus, φ is false
in any interpretation where pI contains unnamed individuals.

A belief set T ⊆ LL is a stable expansion of a base set
A ⊆ LL iff T = {φ | A |=T φ}. We use the following
notation in the remainder: To = T ∩ L, Tog = T ∩ Lg , and
Toga = T ∩ Lga.

A formula φ is an autoepistemic consequence of A if φ is
included in every stable expansion of A. Cons(A) denotes
the set of all autoepistemic consequences of A. Conso(A)
denotes the restriction of Cons(A) to objective formulas.

1
Lφ is usually read as “φ is known” or “φ is believed.”

Every stable expansion T fulfills the following properties:
(a) T is closed under first-order entailment, (b) if φ ∈ T then
Lφ ∈ T , and (c) if φ /∈ T then ¬Lφ ∈ T . If T is consistent,
the converses of (b) and (c) also hold.

Konolige [1991] shows that a stable expansion T of a base
set A is determined by its objective subset To, called the ker-
nel of T . If A does not have nested modal operators, then,
additionally, To = {φ ∈ L | A |=To

φ} iff To is the kernel of
a stable expansion T of A. We extend this result as follows:

Proposition 1. Given a base set A ⊆ LL with only objec-
tive atomic formulas in the context of modal atoms, and a set
of objective formulas Γo ⊆ L, with Γga = Γo ∩ Lga, then
Γo = {φ ∈ L | A |=Γga

φ} iff Γo = T ∩ L for some stable
expansion T of A.

4 Embedding Non-Ground Logic Programs

We define an embedding as a function which takes a logic
program P as its argument and returns a set of sentences in
the FO-AEL language obtained from ΣP .

Since the unique-names assumption does not hold in FO-
AEL in general, it is necessary to axiomatize default unique-
ness of names (as introduced by Konolige [1991]). By UNAΣ

we denote the set of axioms

¬L(t1 = t2) ⊃ t1 �= t2, for all distinct t1, t2 ∈ NΣ.

4.1 Embedding Normal Logic Programs

The first embedding we consider is an extension of the one
which originally led Gelfond and Lifschitz to the discovery
of the stable model semantics [Gelfond and Lifschitz, 1988].
The second and third embedding are extensions of the embed-
dings due to Marek and Truszczyński [1993]. The third was
independently developed by Lifschitz and Schwarz [1993],
and Chen [1993]. The original motivation for the second and
third embedding was the possibility to directly embed pro-
grams with strong negation and disjunctive programs.

Definition 1. Let r be a rule of form (1) with l = 1. Then:

τHP (r) = ∀
∧

ibi ∧
∧

j¬Lcj ⊃ h;

τEB (r) = ∀
∧

i(bi ∧ Lbi) ∧
∧

j¬Lcj ⊃ h;

τEH (r) = ∀
∧

i(bi ∧ Lbi) ∧
∧

j¬Lcj ⊃ h ∧ Lh.

For a normal logic program P , we define:

τx(P ) = {τx(r) | r ∈ P} ∪ UNAΣP
, x ∈ {HP ,EB ,EH }.

In the above embeddings, “HP” stands for “Horn for pos-
itive rules” (positive rules are translated to objective Horn
clauses); “EB” stands for “epistemic rule bodies” (the body
of a rule can only become true if it is known to be true); and
“EH ” stands for “epistemic rule heads” (if the body of a rule
is true, the head is known to be true). For all three embed-
dings, we assume Στx(P ) = ΣP (here and henceforth we
use “x” as a meta-variable to range over HP , EB , and EH ).
Furthermore, by τ−

x we denote the embedding τx without the
UNA axioms. In the examples of embeddings in the remain-
der of the paper, we do not write the UNA axioms explicitly.

A notable distinction between the embedding τHP on the
one hand and the embeddings τEB , τEH on the other is that
the contrapositive of the rules in P is included in stable ex-
pansions of τHP , but not in stable expansions of τEB , τEH :
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Example 4. Consider P = {p ← q}. The stable expansion
of τHP (P ) = {p ⊃ q} includes ¬q ⊃ ¬p; the expansion of
τEB (P ) = {p ∧ Lp ⊃ q} includes ¬q ⊃ ¬Lp ∨ ¬p, but not
¬q ⊃ ¬p, and neither does τEH (P ).

