
A Flexible Policy-Driven Trust Negotiation Model

Juri L. De Coi, Daniel Olmedilla
L3S Research Center & Hannover University

Hannover, Germany
{decoi, olmedilla}@L3S.de

Abstract

Policy-driven negotiations are gaining interest among
the research community. A large number of policy lan-
guages with different expressiveness have been developed in
order to suit different scenarios. This paper summarizes the
general requirements a negotiation framework must cover
and presents a flexible negotiation model that addresses all
these requirements and subsumes existing models to date.
An instantiation of this model and an architecture with
reusable components that integrates two existing trust ne-
gotiation languages (PEERTRUST and PROTUNE) are pro-
vided.

1 Introduction
During the last decade, the amount of users with In-

ternet access has dramatically grown all over the world.
While previously the set of potential users accessing a sys-
tem was mainly restricted to those already known, now any
two strangers should be able to communicate and perform
transactions with such systems. Traditional authorization
mechanisms relies on the fact that client identities can be
mapped to a set of permissions. This authorization process
is not applicable anymore since clients may not be known in
advance.

A new authorization scheme called Trust Negotiation [7]
has emerged and is gaining interest among the research com-
munity. It allows two strangers to bilaterally establish trust
in an incremental process. This process is driven by state-
ments that specify what is released and under which con-
ditions. These statements are generally called policies and
many languages have been developed to date [3, 2, 1, 5] in
order to represent them. These languages differ on seman-
tics and expressiveness since they were developed in order
to suit different scenarios.

In this paper, we describe the requirements a general ne-
gotiation model must address and present and describe in
detail a flexible negotiation model which addresses those re-
quirements and subsumes existing models to date.

This paper is organized as follows: §2 highlights the main

concepts that should be held in mind when designing a trust
negotiation framework. A review of how these concepts
are addressed by current state of the art is provided in §3.
§4 describes our negotiation model whereas §5 describes
the negotiation algorithm which instantiates the model pre-
sented as well as the system architecture in which it is imple-
mented. Finally in §6 we conclude and outline some future
work.

2 Negotiation Requirements

In this section we outline the main requirements a nego-
tiation framework should take into account: some of them
were already described in previous literature [2, 5, 3, 4], oth-
ers are clearly stated here for the first time.

Negotiation The ground requirement a client-server trans-
action should fulfill is obviously the possibility of hav-
ing not just one-shot interactions between actors but bi-
lateral negotiations.

Actors Each negotiation implies two actors (e.g., Alice and
some on-line bookshop).

External actions During a negotiation each actor may ask
the other one for carrying out some actions (e.g., deliv-
ering a book or registering at a web site).

Notifications Each actor needs to be notified about whether
the other actor performed the actions it was asked for.
A notification may either need to be proved, so that the
other actor can verify it (e.g., through a signed statement
from the bank stating that a money transfer has been
made), or not (e.g., provision of a delivery address).

Local actions During a negotiation each actor may need to
carry out some actions which are not explicitly requested
by the other actor. For example, it may be needed to
access legacy systems (e.g., log a message into a file or
querying a database of clients).

Action Selection Function In order to satisfy the negotia-
tion’s overall goal, an actor may be requested for follow-
ing (at least) one out of n paths (e.g., in order to finalize a
purchase, an on-line bookshop may request Alice either
to subscribe a new account or to provide a credit card

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.21

458

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.21

456

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.21

456

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.21

450

number). It is typically the case that the actor does not
want to perform all actions, but only a subset of them.
In order to make this selection automatically, an Action
Selection Function is required.

Policy In general, an external action (e.g., the disclosure
of a credential) is performed only under certain circum-
stances. Therefore a means is required to specify under
which conditions an action can be executed (e.g., “credit
card number can be provided only to on-line shops be-
longing to the Better Business Bureau”). Typically such
a means is a policy language.

Policy filtering Actors need to tell each other the condi-
tions under which a requested action can be performed.
However typically a whole policy does not need to be
released, since some information contained in it may be
irrelevant for the other actor (e.g., local actions to be per-
formed) or sensitive (e.g., giving away that the bookshop
delegates a decision to a third company may be private).

Termination Algorithm A Termination Algorithm can be
seen as a means to ensure that a negotiation eventually
terminates (and guarantee that it does not get looped).

