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Abstract

XML data is often accompanied by type information, usually expressed by
some schema language. Sometimes XML data can be related to ontologies
defining classes of objects, such classes can also be interpreted as types.
Type systems proved to be extremely useful in programming languages,
for instance to automatically discover certain kinds of errors. This thesis
deals with an XML query language Xcerpt, which originally has no under-
lying type system nor any provision for taking advantage of existing type
information. We provide a type system for Xcerpt; it makes possible type
inference and checking type correctness.

The system is descriptive: the types associated with Xcerpt constructs
are sets of data terms and approximate the semantics of the constructs. A
formalism of Type Definitions is adapted to specify such sets. The formalism
may be seen as a simplification and abstraction of XML schema languages.
The type inference method, which is the core of this work, may be seen as
abstract interpretation. A non standard way of assuring termination of fixed
point computations is proposed, as standard approaches are too inefficient.
The method is proved correct wrt. the formal semantics of Xcerpt.

We also present a method for type checking of programs. A success of
type checking implies that the program is correct wrt. its type specification.
This means that the program produces results of the specified type whenever
it is applied to data of the given type. On the other hand, a failure of
type checking suggests that the program may be incorrect. Under certain
conditions (on the program and on the type specification), the program is
actually incorrect whenever the proof attempt fails.

A prototype implementation of the type system has been developed and
usefulness of the approach is illustrated on example programs.

In addition, the thesis outlines possibility of employing semantic types
(ontologies) in Xcerpt. Introducing ontology classes into Type Definitions
makes possible discovering some errors related to the semantics of data
queried by Xcerpt. We also extend Xcerpt with a mechanism of combin-
ing XML queries with ontology queries. The approach employs an existing
Xcerpt engine and an ontology reasoner; no modifications are required.
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Chapter 1

Introduction

The Problem and the Motivation

The work presented in this thesis is related to XML which is a dominant
standard on the Web used to encode data. In order to retrieve data from
the Web, query languages are needed. A well known standard for querying
XML data is the language XQuery where data retrieval is based on path
navigation. A different approach using pattern matching instead of path
navigation is developed in the declarative rule-based query language Xcerpt,
which is inspired by logic programming. Further development of Xcerpt is
one of the objectives of the Network of Excellence REWERSE1. This thesis
is a contribution to this effort.

Type systems have proved to be very useful in many programming lan-
guages for detection of programming errors at compile time. For example,
most type systems can check statically that the arguments of primitive arith-
metic operations are always numbers (which prevents e.g. adding an integer
to a Boolean). The ability to eliminate many errors during early phases of
the implementation of an application makes a type system an invaluable tool
for programmers. On the other hand, experience with untyped programming
languages, like Prolog, shows how lack of typing makes many simple errors
difficult to discover. Type systems enforce disciplined programming, in par-
ticular in the context of software composition where typing leads to a more
abstract style of design. Type information provided by a type system can
also be used to improve efficiency of program evaluation. An optimization
can be achieved e.g. by eliminating many of the dynamic checks that would
be needed without type information or by using specialized run-time data
structures. The price we need to pay for the benefits of a type system in-
cludes a necessity for a developer to understand the type system in order to
work effectively with it. Another issue is an additional effort which usually
must be put to annotate programs with type information. However, the
price seems to be worth to pay.

1http://rewerse.net

1
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Xcerpt has no underlying type system nor any provision for taking ad-
vantage of type information. On the other hand, type information about
XML data is often available, expressed by some schema language like DTD,
XML Schema or RELAX NG. This thesis addresses the problem how such
information can be used in Xcerpt. We define a type system where exist-
ing structural information is to be used for (1) inferring types of results of
Xcerpt programs given a type of external data to be queried, (2) checking
type correctness of programs. In this way we make possible discovery of
type errors in Xcerpt programs. As the system can be also used for finding
dependencies between rules in programs, another its application is employ-
ing it for improving efficiency of program evaluation. As the inferred types
approximate the semantics of the program (and of particular rules in the
program), they can be used for documentation purposes.

Development of the Web is going in the direction where data is enhanced
with semantic information. That is why ontologies, which are used for this
purpose, play more and more important role on the Web. As a result XML
data on the Web is going to be often related to ontologies. All this implies
a need to query XML data with respect to the ontological information. For
instance, one may want to filter XML data returned by a structural query
by reasoning on semantic annotations included therein. Thus the idea is to
enhance structural querying of XML data with ontology reasoning.

