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Abstract. Current Answer Set Programming systems are built on non-
monotonic logic programs without function symbols; as well-known, they
lead to high undecidability in general. However, function symbols are
highly desirable for various applications, which challenges to find mean-
ingful and decidable fragments of this setting. We present the class FDNC

of logic programs which allows for function symbols, disjunction, non-
monotonic negation under answer set semantics, and constraints, while
still retaining the decidability of the standard reasoning tasks. Thanks to
these features, they are a powerful formalism for rule-based modeling of
applications with potentially infinite processes and objects, which allows
also for common-sense reasoning. We show that consistency checking and
brave reasoning are ExpTime-complete in general, but have lower com-
plexity for restricted fragments, and outline worst-case optimal reasoning
procedures for these tasks. Furthermore, we present a finite representa-
tion of the possibly infinitely many infinite stable models of an FDNC

program, which may be exploited for knowledge compilation purposes.

1 Introduction

Answer Set Programming (ASP) is a declarative programming paradigm which
has its roots in Logic Programming and Non-monotonic Reasoning. It is well-
suited for modeling and solving problems which involve common sense reasoning,
and has been fruitfully applied to a range of applications including data integra-
tion, configuration, reasoning about actions and change, etc.; see [16].

While Answer Set Semantics, which underlies ASP, was defined in the setting
of a general first-order language, current ASP frameworks and implementations,
like DLV [10], Smodels [15], and other efficient solvers are based on function-free
languages and resort to Datalog with negation and its extensions. However, it
is widely acknowledged that this leads to drawbacks related to expressiveness,
and also to inconvenience in knowledge representation, cf. [2]. Since one is forced
to work with finite domains, potentially infinite processes cannot be represented
naturally in ASP. Additional tools must be used, which may incur high space
requirements.
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Function symbols, in turn, are a very convenient means for generating infinite
domains and objects, and allow for more natural representation of problems
on such domains. However, they have been banned in ASP for a good reason,
since they quickly lead to undecidability even for Horn programs, and with
negation under the answer set semantics, they lead to high undecidability, cf.
[11,12]. This raises the challenge to single out meaningful fragments of ASP with
function symbols which allow to model infinite domains while still retaining the
decidability of the standard reasoning tasks. Important work on this is by Bonatti
and his colleagues on their finitary programs and finitely recursive programs[2,1],
which impose syntactic conditions on the groundings of logic programs. However,
the hardness of verifying the satisfaction of the conditions limits the applicability
of the results; see Section 5 for more discussion.

In this paper, we pursue an approach to obtain decidable logic programs with
function symbols by merely constraining the syntax in a way that can be ef-
fectively checked. To this end, we take inspiration from results in automated
deduction and other areas of knowledge representation, where many procedures,
like tableaux algorithms with blocking, or hyper-resolution, have been devel-
oped for deciding satisfiability in various fragments of first-order logic. When
function symbols (or existential quantification) may occur, these procedures are
often sophisticated since they must deal with possibly infinite models. However,
because of the peculiarities of Answer Set Semantics, transferring these results
to logic programs is not straightforward. Reasoning with logic programs needs
to be more refined since only minimal (or stable) models count as models of a
given program. Our main contributions are briefly summarized as follows.

– We introduce the class FDNC of logic programs, which allow for function
symbols, disjunction, constraints, and non-monotonic negation under the
answer set semantics [6]. The restrictions we apply are syntactic and ensure
that programs have a forest-shaped model property. FDNC programs are a
convenient tool for knowledge representation. They allow, e.g., the represen-
tation of an evolving action domain (see Section 3).

– We show that standard reasoning tasks are decidable for FDNC, and are
ExpTime-complete; this includes checking the consistency (i.e., the
existence of a stable model), and brave entailment of ground atomic or
existential atomic queries. Disallowing disjunction and constraints (FN) or
non-monotonic negation (FDC) does not lead to lower complexity, i.e., the
problems considered remain ExpTime-complete. Depending on the reason-
ing task, reasoning is at most PSpace-complete for further restricted classes.

– Noticeably, the hardness proofs for consistency checking in FN, FDC, and
FDNC, are by a reduction from satisfiability testing in the ExpTime-
complete Description Logic ALC. Thus, as a side result we obtain a novel
polynomial time mapping of a well-known Description Logic to logic
programming.

– FDNC programs can have infinitely many and infinitely large stable models,
which therefore can not be explicitly represented. We provide a method to
finitely represent all the stable models of a given FDNC program. This is
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achieved by a composition technique that allows to reconstruct stable models
as forests, i.e., sets of trees, from knots, which are instances of generic labeled
trees of depth 1. The finite representation technique allows us to define an
elegant decision procedure for brave reasoning in FDNC , and may also be
exploited for offline knowledge compilation to speed up online reasoning, by
precomputing and storing the knots of a program.

Thanks to their features, FDNC programs are a powerful formalism for rule-
based modeling of applications with a potentially infinite domain, which also
accommodates common-sense reasoning through non-monotonic negation. From
a complexity perspective, FDNC and its subclasses offer effective syntax for
encoding problems in PSpace and ExpTime to logic programs with function
symbols.