Explanation An actor should be able to ask and get infor-
mation about the ongoing negotiation (e.g. how to buy
a book at the bookshop) or finished ones (e.g., why the
negotiation failed).

3 Related work

Concepts like negotiation, policy and actor are grass-
roots ones in the field of Trust Negotiation, and hence
are mentioned in most of the literature about this topic
(cf. [2, 5, 3, 4]). In all these approaches credential exchange
is the only addressed external action, hence a need for no-
tifications does not arise (credential reception is a particu-
lar notification on its own). Moreover local actions, when
foreseen, usually limit to checking whether a credential is
still valid. Similarly a distinction between Action Selection
Function and Termination Algorithm is usually not made,
being both concepts grouped under the common label of
Negotiation Strategy [8]. All papers on trust negotiation as-
sume that policies may be sensible (otherwise negotiations
would not be needed) but they differ in the protection mech-
anisms they offer. [2, 5, 3, 4] suggest to set policies to pro-
tect policies as a whole, but fine-grained filtering of a policy,
allowing to select just some parts of it to be disclosed to the
other actor, is not foreseen.

4 Negotiation model

This section describes a general negotiation model which
addresses all the requirements presented in §2.

Let A1 and A2 be the two actors involved in the nego-
tiation (see figure 1). In the following we will assume that
A1 is the initial requester (e.g., Alice) whereas A2 is the

A1 A2

p1,S1 p2,S2

s0

s 1

...

s n-1

s n

s=Fs=F

s=s 0

s=s 0s 1

s=s 0s 1...s n-1

s=s 0s 1...s n-1sn

s=s0

s=s0s1

s=s 0s1...sn-1

s=s0s 1...s n-1sn

Figure 1. Sequence Diagram of a Negotiation

provider (e.g., the bookshop), i.e. A1 is assumed to send a
request to A2 thus starting the negotiation.

As shown above, a means (a language) is required to
specify under which conditions the request of the other peer
can be fulfilled. Let our policy language be based on normal
logic program rules of the form A ← L1, . . . Ln. where A
is a standard logical atom (called the head of the rule) and
L1, . . . Ln (the body of the rule) are literals, i.e. Li equals
either Bi or ¬Bi, for some logical atom Bi.

Definition 1 (Policy) A Policy is a set of rules, such that
negation is not applied to any predicate occurring in a rule’s
head nor to atoms representing the execution of external ac-
tions.

This restriction ensures that policies are monotonic in the
sense of [6], i.e. as more external actions are executed, the
set of permissions does not decrease.

Definition 2 (Negotiation Message) A Negotiation Mes-
sage is an ordered pair (p,N) where p is a policy and N
a set of notifications. We will denote with M the set of all
possible Negotiation Messages.

Definition 3 (Negotiation History) Let A1 and A2 be the
actors involved in a negotiation. Let A1 be the initial re-
quester, i.e. the sender of the first message in the negotia-
tion. A Negotiation History σ for the actor Aj (j = 1, 2) is
a list of Negotiation Messages σ1, . . . σn | σi ∈ M . We will
denote with σi the i-th element of σ. Moreover let

• Msnt(σ) = {σi | i = 2k − (j mod2), 1 ≤ k ≤ �n/2�}
• Mrcv(σ) = {σi | i = 2k − 1 + (j mod2), 1 ≤ k ≤
�n/2�}

denote the sequence of messages sent and received respec-
tively. A Negotiation History may also be referred to as Ne-
gotiation State.

459457457451

Intuitively, a message sent by an actor provokes the same
message to be received by the other actor. In addition, mes-
sages between actors are sent alternately, i.e. a message
sent by one actor is followed by another message sent by
the other actor. Notice that according to this definition, the
Negotiation History σ is shared by the two actors A1 and
A2, but the sets Msnt(σ) and Mrcv(σ) are swapped be-
tween them. Therefore it holds that MA1

snt(σ) = MA2
rcv(σ)

and MA1
rcv(σ) = MA2

snt(σ)

Definition 4 (Negotiation State Machine) A Negotiation
State Machine is a tuple (S, s0,Σ, t) such that

• S ≡ a set of Negotiation States

• s0 ≡ the empty list (initial state)

• Σ ≡ a set of Negotiation Messages.