The objective of the thesis is to present how types, both syntactic (XML
schemata) and semantic (ontologies) can be employed in querying XML
data, using Web query language Xcerpt.

The Approach

Syntactic Types. This thesis presents a type system for a substantial
fragment of the Web and Semantic Web query language Xcerpt [17, 18,
16, 10]. The considered fragment includes basic and the most important
constructions of Xcerpt. (A way how most of the neglected constructions
from Xcerpt can be handled is presented less formally.) We provide a formal
semantics of the fragment of Xcerpt we deal with. The semantics (partially
presented earlier in [11, 32, 56]) is substantially simpler than that of a full
Xcerpt [50] (as it does not use the notion of simulation unification), and may
be of separate interest. Similarly to other work related to Xcerpt [51, 50]
we use data terms as an abstraction of semi-structured data [4] on the Web.
Data terms generalize the notion of term: the number of arguments of a
symbol is not fixed, moreover a symbol may have an (unordered) set of
arguments, instead of an ordered sequence. We do not deal with data terms
representing graphs that are not trees.

In our approach types are sets of data terms. To specify them we use
a formalism of Type Definitions [58, 15]. Type Definitions are similar to
unranked tree automata [13] (and equivalent formalisms), but deal also with
the case of unordered children of a tree node. We adapt a restriction on
Type Definitions which allows efficient algorithms for primitive operations

2
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CHAPTER 1. INTRODUCTION

on types, such as checking type inclusion. Another restriction is introduced
to make the formalism closed under intersection.

Type Definitions define sets of data terms, thus they play a similar role
as schema languages for XML. Type Definitions are not meant to be a next
competitive schema language but rather a kind of abstraction of the existing
schema languages, providing a common view of them. They abstract from
the features of schema languages which are not related to defining sets of
XML documents. Thus, we neglect such features of schema languages as
ability to describe default attribute values or to specify processing instruc-
tions (notations in DTD). As the formalism of Type Definitions is focused on
defining allowable tree structure of XML documents, it leaves out defining
specific types of text nodes, like Integer, Date, etc. Thus, the thesis does not
discuss the simple types available in XML schema languages. However, the
formalism is flexible enough to be extended with a mechanism handling sim-
ple types and we plan to address this aspect in continuation of the presented
work.

The thesis deals with a static type system. Static typing means that
type errors are detected before a program execution. This is in contrast to
dynamic typing where type errors are being detected at runtime by checking
if the actual values are of the required types. The type system is descrip-
tive which means that typing approximates the semantics of a program (in
an untyped programming language)2. In descriptive typing, type inference
means computing an approximation of the semantics of the given program;
type checking means proving program correctness with respect to a specifi-
cation expressed by means of types. The correctness means here that if the
program is applied to data from the specified database type then its results
are within the specified result type. In our case, for a given Xcerpt program
and a type of the database the type system provides a type of the program’s
results (i.e. a superset of the set of results). This is type inference. If a
type of expected results is given then type checking can be performed by
checking if the obtained type of results is a subset of the given one.

The main part of our type system – type inference for a single Xcerpt
rule – is defined by means of derivation rules. The rules abstract from
lower level details and may be seen as an abstraction of an algorithm for
type inference. The rules are similar to proof rules of logic, rules used
in operational semantics [47], and those used in prescriptive typing [20].
Employing rules makes it possible to specify a type system in a formal and
concise way. Such an approach facilitates formal reasoning. Based on it
we present a soundness proof of the type system with regard to the formal
semantics of Xcerpt. A former version of the type inference rules for a single
Xcerpt rule has been published in [11] and a former version of the soundness
proof is presented in [12].

Type inference for single Xcerpt rules is extended to typing Xcerpt pro-
2In contrast to descriptive typing, prescriptive typing is related to a typed program-

ming language for which types are important part of its semantics.

3
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grams, including recursive ones. We prove soundness and termination of
the method. The thesis also shows how the presented type inference method
can be used for discovering type based dependencies between rules in Xcerpt
programs. Computing rule dependencies is essential from a point of view of
efficient evaluation of programs [35].

Our approach was inspired by the work [49, 28] where the authors present
a descriptive type system intended to locate errors in (constraint) logic pro-
grams. The main underlying idea was to verify partial correctness of a
program with respect to a given type specification describing the intended
semantics of the program. Regular term grammars were used as a specifi-
cation formalism.