2 Preliminaries

A disjunctive rule (briefly, rule) is an expression of the form

A1 ∨ . . . ∨An ← L1, . . . , Lm,

where n+m > 0, A1, . . . , An are atoms and L1, . . . , Lm are literals. The atoms
are from a standard first-order language with countably infinite sets of variables,
constant symbols, and function and predicate symbols of positive arity. A literal
is either an atom A (positive literal), or an expression not A (negative literal).
The atoms A1, . . . , An are head atoms, while L1, . . . , Lm are body literals. For
a rule r, let head(r), body+(r), and body−(r) respectively denote the set of its
head atoms, positive body literals, and negative body literals. We say r is a fact,
if n = 0; a constraint, if m = 0; and positive, if body−(r) = ∅.

A disjunctive logic program (briefly, program) is an arbitrary set of rules. It
is positive (resp., ground), if contains only positive (resp., ground) rules. For
a program P , its Herbrand universe, Herbrand base and its ground instantia-
tion are defined in the standard way, and are respectively denoted by HUP ,
HBP and Ground(P ); see [13]. Furthermore, by MM(P ) we denote the set of
(Herbrand) interpretations that are (set-inclusion) minimal models of a ground
positive program P .

An interpretation I of a program P is a stable model of P iff I ∈ MM(P I),
where P I is the Gelfond-Lifschitz reduct [6] of P , obtained from Ground(P ) by
removing (i) each rule r such that body−(r) ∩ I �= ∅, and (ii) all the negative
literals from the remaining rules. The set of stable models of a program P is
denoted by SM(P ).

A program P is consistent, if SM(P ) �= ∅. A program P bravely entails a
ground (variable-free) atom A (in symbols, P |=b A), if some stable model I of
P contains A. An existential atomic query is an expression ∃x.A(x), where x
is a n-tuple of variables and A is a predicate symbol of arity n. A program P
bravely entails ∃x.A(x) (in symbols, P |=b ∃x.A(x)), if some stable model I of
P contains a ground atom A(t).
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(1) Change(x, grow(x))←Y oung(x), Warm(x)

(2) Change(x, cell1(x))←Mature(x), Warm(x)

(3) Change(x, cell2(x))←Mature(x), Warm(x)

(4) Change(x, die(x))←Cold(x)

(5) Y oung(cell1(x))←Change(x, cell1(x))

(6) Y oung(cell2(x))←Change(x, cell2(x))

(7) Mature(grow(x))←Change(x, grow(x))

(8) Warm(grow(x)) ∨ Cold(grow(x))←Change(x, grow(x))

(9) Warm(y)←Warm(x), Change(x, y), not Cold(y)

(10) Cold(y)←Cold(x), Change(x, y), not Warm(y)

(11) ←Cold(x), Warm(x)

(12) Y oung(b)←
(13) Warm(b)←

Change

Y oung, Warm
b

grow(b)

cell1(grow(b))
Y oung, Warm

Mature, Warm

Change

Mature, Warm
grow(cell1(grow(b)))

Change

Fig. 1. Example: Evolution of a Cell

3 FDNC Programs

We now introduce the class FDNC of logic programs with function symbols.
The syntactic restrictions that are applied are to ensure the decidability of the
formalism. As we shall see, FDNC programs can have infinitely many possibly
infinite stable models. In this section we analyze the model-theoretic properties of
the formalism and introduce a method for finite representation of those possibly
infinite stable models of a program.

Definition 1. An FDNC program is a finite disjunctive logic program whose
rules are of the following forms:

(R1) A1(x) ∨ . . . ∨An(x) ← (not)B0(x), . . . , (not)Bl(x)

(R2) R1(x, y) ∨ . . . ∨Rn(x, y) ← (not)P0(x, y), . . . , (not)Pl(x, y)

(R3) R1(x, f1(x)) ∨ . . . ∨ Rn(x, fn(x)) ← (not)P0(x, g0(x)), . . . , (not)Pl(x, gl(x))

(R4) A1(y) ∨ . . . ∨An(y) ← (not)B0(Z0), . . . , (not)Bl(Zl), R(x, y)

(R5) A1(f(x)) ∨ . . . ∨An(f(x)) ← (not)B0(W0), . . . , (not)Bl(Wl), R(x, f(x))

(R6) R1(x, f1(x)) ∨ . . . ∨Rn(x, fk(x)) ← (not)B0(x), . . . , (not)Bl(x)

(R7) C1(c1) ∨ . . . ∨ Cn(cn) ← (not)D1(d1), . . . , (not)Dl(dl),

where n, l ≥ 0, each Zi ∈ {x, y}, Wi ∈ {x, f(x)}, and each ci, di is a tuple of
constants of arity ≤ 2. Each rule r is safe, i.e., each of its variables occurs in
body+(r). Moreover, at least one rule is of type (R7) and is a fact.

The fragments obtained from FDNC by disallowing disjunction, constraints or
negative literals are denoted by respectively removing D, C or N from “FDNC”.

The structure of the rules in FDNC syntax, the availability of non-monotonic
negation and function symbols allow us to represent possibly infinite processes
in a rather natural way. We provide here an example from the biology domain.

Example 1. The FDNC program P in Figure 1 represents the evolution of a cell;
its growth and splitting into two cells. The rules (1)-(4) describe changes of a
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cell. If it is warm, a young cell will grow and a mature cell will split into two cells;
any cell dies if it is cold. The rules (5)-(7) determine whether a cell is young or
mature. The rules (8)-(11) state the knowledge about the temperature. During
the growth (which takes longer time), it might alter, while in the other changes
(which take short time), it stays the same; the latter is expressed by inertia rules
(9) and (10). Finally, (12) and (13) are the initialization facts.