For the case of standard autoepistemic logic and ground
logic programs, the following correspondence result holds:

Proposition 2 ([Gelfond and Lifschitz, 1988; Marek and
Truszczyński, 1993]). A Herbrand interpretation M is a sta-
ble model of a ground normal logic program P iff there is a
consistent stable expansion T of τ−

x (P ) in standard autoepis-
temic logic such that M = T ∩ Lga.

Now consider the case of non-ground programs. The fol-
lowing example illustrates the embeddings:

Example 5. Consider P = {q(a); p(x); r(x) ← not s(x),
p(x)}, having a single stable model M = {q(a), p(a), r(a)}.
Likewise, each of the embeddings τHP (P ), τEB (P ), and
τEH (P ) has a single consistent stable expansion:

T HP = {q(a), p(a), Lp(a),¬Ls(a), r(a),
∀x(¬p(x) ⊃ ¬q(x)),¬L∀x(Lp(x)), ...},

T EB = {q(a), p(a), Lp(a),¬Ls(a), r(a),¬L∀x(Lp(x)), ...},
T EH = {q(a), p(a), Lp(a),¬Ls(a), r(a), ∀x(Lp(x))...}.

The stable expansions in Example 5 agree on objective
ground atoms, but not on arbitrary formulas. We now extend
Proposition 2 to the non-ground case.

Lemma 1. Given a set A ⊆ Lga of objective ground atoms,
there exists a stable expansion T of τx(P ) under the any- or
all-name semantics with Toga = A iff there exists a stable
expansion T ′ of τx(gr(P )) with T ′

oga = A. Moreover, the

same result holds for τ−

HP
under the all-name semantics.

Theorem 1. A Herbrand interpretation M of a normal logic
program P is a stable model of P iff there is a consistent
stable expansion T of τx(P ) under the any- or all-name se-
mantics such that M = T ∩ Lga. Moreover, the same result

holds for τ−

HP
under the all-name semantics.

Note that this result does not hold for τ−

HP
under the

any-name semantics. Consider P = {p(n1); r(n2); q ←
not p(x)} such that ΣP has only two names, n1 and n2. P
has one stable model, M = {p(n1), r(n2), q}. τ−

HP
(P ) =

{p(n1); r(n2); ∀x(¬Lp(x) ⊃ q)} has one stable expansion,
T = {p(n1), r(n2), Lp(n1), Lr(n2),¬Lp(n2), ...}. T does
not include q. To see this, consider an interpretation w with
only one individual k. Lp(x) is trivially true under the any-
name semantics, because there is some name for k such that
p(t) ∈ T (viz. t = n1). In the all-name semantics, this situ-
ation does not occur, because for Lp(x) to be true, p(t) must
be included in T for every name (t = n1 and t = n2) for k.
One can similarly verify that the result does not apply to the
embeddings τ−

EB
and τ−

EH
under the all-name semantics, by

the positive modal atoms in the antecedents.

4.2 Embedding Disjunctive Logic Programs

The embeddings τHP and τEB cannot be straightforwardly
extended to disjunctive logic programs, even in the proposi-
tional case. Consider the program P = {a | b ←}. P has
two stable models: M1 = {a} and M2 = {b}. However, a

straightforward extension of τHP , τ∨

HP (P ) = {a ∨ b}, has
one stable expansion T = {a ∨ b, L(a ∨ b),¬La,¬Lb, ...}.
In contrast, τEH can be straightforwardly extended because
of the modal atoms in the consequent of the implication:
τ∨

EH(P ) = {(a ∧ La) ∨ (b ∧ Lb)} has two stable expansions
T1 = {a∨ b, a, La,¬Lb, ...} and T2 = {a∨ b, b, Lb,¬La, ...}.