Semantic Types. Ontology classes, similarly as types, are sets of objects.
However, in contrast to types used in the presented type system, ontologies
classify objects wrt. their meanings and not wrt. the syntax of expressions
representing them. Thus the classes defined by ontologies can be called
semantic types (to distinguish them from syntactic types from the previous
section).

We propose two ways of taking into account semantic types when query-
ing XML data with Xcerpt. Both of them require a way of communication
with an ontology reasoner. For this purpose we use DIG interface [8] which
is an API for description logic systems. It is a standard interface to ontology
reasoners, supported by e.g. RacerPro3 and Pellet4. Using DIG, clients can
communicate with a reasoner through the use of XML encoded messages
which express queries to the reasoner and replies of the reasoner.

The type system from the previous section can be extended by semantic
types. The extension should make possible not only checking correctness of
Xcerpt rules wrt. syntactic types (defined e.g. by XML schemata) but also
wrt. semantic types defined by ontologies. For example the system may find
inconsistencies, like a requirement that a value must be both of class male
and female. When some operations on semantic types are needed, an ontol-
ogy reasoner can be employed, for example for computing the intersection
of classes.

Another idea of using semantic types is to enhance structural querying
of XML data with ontology reasoning. We propose augmenting Xcerpt with
ontology querying. The communication between Xcerpt and an ontology
reasoner is based on DIG interface. As XML is used to encode DIG messages,
the messages can be handled by Xcerpt in a natural way, similarly to any
other XML data. No restrictions are imposed on the Xcerpt language and
ontology queries expressible in DIG. In particular, ontologies are queried
with arbitrary, not only Boolean, queries. The extended language, called
DigXcerpt, is easy to implement on the top of an Xcerpt implementation

3http://www.racer-systems.com/
4http://www.mindswap.org/2003/pellet/

4
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CHAPTER 1. INTRODUCTION

and a reasoner with DIG interface, without any need of modifying them.
This work and its former versions has been presented in [52, 29, 30, 31].

Main Results

The contributions of the thesis related to syntactic types are:

� A formal semantics of a fragment of Xcerpt. The semantics is substan-
tially simpler than that of full Xcerpt [50], mainly because it does not
use a sophisticated notion of simulation unification. Former versions
of the semantics were introduced earlier in the joint papers [58, 11, 32].

� Slight generalization of the formalism of Type Definitions (introduced
in [15]). We have presented efficient algorithms for performing basic
operations on types. In particular the algorithm of type inclusion is
adapted from [15], and the algorithms for checking type emptiness
and computing type intersection are adapted from our former work
[59, 56].

� A type inference method for Xcerpt programs. The method is formally
presented and proved correct. This is separated into two stages: typing
of a single Xcerpt rule and typing of a program. We also discuss
exactness of type inference. In general the inferred type is a superset
of the set of possible results (of the considered Xcerpt program or
rule, applied to data of the specified type). We provide conditions
implying that the inferred type is exactly the set of possible results.
We also suggest how to generalize the type inference method for several
Xcerpt constructs which are outside of the Xcerpt fragment formally
dealt with in this work.

� A method for checking type correctness of Xcerpt programs, given
a type of the database and a type of expected results. A successful
check is a proof that the program is type correct. In cases where type
inference is exact, a negative result of the check is equivalent to type
incorrectness of the program. In a general case, a failed check is only
a suggestion that the program may be incorrect. We distinguish a few
kinds of errors, and discuss how they can be discovered with help of
our typing approach.

� A method of using the inferred types of rules to approximate rule
dependencies.

� An implementation of a type checker for Xcerpt [57].

The contributions related to semantic types are:

� DigXcerpt – an Xcerpt extension which in addition to querying XML
data allows to query ontologies. We present syntax and semantics

5
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of the extended language, and a way of its implementation together
with a soundness proof. A prototype implementation of the language
DigXcerpt is under development.

� An idea of an extension of the static type system with semantic types.

The Structure of the Thesis

Chapter 2. Background. The chapter introduces the query language
Xcerpt and presents formal semantics of the fragment of the language we deal
with. It also presents a short introduction to the major XML schema lan-
guages (DTD, XML Schema, Relax NG) and a major XML query language
XQuery together with its type system. An introduction to DIG interface is
also presented.