It is easy to see that P is consistent. In fact, it has infinitely many stable mod-
els, corresponding to the possible evolutions of the initial situation. It might have
finite and infinite stable models, as cell splitting might go on forever. The piece
of the stable model that is depicted represents a development where the temper-
ature does not change during the growth of b and its child. Another stable model
is {Y oung(b), Warm(b), Change(b, grow(b)), Cold(grow(b)), Mature(grow(b)),
Change(grow(b), die(grow(b)))} which corresponds to the situation that the
temperature changes and the bacterium dies.

The brave query ∃x.Cold(x) evaluates to true, while it is not the case for
the brave query Change(b, die(b)). Note that the query whether there is some
evolution in which bacteria never die is expressed by adding the constraint ←
Change(x, die(x)) and asking whether the resulting program is consistent.

Example 2. FDNC is well-suited to encode action domain descriptions in
transition-based action formalisms which support incomplete states and nonde-
terministic action effects, like C [7], K [3], or (propositional) situation calculus.

We outline the elements for a possible such encoding. A unary predicate Sit(x)
encodes the situation in which the domain is, where the initial situation is given
by Sit(init)←. State descriptions are in terms of unary fluent predicates F (x),
which intuitively means that F is true in the state associated with x.

A predicate Trans(x, y) describes the transition from situation x to the next
situation y; for this, the rule Sit(y) ← Trans(x, y) is included. Transitions are
due to actions α1, ..., αk, which can be represented using function symbols fα1 ,
..., fαk

. A rule Trans(x, fα1(x)) ∨ · · · ∨ Trans(x, fαk
(x))← Sit(x) may describe

the action execution, while the constraints← Trans(x, fαi(x)),Trans(x, fαj (x)),
for all different i and j ensure that actions are not concurrent.

Action effects during a transition can be stated by rules, while executability
conditions for actions can be stated by constraints; in particular, inertia for fluent
F can be expressed using the rule F (y)← F (x),Trans(x, y), not neg F (y) where
neg F (x) is a predicate for the complement of F .

Using these elements, FDNC may be used to represent a number of actions
domains from the literature, e.g., the Yale Shooting, Bomb in the Toilet, and
others cf. [3]; in fact, usually FN is already convenient.

Example 1 shows that in presence of function symbols, an FDNC program may
have infinite stable models. We present in the sequel a method to finitely repre-
sent the possibly infinite stable models. To this end, we first provide a semantic
characterization of the stable models of an FDNC program.
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3.1 Semantic Characterization of Stable Models

Like many decidable logics, including Description Logics, FDNC programs enjoy
a forest-shaped model property. A stable model of an FDNC program can be
viewed as a graph and a set of trees rooted at each of the nodes in the graph.

Proposition 1. An interpretation I is forest-shaped, if the following hold:

(a) Each atom in I is either unary or binary. Additionally, each binary atom is
of the form R(c, d) or R(t, f(t)), where c, d are constants, and t is a term.

(b) If A ∈ I is an atom with a term of the form f(t) occurring as an argument,
then for some binary predicate symbol R, R(t, f(t)) ∈ I.

If H is an arbitrary interpretation for an FDNC program P and J ∈MM(PH),
then J is forest-shaped. Therefore, every J ∈ SM(P ) is forest-shaped.

The methods that we present in this paper are aimed at providing the decidabil-
ity results together with the worst-case optimal algorithms for FDNC. We note,
however, that the decidability of the reasoning tasks discussed in this paper can
be inferred from the results in [5]. The technique in [5] shows how the stable
model semantics for the disjunctive logic programs with functions symbols can
be expressed by formulae in second-order logic, where the minimality of models
is enforced by second-order quantifiers. Due to the forest-shaped model property
one can express the semantics of FDNC programs in monadic second-order logic
over trees SkS which is know to be decidable (see [14] for a related encoding).
Unfortunately, optimal algorithms for such encodings are not apparent.1

The semantic characterization, and the reasoning methods later on, follow
an intuition that stable models for an FDNC program P can be constructed
by the iterative computation of stable models of local programs. During the
construction, local programs are obtained “on the fly” by taking certain finite
subsets of Ground(P ) and adding facts (states) obtained in the previous iteration.

For the rest of Section 3, we assume that P is an arbitrary FDNC program.
For the convenience of presentation, for a term t and a set of atoms I, we write
t∈̂I, if there exists an atom in I with t as its argument.

Definition 2. Let t be a term. A state of t is an arbitrary set U t containing
only unary atoms ground with t (i.e., with t as the argument); the superscript t
will be dropped if t is not of particular interest. For a set of atoms I and a term
t∈̂I, we denote by st(I, t) the state of t in I, i.e., the set {A(t) | A(t) ∈ I}.
For a one-variable rule r in FDNC syntax, let r↓t denote the rule obtained by
substituting every occurrence of the variable in r with a term t. Without loss
of generality, we assume that in a two-variable rule, i.e., a rule of type (R2) or
(R4), the tuple of variables in binary atoms is always 〈x, y〉. For such a rule r,
1 Via an encoding into SkS, one can show the decidability of FDNC extended with in-

verse rules of the form R(y, x)←P (x, y), which, together with the rules of type (R4),
allow for bidirectionality of information-passing. Due to more involved minimality-
testing, our techniques cannot be extended easily to handle inverse rules.
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let r↓s,t denote the rule obtained by substituting every occurrence of x with a
term s and every occurrence of y with a term t.