The so-called positive introspection axioms (PIAs) [Przy-
musinski, 1991] remedy this situation for τ∨

HP and τ∨

EB . Let
PIAΣ be the set of axioms

α ⊃ Lα, for every objective ground atom α of Σ.

The PIA α ⊃ Lα ensures that every consistent stable expan-
sion contains either α or ¬α.

It would have been possible to define the PIAs in a differ-
ent way: ∀φ ⊃ Lφ for any objective atomic formula φ. This
would, however, effectively close the domain of the predi-
cates in Σ (see Example 3). We deem this aspect undesirable
in combinations with FO theories.

Definition 2. Let r be a rule of form (1). Then:

τ∨

HP (r) = ∀
∧

ibi ∧
∧

j¬Lcj ⊃
∨

khk;

τ∨

EB(r) = ∀
∧

i(bi ∧ Lbi) ∧
∧

j¬Lcj ⊃
∨

khk;

τ∨

EH(r) = ∀
∧

i(bi ∧ Lbi) ∧
∧

j¬Lcj ⊃
∨

k(hk ∧ Lhk).

For a disjunctive logic program P , we define:

τ∨

HP (P ) = {τ∨

HP (r) | r ∈ P} ∪ PIAΣP
∪ UNAΣP

;

τ∨

EB(P ) = {τ∨

EB(r) | r ∈ P} ∪ PIAΣP
∪UNAΣP

;

τ∨

EH(P ) = {τ∨

EH(r) | r ∈ P} ∪ UNAΣP
.

As before, by τ∨−
x we denote the embedding τ∨

x without the
UNA part. We do not write the UNA and PIA parts explicitly
in the examples below.

For the case of standard autoepistemic logic and ground
disjunctive logic programs, the correspondence between the
stable expansions of the embeddings τ∨

HP (P ) and τ∨

EH(P )
and the stable models of P is known:

Proposition 3 ([Przymusinski, 1991; Marek and Trus-
zczyński, 1993]). A Herbrand interpretation M of a ground
disjunctive logic program P is a stable model of P iff there is
a consistent stable expansion T of τ∨−

HP
(P ) (resp., τ∨−

EH
(P ))

in standard autoepistemic logic such that M = T ∩ Lga.

We generalize this result to the case of FO-AEL and non-
ground programs, and additionally for τ∨

EB:

Theorem 2. A Herbrand interpretation M of a disjunctive
logic program P is a stable model of P iff there is a consis-
tent stable expansion T of τ∨

x (P ) under the any- or all-name
semantics such that M = T ∩Lga. Moreover, the same result

holds for τ−

HP
under the all-name semantics.

A notable distinction between the embeddings τ∨

HP and
τ∨

EB on the one hand and τ∨

EH on the other is the presence
and absence of the PIAs, respectively:

Example 6. Consider P = {p | q ←}, τ∨

HP (P ) = {p∨ q}∪
PIAΣP

, and τ∨

EH(P ) = {(p ∧ Lp) ∨ (q ∧ Lq)}. The stable

expansions of τ∨

HP (P ) are T HP
1 = {p,¬q, Lp,¬Lq, ...} and

T HP
2 = {q,¬p, Lp,¬Lp, ...}; the expansions of τ∨

EH(P ) are

T EH
1 = {p, Lp,¬Lq, ...} and T EH

2 = {q, Lp,¬Lp, ...}. The
expansions T EH

1 and T EH
2 include neither ¬q nor ¬p.
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Φ\P Prg Safe Grnd

T hr ιEH ≡ ι∨EH ιEB ≡ ιEH ι∨HP ≡ ι∨EB

Uni ιEB ≡g ιEH

gHorn ιHP ≡ga ιEB

Horn ιHP ≡ga ιEB

Prop ι∨HP ≡g ι∨EB

{∅}
ιHP ≡ga ιEB ≡ga

ιEH ≡ga ι∨HP ≡ga

ι∨EB ≡ga ι∨EH

Table 1: Correspondence between expansions of combina-

tions; ι
(∨)
x is short for ι

(∨)
x (Φ, P ).