Chapter 3. Type Specification. The chapter introduces Type Defi-
nitions, the formalism for defining types, and provides algorithms for some
basic operations on types i.e. type intersection, type inclusion, etc. Further-
more, it contains a discussion on the relation between Type Definitions and
major XML schema languages.

Chapter 4. Reasoning about Types. Here a descriptive type system
for Xcerpt is described. First, type inference for a single Xcerpt rule is
presented by means of syntax-driven typing rules. From this abstract form, a
concrete algorithm is derived later on in Section 4.2.5. Section 4.2.6 suggests
a generalization for some Xcerpt constructs not dealt with by the formal
semantics used in the thesis.

Based on the method for single rules, a type inference method for Xcerpt
programs is introduced. Then sufficient conditions for exactness of type
inference are shown. It is also discussed how the types inferred by the type
system can be used to approximate rule dependencies in programs, and how
errors in a program are related to the results of type inference and type
checking. Additionally, the chapter provides a comparison of the presented
type system with a type system of XQuery.

Chapter 5. Type System Prototype. The chapter demonstrates the
prototype of a type checker, implemented as a part of this thesis. It describes
the use of the prototype and its implementation.

Chapter 6. Use Cases. The chapter illustrates the use of the type
system on example Xcerpt programs.

Chapter 7. Semantic Types. The chapter presents DigXcerpt, an ex-
tension of Xcerpt allowing ontology queries. It introduces syntax and seman-
tics of the extended language and provides examples of programs showing
possible applications of the extended language. It also presents a way of im-
plementation of DigXcerpt together with its soundness proof. Additionally,
it briefly discusses adding semantic types to Type Definitions.

Chapter 8. Conclusions. The chapter provides summary of the work
presented in this thesis.

6
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CHAPTER 1. INTRODUCTION

Appendix A. Proofs. The chapter provides proofs for theorems and
propositions presented in the thesis.

Appendix B. Typechecker Results. The chapter contains results
produced by the type checker prototype applied to the examples from Chap-
ter 6.

7
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Chapter 2

Background

The chapter presents techniques used later on in the thesis or related to
the topic of the thesis. First, it presents Xcerpt, an XML query language
which is essential for the thesis. Then the main XML schema languages and
a major XML query language XQuery are presented. Finally, the chapter
provides a brief introduction to DIG interface which is used in our extension
of Xcerpt.

2.1 Introduction to Xcerpt

This section introduces Xcerpt [50, 19, 51, 36], a rule-based query and trans-
formation language for XML. We start with an informal introduction to
Xcerpt and then we present formally semantics of a substantial fragment of
the language.

2.1.1 Language Overview

An Xcerpt program is a set of rules. The body of a rule is a query intended
to match data terms. If the query contains variables such matching results
in answer substitutions for variables. The head of a rule uses the results of
matching to construct new data terms. The queried data is either specified
in the body or is produced by rules of the program. There are two kinds of
rules: goal rules produce the final output of the program, while construct
rules produce intermediate data, which can be further queried by other rules.
Their syntax is as follows:

GOAL CONSTRUCT
head head

FROM FROM
body body

END END

9
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2.1. INTRODUCTION TO XCERPT

Usually we will denote the rules as head ← body neglecting distinction
between goal and construct rules.

Data terms

XML data is represented in Xcerpt by data terms. Data terms can be seen
as mixed trees which are labelled trees where children of a node are either
linearly ordered or unordered. This is related to existence of two basic
concepts in XML: XML elements which are nodes of an ordered tree and
attributes that attach attribute-value mappings to nodes of a tree. These
mappings are represented as unordered trees. Unordered children of a node
may also be used to abstract from the order of elements, when this order is
inessential.

Data terms are built from basic constants and labels using two kinds
of parentheses: brackets [ ] and braces { }. Basic constants represent basic
values such as attribute values and text. A label represents an XML element
name. The parentheses following a label enclose a sequence of data terms
(its direct subterms). Brackets are used to indicate that the direct subterms
are ordered (in the order of their occurrence in the sequence), while braces
indicate that the direct subterms are unordered. The latter alternative is
used to encode attributes of an XML element by a data term of the form
attr{l1[v1], . . . , ln[vn]} where li are names of the attributes and vi are their
respective values. To show how XML elements are represented by data
terms, consider an XML element

E = <name attr1=value1 · · · attr1=valuek>E1 · · ·En</name>,

(k ≥ 0, n ≥ 0) where each Ei (for i = 1, . . . , n) is an element or a text and
for any text element the previous and the next element is not text.