Definition 3. Let U t be a state. The local program P (U t) is the smallest pro-
gram containing the following rules:

- A(t)←, for each A(t) ∈ U t,
- r↓t, for each r ∈ P of type (R3), (R5), or (R6),
- r↓t,f(t), for each r ∈ P of type (R2) or (R4) and function symbol f of P , and
- r↓f(t), for each r ∈ P of type (R1) and function symbol f of P .

Suppose I is a forest-shaped interpretation for P , t∈̂I, and U is the state of t
in I, i.e., U = st(I, t). Intuitively, the stable models of P (U) define the set of
possible immediate successor structures for t in I. In other words, if I is a stable
model of P , then I must contain a stable model of P (U). Stable models of local
programs have a simple structural property, captured by the notion of knots.

Definition 4. (Knots) A knot with a root term t is a set of atoms K such
that (i) each atom in K has form A(t), R(t, f(t)), or A(f(t)) where A, R, and
f are arbitrary, and (ii) for each term f(t)∈̂K, there exists R(t, f(t)) ∈ K
(connectedness). Let succ(K) denote the set of all terms f(t)∈̂K.

A knot with a root term t can be viewed as a labeled tree of depth at most 1,
where succ(K) are the leaf nodes. The nodes are labeled with unary predicate
symbols, while the edges are labeled with binary predicate symbols. Note that
∅ is a knot whose root term can be arbitrary.

It is easy to see that due to the structure of local programs, their stable
models satisfy the conditions in the definition of knots, and therefore are knots.
On the other hand, knots are also the structures that appear in the trees of the
forest-shaped interpretations. To “extract” a knot occurring in a forest-shaped
interpretation, the following will be helpful.

For a term t, let HBt denote the set of all atoms that can be built from
unary and binary predicate symbols using t and terms of the form f(t). For any
forest-shaped interpretation I of P and t∈̂I, the set K := I ∩HBt is a knot.

A knot K with a root term t is over (the signature of) P , if each predicate
and function symbol occurring in K also occurs in P (t need not be from HUP ).

The following notion is central. The introduced stable knots are self-contained
model building blocks for FDNC programs.

Definition 5. (Stable Knot) Let K be a knot with a root term t and U t =
st(K, t). Then K is stable w.r.t. the program P iff K ∈ SM(P (U t)).

Intuitively, stable knots encode an assumption and a solution. Suppose a knot
K with a root term t is stable w.r.t. P . Moreover, suppose t occurs in a forest-
shaped interpretation I for P , as a “leaf node”, i.e., there are no atoms of
the form R(t, f(t)) in I. Intuitively, if the states of t in I and K coincide, i.e.,
st(I, t) = st(K, t), then K becomes an eligible set of atoms that can be introduced
in I to give t the necessary successors.

After introducing the necessary notions for dealing with the tree-part of forest-
shaped interpretations, we deal with the graph part.



FDNC: Decidable Non-monotonic Disjunctive Logic Programs 521

Definition 6. By PG we denote the program Ground(P ′), where P ′ is obtained
from P by removing all the rules containing function symbols.2

The following theorem characterizes the stable models of P . For an interpretation
I, let Ic be the set of all atoms A(c) ∈ I such that c is a tuple of constants.

Theorem 1. Let I be an interpretation for P . Then I is a stable model of P iff
I is a forest-shaped interpretation such that (i) Ic is a stable model of PG, and
(ii) for each term t∈̂I, I ∩HBt is a knot that is stable w.r.t. P.

3.2 Finite Representation of Stable Models

The semantic characterization of stable models for FDNC programs allows to
view stable models as being constructed of knots, where each of them is stable.
Next, we show that Theorem 1 allows us to provide a finite representation of
those stable models. Roughly, it is based on the observation that although in-
finitely many knots might occur in some stable model of a program, only finitely
many of them are non-isomorphic modulo the root term.

Definition 7. Let K be a knot with a root term t. By K↓u we denote the knot
obtained from K by replacing each occurrence of t in K with a term u.

Indeed, if the program P has an infinite stable model I, then set of knots L :=
{(I ∩ HBt) | t∈̂I} is infinite. However, for a fixed term t, the set L′ := {K↓t |
K ∈ L} is finite due to the fact that there are only finitely many knots with the
root term t over the signature of P . Intuitively, if we view t as a variable, then
each K ∈ L can be viewed as an instance of some knot in L′.

To talk about sets of knots with common root term, we assume a special
constant x not occurring in FDNC programs. We say a set of knots is x-grounded,
if it contains only knots with root term x. The following notion lets us collect
the knots occurring in a stable model and abstract them by substituting with x.

Definition 8. (Scanning) Let I be a forest-shaped interpretation for P . We
define the set of x-grounded knots K(I) := {(I ∩HBt)↓x | t∈̂I}.
In the following we show that x-grounded sets of knots can be used to represent
the stable models of an FDNC program. First, we observe that the stability of a
knot is preserved under substitutions.

Proposition 2. If K is a knot that is stable w.r.t. P , and u is an arbitrary
term, then K↓u is stable w.r.t. P .