5 Relations between the Embeddings

In this section, we explore correspondences between the em-
beddings presented in the previous section in combinations
with FO theories. In our simple setting, we define the combi-
nation of a program P and an FO theory Φ as

ι(∨)
x (Φ, P ) = Φ ∪ τ (∨)

x (P ) ⊆ LL,
2

where ΣLL
is the union of the signatures ΣΦ and ΣP . Recall

that we consider the any-name semantics, because of its more
intuitive behavior (cf. 3).

In the following, we compare (i) the stable expansions of
such combinations and (ii) the sets of autoepistemic conse-
quences of the individual embeddings. To this end, we intro-
duce the following notation:

Let A1 and A2 be FO-AEL theories. We write A1 ≡ A2 iff
A1 and A2 have the same stable expansions. Moreover, for
α ∈ {g, ga}, we write A1 ≡α A2 iff

{T ∩ Lα | T is a stable expansion of A1} =

{T ′ ∩ Lα | T ′ is a stable expansion of A2}.

Note that, by definition, A1 ≡ A2 implies A1 ≡g A2, and
A1 ≡g A2 implies A1 ≡ga A2.

In our analysis, we furthermore use the following classes
of programs and theories:

• the classes Prg , Safe , and Grnd of arbitrary, safe, and
ground logic programs, respectively; and

• the classes T hr , Uni , gHorn , Horn , Prop, and {∅} of
arbitrary, universal, generalized Horn,3 Horn, proposi-
tional, and empty FO theories.

Observe the following inclusions:

Grnd ⊂ Safe ⊂ Prg; {∅} ⊂
Prop ⊂ Uni
Horn ⊂ Uni
Horn ⊂ gHorn

⊂ T hr .

Theorem 3. Let P be a normal (disjunctive, resp.) logic
program and Φ be a first-order theory. Then, the relations
depicted in Table 1 (with the respective provisos) hold, pro-
viding P and Φ belong to the classes listed there.

2One could imagine other, non-trivial, embeddings of the classi-
cal theory. Such embeddings are a topic for future investigations.

3Generalized Horn formulas are Horn formulas which addition-
ally allow existentially quantified variables in the consequent of the
material implication.

C∨

EB
�� C∨

HP

C∨

EH

��

��
��

��
��

��
��

CEH��
���� �� �	

CEB��

���
�
�
�
�
�
�
�
�

�� CHP

���
�
�
�
�
�
�
�
�

Figure 1: Relationships between sets of consequences; C
(∨)
x

stands for Conso(τ
(∨)
x (P )), → stands for ⊆, and � stands

for ⊆ in case P is safe.

Consider the logic program P from Example 5. P is nei-
ther safe nor ground: to determine correspondence between
embeddings, we need to use the first column of Table 1. Since
P is normal, all equations in this column are applicable. We
have that τEB (P ) ≡g τEH (P ) and τ∨

HP (P ) ≡g τ∨

EB(P ). Let
Φ be a Horn theory, then ιHP (Φ, P ) ≡ga ιEH (Φ, P ) ≡ga

ιEB (Φ, P ) and ιEH (Φ, P ) ≡ ι∨EH(Φ, P ).
Additionally, since autoepistemic consequence is defined

through the intersection of all stable expansions, we can
conclude that τEB (P ) and τEH (P ), and also τ∨

HP (P ) and
τ∨

EB(P ), agree on objective ground autoepistemic conse-
quence and that ιHP (Φ, P ), ιEH (Φ, P ), and ιEB (Φ, P ) agree
on objective ground atomic autoepistemic consequence.

We now consider the relative behavior of the embeddings
with respect to autoepistemic consequences.

Theorem 4. Let P be a (safe) normal (disjunctive, resp.)

logic program, and let τ
(∨)
x and τ

(∨)
y be embedding func-

tions, for x, y ∈ {HP ,EB ,EH }. Then, relations

Conso(τ
(∨)
x (P )) ⊆ Conso(τ

(∨)
y (P )) hold as depicted in

Figure 1 (with the respective provisos).