• t ≡ a function S × Σ → S such that given s =
(σ1, . . . σn) then t(s, σ) = (σ1, . . . σn, σ) (transition
function)

Intuitively a Negotiation State Machine models how an
actor evolves during the negotiation by exchanging mes-
sages. Σ contains both sent and received Negotiation Mes-
sages and can therefore be partitioned into two subsets Σsnd

and Σrcv .

Definition 5 (Negotiation Model) A Negotiation Model is
a tuple (A,P, p0, NSM, ff, ns) where

• A ≡ the set of possible external actions

• P ≡ the set of possible Filtered Policies

• p0 ≡ the actor’s local Policy

• NSM ≡ a Negotiation State Machine (Σ, S, s0, t)

– s0 represents the initial state, i.e. the state in which
the actor is at the beginning of the negotiation

• ff ≡ a function S → P (Filtering Function)

• ns ≡ an ordered pair (asf, ta), a.k.a. Negotiation
Strategy, where

– asf ≡ an action selection function S → P(A)
– ta ≡ a function S → {true, false} (termination

algorithm)

Each occurrence of S is supposed to refer to the same set
of Negotiation States.

Definition 6 (Bilateral Negotiation) Let NM1 and NM2

be the negotiation models of A1 and A2 respectively. The
two models represent a valid bilateral negotiation if

• for each message sent by Ai, an identical message (i.e.
with the same parameters) is received by Ai mod2+1.

• it is allowed that a message repeats information which
has previously been disclosed. However, a message con-
taining no new information is considered empty.

• rfp ≡ Received filtered policy

• s ≡ Negotiation state

• rn ≡ Received notifications

• lp ≡ Local policy

• g ≡ Overall goal

• oa ≡ Other actor

• ta ≡ Termination Algorithm

• asf ≡ Action Selection Function

add(rfp, s)
add(rn, s)
Action[] la = extractLocalActions(g, lp, s)
while(la.length != 0)

Notification[] ln = perform(la)
add(ln, s)
la = extractLocalActions(g, lp, s)

if(isUnlocked(g, lp, s))
send(SUCCESS, oa)
return

if(terminate(s, ta))
send(FAILURE, oa)
return

Action[] ea = extractExternalActions(g, lp, s)
Action[] ua
for each action in ea

if(isUnlocked(action, lp, s)) add(action, ua)
Action[] aa = selectActions(asf, ua, s)
Notification[] sn = perform(aa)
FilteredPolicy sfp = filter(g, lp, s)
add(sfp, s)
add(sn, s)
send(sfp, oa)
send(sn, oa)

Figure 2. Negotiation algorithm pseudocode

• a negotiation model (its termination algorithm) must not
allow never-ending exchange of empty messages.

• the information provided in the filtered policy sent by an
actor in subsequent messages must be monotonic, that
is, let fpi+2 be the result of the filtering process at step
i + 2

fpi+2 = ff(si+2)

and fpi the filtered policy sent at step i, then it must hold
thatH(fpi) ⊆ H(fpi+2)

5 Implementation

In this section we describe a negotiation algorithm which
instantiates the model presented in §4 as well as the ar-
chitecture we implemented in order to support the integra-
tion of different trust negotiation languages (PROTUNE and
PEERTRUST have already been integrated)1.

Negotiation Algorithm A negotiation algorithm that in-
stantiates the model presented in previous sections is de-
scribed in pseudocode form in Figure 2.

At each negotiation step an actor (let say A1) sends the
other one (A2) a (potentially empty) filtered policy rfp and

1A more detailed description can be found in the longer version
of the paper: http://www.l3s.de/˜olmedilla/pub/2006/
2006_L3S_TNModel.pdf

460458458452

a (potentially empty) set of notifications rn, stating the con-
ditions to be fulfilled by A2 as well as notifying the execu-
tion by A1 of some actions it was asked for. As soon as A2

receives them, it adds them to the negotiation state.
The local policy is then inspected in order to identify

the local actions that can be executed taking into account
the new information provided in the received notifications.
Those local actions are performed and as a consequence
other local actions may become ready for execution, for this
reason local action selection and execution are performed in
a loop, until no more actions are ready to be executed.