We introduce the notion of founded sets of x-grounded knots. The intention is
to capture the properties of the set K(I) when I is a stable model of P . To this
end, we need a notion of state equivalence as a counterpart for substitutions in
knots. Formally, states U t and V s are equivalent (in symbols, U t≈V s), if U t =
{A(t) | A(s) ∈ V s}, i.e., in both states terms satisfy the same unary predicates.

2 Note that P G is finite since its Herbrand universe contains only the constants of P .
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Definition 9. Let S �= ∅ be a set of states. A set L of x-grounded knots that are
stable w.r.t. the program P is founded w.r.t. P and S, if the following hold:

1. For each U ∈ S, there exists K ∈ L such that U ≈ st(K,x).
2. For each K ∈ L, the following hold:

a. for each s ∈ succ(K), there exists K ′ ∈ L s.t. st(K, s) ≈ st(K ′,x), and
b. there exists a sequence 〈K0, . . . , Kn〉 of knots in L such that:

- Kn = K,
- K0 is such that st(K,x) ≈ U for some U ∈ S, and
- for each 0 ≤ i < n, there exists s ∈ succ(Ki) s.t. st(Ki, s) ≈ st(Ki+1,x).

For an interpretation I, let S(I) denote the set of states of constants occurring
in I, i.e., S(I) := {st(I, c) | c∈̂I is a constant}. The following is easy to verify.

Proposition 3. If I is a stable model of P , then K(I) is a set of knots that is
founded w.r.t. P and S(Ic).

In what follows we provide a construction of stable models out of knots in a
founded set. Moreover, we show that for a given consistent program there exists
a founded set of knots that captures all the stable models.

Generating Stable Models out of Knots. Before describing the construction of
forest-shaped interpretations, we first state the construction of trees, which are
represented in the standard way by prefix-closed sets of words. For a sequence
of elements p = [e1, . . . , en], let τ(p) denote the last element en, and [p|en+1]
denote the sequence [e1, . . . , en, en+1].

Definition 10. (Tree Construction) Let L be a set of knots that is founded w.r.t.
P and a set of states S, and let U t be a state such that U t ≈ V , for some V ∈ S.
A set T of sequences, where each element in a sequence is a tuple of a knot and
a term, is called a tree induced by L starting at U t, if the following hold:

(a) [〈K, t〉] ∈ T , where K ∈ L is s.t. st(K,x) ≈ U t.
(b) If there exists p ∈ T with τ(p) = 〈K, t〉 and f(x) ∈ succ(K), then there exists

[p|〈K ′, f(t)〉] ∈ T , where K ′ is a knot in L s.t. st(K, f(x)) ≈ st(K ′,x).
(c) T is minimal, i.e., each T ′ ⊂ T violates (a) or (b).

We state the transformation of trees into Herbrand interpretations.

Definition 11. Let T be a tree induced by a founded set of knots L starting at
some state. We define the set of atoms T↓ := {K↓t | p ∈ T with τ(p) = 〈K, t〉}.
We generalize the construction of trees to forest-shaped interpretations.

Definition 12. (Forest Construction) Let G be a set of atoms ground with the
constants of P only, and L be a set of knots founded w.r.t. P and a set of states
S ⊇ S(G). Then F(G, L) is the largest set of forest-shaped interpretations

I = G ∪ (T c1)↓ ∪ . . . ∪ (T cn)↓,

where {c1, . . . , cn} is the set of all constants occurring in G and each T ci a tree
induced by L starting at st(G, ci).
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F(G, L) represents all the forest-shaped interpretations that can be build from
G by attaching, for each of the constants, a tree induced by L.

Theorem 2. If G ∈ SM(PG), L is a set of knots that is founded w.r.t. P and
some S ⊇ S(G), then F(G, L) �= ∅ and each I ∈ F(G, L) is a stable model of P .

Proof. Indeed, F(G, L) �= ∅ due to foundedness of L. Assume some I ∈ F(G, L).
Each K ∈ L is stable w.r.t. P . Then due to Proposition 2, for each term t∈̂I,
I ∩ HBt is a knot that is stable w.r.t. P . Keeping in mind that G ∈ SM(PG),
Theorem 1 implies that I is a stable model of P .

We showed that stable model existence can be proved by checking that some
founded set of knots exists. As we see next, the properties of founded sets of knots
imply that we can obtain a set capturing all the stable models of a program.

Capturing Stable Models. We define the set of states that occur in the stable
models of PG as S(P ) := {st(G, c) | G ∈ SM(PG) ∧ c∈̂G}.
Definition 13. By KP we denote the smallest set of knots which contains every
set of knots L that is founded w.r.t. P and some S ⊆ S(P ).

Proposition 4. For the program P , the following hold:

(a) If KP �= ∅, then KP is founded w.r.t. P and some S ⊆ S(P ).
(b) If L is a set of knots that is founded w.r.t. P and some S ⊆ S(P ), then KP

is founded w.r.t. P and some S′ ⊇ S.
(c) Each L ⊃ KP is not founded w.r.t. P and any S ⊆ S(P ).

Proof. The claim follows from the following property: if L1 and L2 are two sets
of knots founded w.r.t. P and, respectively, sets of states S1 and S2, then L1∪L2

is founded w.r.t. P and S1 ∪ S2.