Most of the relations given in Figure 1 do not hold for
combinations with FO theories. Consider, e.g., P = {r ←
not p, not q} and Φ = {p ∨ q}. Then, τHP (P ) = {¬Lp ∧
¬Lq ⊃ r} and τ∨

HP (P ) = {¬Lp ∧ ¬Lq ⊃ r} ∪ PIAΣP

both have one stable expansion, each containing ¬Lp, ¬Lq,
and r. The combination τHP (P ) ∪ Φ has one stable expan-
sion which includes ¬Lp, ¬Lq, and r; τ∨

HP (P ) ∪ Φ has two
stable expansions {p, Lp,¬Lq, ...} and {q, Lq,¬Lp, ...}, nei-
ther of which includes r. Thus, r is an autoepistemic con-
sequence of ιHP (Φ, P ), but not of ι∨HP (Φ, P ). Therefore,
Conso(ιHP (Φ, P )) �⊆ Conso(ι

∨

HP (Φ, P )).

Using the results in this section, we can make a number of
observations about the embeddings:

(1) Few correspondences between embeddings with PIAs and
those without hold. However, we can note that the former are
stronger in terms of the number of objective autoepistemic
consequences (cf. Figure 1 and Example 6).

(2) The embeddings τHP and τ∨

HP are generally the strongest
in terms of consequences (see Figure 1). They allow to derive
the contrapositive of rules (cf. Example 4) and the bodies of
rules are applicable to unnamed individuals, whereas the an-
tecedents of the axioms in the other embeddings are only ap-
plicable to named individuals, because of the positive modal
atoms in the bodies.

(3) For unsafe programs, the embeddings τEH and τ∨

EH are
generally not comparable with the others; embeddings of un-
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safe rules result in axioms of form ∀xLp(x) (cf. Example 5),
which require all individuals to be named.

(4) In case the programs are safe, or one assumes that all in-
dividuals are named, τEB and τEH coincide.

We conclude this section with an example which demon-
strates possibly unexpected effects of the UNA axioms in
their interaction with an FO theory.

Example 7. Consider P = {p(a); p(b)} and Φ = {a �= b ⊃
r}. Then, r is included in any stable expansion of Φ∪ τx(P ),
for any τx, in view of the UNA axioms.

6 Related and Future Work

In this paper, we have studied the combination of logic pro-
grams and ontologies (FO theories) using embeddings in a
unifying formalism (FO-AEL). One could imagine, in con-
trast, extensions of semantics for logic programs or ontolo-
gies to incorporate (parts of) the other formalism. One
such extension of logic programming semantics is that of
open domains [Gelfond and Przymusinska, 1993; Van Bel-
leghem et al., 1997; Heymans et al., 2005]. Such extended
semantics can be used to accommodate incomplete knowl-
edge, an important aspect of ontology languages. Nonmono-
tonic extensions of description logics (an FO-based formal-
ism suitable for ontologies) have been presented in the lit-
erature [Baader and Hollunder, 1995; Donini et al., 2002;
Bonatti et al., 2006]. Such approaches might be extended
to accommodate logic programs.

We have investigated basic correspondences between dif-
ferent embeddings of non-ground programs in FO-AEL, and
simple combinations with FO theories. Choosing differ-
ent embeddings for logic programs, but also possibly dif-
ferent embeddings for first-order theories, will give rise to
different properties of such combinations [de Bruijn et al.,
2006]. In future work, we will investigate these properties, as
well as the relationship with existing approaches to combine
logic programs and classical theories [Horrocks and Patel-
Schneider, 2004; Eiter et al., 2004; Rosati, 2006].

So far, we have only considered equality-free logic pro-
grams. We conjecture that equality in rule bodies poses no
problems, since still only the trivial equalities are derivable.
Allowing equality in rule heads is a topic for further research.

We expect that the proposed combinations of rules and on-
tologies based on FO-AEL will give rise to the definition of
novel decidable fragments and for sound (but possibly incom-
plete) algorithms for specific reasoning tasks for such combi-
nations. Additionally, we will consider other nonmonotonic
logics (e.g., default logic and circumscription) as formalisms
for combining logic programs and classical knowledge bases.
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