After having executed all possible local actions the policy
is evaluated in order to see whether the overall goal of the
negotiation is fulfilled. If this is the case, a message is sent
to A1 telling that the negotiation can be successfully termi-
nated. Otherwise the Termination Algorithm is consulted
in order to decide whether the negotiation should continue
or be terminated. According to the answer, either the nego-
tiation goes on or a message is sent to A1 telling that the
negotiation was unsuccessfully terminated.

If the negotiation is not terminated yet, then two pro-
cesses have to be performed

• A2 filters its local policy and thereby generates the new
version of the filtered policy to be disclosed to A1

• A2 has to decide which actions requested by A1 it will
perform. Therefore, it inspects its own policy and the
filtered policy received from A1 in order to retrieve the
actions requested. Since an action can be executed only
if the policy protecting it is fulfilled, a check needs to
be performed for each retrieved action. Those whose
policies are fulfilled (unlocked actions) are collected and
the other ones discarded.

Unlocked actions represent potential candidates to the
execution, that is, those actions which may be performed
according to A2’s policy and the current negotiation
state. However, just a subset of them will be actually
performed, namely the one selected by the Action Se-
lection Function

Finally, the filtered policy and the notifications of the per-
formed external actions are added to the state and sent to A1.
Policy Framework Architecture The negotiation model
presented in this paper allows to support different policy lan-
guages. We have implemented an architecture which con-
forms to our negotiation model and allows not only for co-
existence of different policy engines but also for reuse of
components among them. Figure 3 depicts the high level
architecture of our policy Agent in which we already inte-
grated two different policy engines: a PROTUNE engine and
a PEERTRUST engine.

6 Conclusions and future work
Many languages with different expressiveness have been

developed to date in order to provide systems with trust

P
ol

ic
y

E
ng

in
e

D
is

tr
ib

ut
or

N
et

w
or

k
In

te
rf

ac
e

In
te

rn
al

 J
av

a
A

P
I

POLICY AGENT

Credentials

Action
Selection and
Termination
Algorithm

Credential
Repository

Inference
Engine

PeerTrust
Engine

Protune
EngineE

xe
cu

tio
n

H
an

dl
er

RDBMS

File System

Figure 3. Policy Framework Architecture

negotiation capabilities. However, they typically assume
different features depending on the scenarios being tar-
geted. This paper reviewed existing approaches and frame-
works for trust negotiation and summarized the main fea-
tures which must be covered by a general negotiation frame-
work. In addition, a flexible negotiation model is presented
which addresses such features and an instantiation of this
model is presented.

The negotiation model and the implemented algorithm
presented in this paper allow for arbitrary negotiation strate-
gies to be plugged into it. We plan to explore the use of dif-
ferent termination algorithms and different action selection
functions in order to (semi-)automatically perform negotia-
tions.

References

[1] P. A. Bonatti and D. Olmedilla. Driving and monitoring provi-
sional trust negotiation with metapolicies. In IEEE POLICY,
pages 14–23, Stockholm, Sweden, June 2005.

[2] P. A. Bonatti and P. Samarati. Regulating service access and
information release on the web. In ACM CCS, 2000.

[3] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. E. Seamons, and
M. Winslett. No registration needed: How to use declarative
policies and negotiation to access sensitive resources on the
semantic web. In ESWS, Heraklion, Greece, May 2004.

[4] A. J. Lee, M. Winslett, J. Basney, and V. Welch. Traust: a trust
negotiation-based authorization service for open systems. In
ACM SACMAT, Lake Tahoe, California, USA, June 2006.

[5] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust-management framework. In IEEE Symposium
on Security and Privacy, pages 114–130, 2002.

[6] K. E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Ja-
cobson, H. Mills, and L. Yu. Requirements for policy lan-
guages for trust negotiation. In IEEE POLICY, pages 68–79,
Monterey, CA, USA, June 2002. IEEE Computer Society.

[7] W. H. Winsborough, K. E. Seamons, and V. E. Jones. Au-
tomated trust negotiation. DARPA Information Survivability
Conference and Exposition, IEEE Press, Jan 2000.

[8] T. Yu, M. Winslett, and K. E. Seamons. Interoperable strate-
gies in automated trust negotiation. In ACM CCS, 2001.

461459459453