It is easy to verify that a stable model I can be reconstructed out of knots in
K(I). Naturally, the same holds for any superset of K(I) satisfying Definition 9.

Proposition 5. If I is a stable model of P , then I ∈ F(Ic, L) for each set of
knots L ⊇ K(I) s.t. L is founded w.r.t. P and some set of states S ⊇ S(Ic).

The following will be helpful.

Definition 14. We say KP is compatible with a set of states S, if for each
state U ∈ S, there exists K ∈ KP s.t. U ≈ st(K,x).

The crucial property of KP is that it captures the tree-structures of all the
stable models of P . Together with the stable models of PG, it represents the
stable models of P .

Theorem 3. Let I be an interpretation for P . Then, I ∈ SM(P ) iff I ∈
F(G, KP ), for some G ∈ SM(PG) s.t. KP is compatible with S(G).
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Table 1. Complexity of FDNC and Fragments (Completeness Results)

Fragments Consistency P |=b A(t) P |=b ∃x.A(x)

F Trivial P PSpace

FD Trivial ΣP
2 PSpace

FC PSpace PSpace PSpace

FDC, FN, FDNC ExpTime ExpTime ExpTime

Proof. If I ∈ SM(P ), then, by Prop. 3, K(I) is founded w.r.t. P and S(Ic). By
definition, K(I) ⊆ KP . By Prop. 4, KP is founded w.r.t. P and some S ⊇ S(Ic).
By Proposition 5, I ∈ F(Ic, KP ). The other direction is proved by Theorem 2.

We have obtained a finite representation of stable model of an FDNC program.
Indeed, all of its stable models can be generated out of some stable model of PG

and a set of knots KP .

4 Reasoning and Complexity

The algorithms for consistency check and brave entailment are based on comput-
ing KP . The complexity of these tasks for FDNC and its fragments is compactly
summarized in Table 1. For space reasons, we focus here on FDNC and briefly
discuss the other fragments at the end of this section.

Deriving the Set KP . To derive KP , we proceed in two phases. In the first phase,
we generate the set of knots All(P ) that surely contains KP . In the second phase,
we remove knots from it to ensure that it satisfies Definition 13.

To ease presentation, for a knot set L, let states(L) := {st(K, s) | K ∈L,
s∈ succ(K)} be the set of all states of the successor terms of knots in L.

Definition 15. For an FDNC program P , let All(P ) be the smallest set of x-
grounded knots obeying the following conditions:

a) If U ∈ S(P ) and K ∈ SM(P (U)), then K↓x ∈ All(P ).
b) If U ∈ states(All(P )) and K ∈ SM(P (U)), then K↓x ∈ All(P ).

By construction, All(P ) contains each set of knots which is founded w.r.t. P and
some set of states S ⊆ S(P ). The problem is that All(P ) might contain a knot
K such that some s ∈ succ(K) has no potential successor knot (see (2.a) in
Definition 9). Such knots should be removed from All(P ). In turn, such removal
might leave some knots in All(P ) without a potential predecessor (see (2.b) in
Definition 9). The second phase deals with this problem.

Definition 16. For any set of x-grounded knots L and set of states S, reach(L, S)
is the smallest set of knots such that:

a) if U ∈ S, K ∈ L and U ≈ st(K,x), then K ∈ reach(L, S), and
b) if U ∈ states(reach(L, S)), K ∈ L and U ≈ st(K,x), then K ∈ reach(L, S).
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Algorithm Knots
Input: FDNC program P
Output: KP

repeat
L := All(P ); S := S(P ); Laux := L;
for each K ∈ L and s ∈ succ(K) do

if not ∃K′ ∈ L s.t. st(K, s) ≈ st(K′,x) then L := L \ {K};
L := reach(L, S)

until Laux = L
return L

Fig. 2. Algorithm for computing KP of an FDNC program

Intuitively, reach(L, S) are the knots in L reachable from the states in S. Thus, if
reach(L, S) = L, then L fulfills the condition (2.b) of Definition 9 to be founded
w.r.t. S.

The cleaning of All(P ) involves removing each knot violating (2.a) or (2.b) in
Definition 9. Figure 2 shows an algorithm for computing KP which elaborates
on this.

Soundness and Completeness. We must verify that Knots(P ) satisfies the con-
dition in Definition 13, i.e., Knots(P ) is the single (set-inclusion) minimal set
which contains each set L of knots that is founded w.r.t. P and some S ⊆ S(P ).

Indeed, L ⊆ All(P ) by construction. In the computation of Knots(P ) no knot
in L can be removed from All(P ), i.e., L ⊆ Knots(P ). Suppose Knots(P ) is
not minimal. Hence, some N ⊂ Knots(P ) contains every knot set L which is
founded w.r.t. P and some S ⊆ S(P ). Then Knots(P ) must be nonempty, and
it holds that Knots(P ) is founded w.r.t. P and some S ⊆ S(P ). Roughly, this is
because the algorithm ensures that every knot in Knots(P ) is stable w.r.t. P , has
proper successors to satisfy (2.a) in Definition 9, and has a proper sequence of
predecessors to satisfy (2.b) reaching a state in S(P ). By assumption on N and
foundedness of Knots(P ), we have Knots(P ) ⊆ N . This, however, contradicts
N ⊂ Knots(P ). Thus Knots(P ) satisfies Definition 13, i.e., Knots(P ) = KP .

Complexity. The procedure Knots(P ) runs in time single exponential in the size
of P . The claim follows from the following observations:

- The number of x-grounded knots over P , max, is bounded by single exponen-
tial in the size of P ; more precisely, max ≤ 2n+k·(n+m), when P has k function,
n unary, and m binary predicate symbols.

- Computing All(P ) requires adding at most max x-grounded knots. Each such
knot has polynomial size and its stability is verifiable using an NPNP oracle.
Thus, All(P ) is computable in time single exponential in the size of P .

- Computing reach(L, S) is polynomial in the combined size of L and S.
- The size of S(P ) is bounded by a single exponential in the size of P .
- Knots(P ) runs in time that is polynomial in the size of All(P ) and S(P ).

Consistency Check. Theorems 2 and 3 imply the following characterization.
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Theorem 4. An FDNC program P is consistent iff KP is compatible w.r.t.
S(G), for some G ∈ SM(PG).

Compatibility of KP w.r.t. S(G), for G∈SM(PG), is decidable in time polyno-
mial in n + m, where m is the size of KP and n is the size of SM(PG). This is
single exponential in the size of P , since both m and n are single exponential in
the size of P . Since SM(PG) is computable in single exponential time, Theorem 4
implies that consistency checking in FDNC is feasible in single exponential time.
In the full paper, by a reduction of satisfiability testing in the ExpTime-hard
DL ALC, we show that consistency check is ExpTime-hard already for FDC.
Thus, the algorithm emerging from Theorem 4 is worst-case optimal.

Theorem 5. Deciding whether a given FDNC program is consistent, i.e., has
some stable model, is ExpTime-complete.

Brave Entailment. We can also exploit KP for brave reasoning in FDNC. We
focus here on unary atomic queries; binary queries are easily reduced to this
case. The idea is to perform “back-propagation” of unary predicate symbols in a
founded set of knots. For a set of x-grounded knots L, we call K ′ ∈L a possible
successor of K ∈L if st(K ′,x)≈ st(K, s) for some s ∈ succ(K).

Definition 17. Let L be a set of knots founded w.r.t. an FDNC program P and
a set of states S. Let C be the set of unary predicate symbols occurring in P . By
EL we denote the smallest relation over L× C closed under the following rules:

(a) if K ∈ L and some A(x) ∈ K, then 〈K, A〉 ∈ EL, and
(b) if K ′∈ L is a possible successor of K ∈ L s.t. 〈K ′, A〉 ∈ EL, then 〈K, A〉 ∈ EL.

Intuitively, 〈K, A〉 ∈ EL means that starting from K a sequence of possible suc-
cessor knots will eventually reach a knot containing A(x). We have the following:

Theorem 6. Let P be an FDNC program. Then, P |=b ∃x.A(x) iff (�) for some
G∈SM(PG), (a) KP is compatible w.r.t. S(G), and (b) there exist a constant c
and K ∈KP such that st(G, c) ≈ st(K,x) and 〈K, A〉 ∈ EKP .

Condition (�) is verifiable in time (single) exponential in the size of P . Indeed,
computing EKP requires time quadratic in the size of KP , or exponential in the
size of P . Once KP , EKP , and SM(PG) are computed, the conditions in (�) are
verifiable in time polynomial in the combined size of KP , EKP , and SM(PG).

Via this algorithm, we obtain that brave reasoning for existential unary queries
in FDNC is in ExpTime. In the full paper we show that the algorithm is worst-
case optimal (by reducing consistency to brave entailment in FDNC), and that
this result extends to binary existential queries.

Theorem 7. Deciding P |=b ∃x.A(x) is ExpTime-complete for FDNC.

The method for deciding brave entailment of ground unary queries is based on
an adaptation of the algorithm for the existential queries.
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Definition 18. Let q = A(t) be a ground atom and L be a set of knots founded
w.r.t. an FDNC program P and a set of states S. Let T be the set of subterms
of the term t. Then Gq

L is the smallest relation over L×T such that:

(a) if K ∈ L and A(x) ∈ K, then 〈K, t〉 ∈ Gq
L, and

(b) if there exist (i) K ∈ L with f(x) ∈ succ(K) and (ii) K ′ ∈ L s.t. st(K, f(x)) ≈
st(K ′,x) and 〈K ′, f(v)〉 ∈ Gq

L, then 〈K, v〉 ∈ Gq
L.

Suppose we have a ground query q = A(f(g(f(c)))) and a knot K in L such that
〈K, c〉 ∈ Gq

L. Roughly, it means that we can construct a tree with root term c
containing a node f(g(f(c))) labeled with A. The following is easily verified.

Theorem 8. For any FDNC program P and ground query q, P |=b q iff (��) for
some G ∈ SM(PG), (a) KP is compatible w.r.t. S(G), and (b) some K ∈ KP

exists s.t. st(G, c) ≈ st(K,x) and 〈K, c〉 ∈ Gq
KP

, where c is the constant in q.

By similar arguments as for existential queries, we can see that checking con-
dition (��) is feasible in time single exponential in the size of P . Note that
computing Gq

KP
requires time that is polynomial in the size of KP , or single

exponential in the size of P . Once KP , Gq
KP

, and SM(PG) are computed, the
conditions in (��) can be verified in time polynomial in the combined size of KP ,
Gq

KP
, and SM(PG), each of which is single exponential in the size of P .

We thus have an algorithm for deciding P |=b A(t) in exponential time.
The full paper shows that it is worst-case optimal, by providing an ExpTime-
hardness result, and extends the result to binary ground queries.

Theorem 9. Deciding P |=b A(t), for ground t, is ExpTime-complete for FDNC.

The remaining entries in Table 1 are briefly explained as follows. F and FD

programs are trivially consistent. For an FC program P, consistency can be de-
cided by checking if each constant c in the single stable model G of PG (if it
exists) has a set of knots founded w.r.t. P and {st(G, c)}. This can be refuted by
nondeterministically constructing stepwise a sequence of at most exponentially
many knots which leads to inconsistency. This is feasible in polynomial space,
and since NPSpace = PSpace, consistency checking is in PSpace. Matching
PSpace-hardness is shown by a generic Turing machine reduction, where a sim-
ple constraint of form ← A(x) is sufficient to show the hardness.

The PSpace-hardness of P |=b ∃x.A(x) for F is immediate from the fact
P |=b ∃x.A(x) holds iff P∪{← A(x)} is inconsistent. The problem is in PSpace,
since we can nondeterministically construct a sequence of at most exponentially
many knots until A occurs. For FD, this can be decided similarly; for FC, an
additional consistency check has to be made, but polynomial space is sufficient.

In case of ground entailment P |=b A(t), membership of A(t) in the single
stable model of an F or FC program is witnessed by a sequence of knots that
is fully determined by t and computable in polynomial time. For FC, the con-
sistency check of P remains to be done. In case of FD, we still need to guess
knots, guided by t, and verify their stability; this is feasible in ΣP

2 . Matching
ΣP

2 -hardness follows from propositional logic programs [4].
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Finally, ExpTime-completeness of the reasoning tasks for FN is proved by a
polynomial reduction of consistency check in FDC to consistency check in FN.

5 Related Work

Our FN programs are decidable Finitely Recursive Programs (FRPs) [2,1], which
are normal logic programs P with function symbols where in the grounding of
P , each atom depends only on finitely many atoms; disjunction and constraints
are not allowed. For FRPs, inconsistency checking is r.e.-complete and brave
ground entailment is co-r.e.-complete [1]; for FN and our full class FDNC, which
implicitly obeys the condition of FRPs, these problems are ExpTime-complete.
On the other hand, FN is not a subclass of the Finitary Programs (FPs) [2], which
are those RFPs in whose grounding only finitely many atoms occur in odd cycles.
For FPs, consistency checking is decidable, and brave and cautious entailment
are decidable for ground queries but r.e.-complete for existential atomic queries.
Note that for FN, all these problems are decidable in exponential time. Finally,
the explicit syntax of FN and our other fragments of FDNC allows to effectively
recognize such programs. FRPs and FPs, instead, suffer the undecidability of the
conditions that define them, i.e., FRPs and FPs cannot be effectively recognized.

Related to our work are Local Extended Conceptual Logic Programs (LECLPs)
[9], which evolved from [8]. These programs are function-free but have answer
sets over open domains, i.e., of the grounding of a program with any superset
of its constants. LECLPs are syntactically restricted to ensure the forest-shape
model property of answer sets. Deciding consistency of an LECLP P is feasible
in nondeterministic triple exponential time, as one can ground P with double
exponentially many constants in the size of P , and then use standard ASP. For
FDNC, deciding the consistency is ExpTime-complete and thus less complex.

Comparing the expressiveness of LECLPs and FDNC is intricated due the
different settings. At least, both formalisms can encode certain description logics
(e.g., ALC). LECLPs may be more expressive than FDNC programs, since the
expressive DL ALCHOQ is reducible to satisfiability in LECLPs. On the other
hand, LECLPs undermine the general intuition behind minimal model semantics
of logic programs. So-called free rules of the form p(x) ∨ not p(x) ←; allow to
unfoundedly add atoms in an answer set. FDNC, instead, has no free rules, and
each atom in a stable model of P must be justified from the very facts of P .

6 Discussion and Conclusion

In line with efforts to pave the way for effective Answer Set Programming engines
with function symbols [2,1], we presented FDNC programs as a decidable class of
disjunctive logic programs with function symbols under stable model semantics.
They are a tool for knowledge representation and reasoning for some applications
involving infinite processes and objects, like evolving action domains. From our
results on consistency checking and brave entailment of ground and existential
atomic queries q, one can easily determine the complexity of cautious entailment
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P |=c q, i.e., whether q is true in all stable models of P . The results in Table 1 for
brave entailment carry over to cautious entailment except for FD; here, P |=c

A(t) is coNP-complete and P |=c ∃x.A(x) is ExpTime-complete. Intuitively,
the former is because minimality of models is irrelevant for inference of an atom
A(t), and the latter because consistency checking with constraints ← B(x) can
be reduced to cautious inference with rules A(x)← B(x).

FDNC programs can be easily extended with strong negation ¬p(x) [6], which
can be expressed in the language as usual (view ¬p as a predicate symbol and
add constraints ← p(x),¬p(x)). Implementation of FDNC programs is another
subject of future work. To this aim, recent extensions of the DLV system like
DLVHEX (http://con.fusion.at/dlvhex/) might be exploited.

Acknowledgments. We thank a reviewer for pointing out the decidability of
FDNC (even with inverse rules) via monadic second-order logic over trees.
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