E is represented as a data term name[ attributes, child1, · · · , childn ],
where the data terms child1, . . . , childn represent E1, . . . , En, and the data
term

attributes = attr{ attr1[value1], · · · , attrk[valuek] }

is optional and represents the attributes of E. The subterms representing
attributes are not ordered and this is denoted by enclosing them by braces.
We assume that there is no syntactic difference between XML element names
and attribute names and they both are labels of nodes in our mixed trees
(and symbols of our data terms).

Example 1. This is an XML element and the corresponding data term.

<CD price="9.90"> CD[ attr{ price[ "9.90" ] },
<title>Empire</title> title[ "Empire Burlesque" ],
<artist>Bob Dylan</artist> artist[ "Bob Dylan" ]

</CD> ]
2

10
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Usually data terms are used to represent tree structured data. How-
ever, using a reference mechanism, they can be used to represent graphs.
A construction of the form oid@t associates an identifier oid with a data
term t. The identified data term can be referred to by a construction ↑oid.
References in data terms correspond to the various linking mechanisms avail-
able for XML such as ID/IDREF, XPointer, URIs, etc. In contrast to other
query languages, Xcerpt automatically dereferences references in data terms.
For example, a data term f [ b[ o1@d[ ], c[ ↑o1 ] ] is equivalent to a data term
f [ b[ d[ ], c[ d[ ] ] ]. Thus any query yields the same answers for both data
terms.

As in XML, data terms may use namespaces. For instance, a data
term a:address-book{ a:person{ a:name{”JohnSmith”} } } uses a names-
pace prefix a. Association of a namespace prefix with a URI is done in
Xcerpt programs using a keyword ns−prefix. For example

ns−prefix a = ”http://www.myschemas.org/address-book”

specifies a URI for the prefix a.

Query terms

Query terms are (possibly incomplete) patterns which are used in a rule body
(query) to match data terms. In particular, every data term is a query term.
Query terms can be ordered or unordered patterns, which is denoted by two
kind of parentheses: brackets and braces, respectively. Query terms with
double brackets or braces are incomplete patterns. To informally explain
the role of query terms, consider a query term q = lαq1, . . . , qmβ and a data
term d = l′α′d1, . . . , dnβ′, where α, β, α′, β′ are parentheses. In order to q
match d it is necessary that l = l′. Moreover the child subterms q1, . . . , qm

of q should match certain child subterms of d. Single parentheses in d ([ ] or
{}) mean that m = n and each qi should match some (distinct) dj . Double
parentheses mean that m ≤ n and q1, . . . , qm are matched against some m
terms out of d1, . . . , dn. Curly braces ({} or {{}}) in q mean that the order
of the child subterms in d does not matter; square brackets in q mean that
q1, . . . , qm should match (a subsequence of) d1, . . . , dn in the same order.
For example, a query term a[ ”c”, ”b” ] is an ordered pattern and it matches
neither a data term a[ ”b”, ”c” ] nor a{ ”b”, ”c” }. A query term a{ ”b”, ”c” },
which is an unordered pattern, matches both a[ ”b”, ”c” ] and a{ ”b”, ”c” }.
A query term a[[ ”b”, ”d” ]], which is an incomplete pattern, matches a data
term a[ ”b”, ”c”, ”d” ]. However, a query term a[[ ”b”, ”d” ]] does not match
a data term a[ ”d”, ”b”, ”c” ] because of a different order of subterms. In
contrast a query term a{{”b”, ”d”}} matches a[ ”d”, ”b”, ”c” ].

To specify subterms at arbitrary depth a keyword desc is used: desc q
matches a data term d whenever q matches some subterm of d. For example,
a query term desc ”d” matches a data term a[ b[ ”d” ], ”c” ].

11
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Generally query terms may include variables1 so that a successful match-
ing binds variables of a query term to data terms. Such bindings are called
answer substitutions. A result of a query term matching a data term is a
set of answer substitutions as there may be more than one possible answer
substitution for a query term. A variable matches any data term. To restrict
a set of data terms matched by a variable a construction X;q can be used.
The construction allows the variable to be bound only to the data terms
which are matched by the query term q. For example, a[ ”b”, X ; desc ”c”]
matches a data term a[ ”b”, e[ ”c” ] ] and the matching results in a answer
substitution set consisting of a single substitution {X/e[ ”c” ]}. In contrast,
the query term does not match a data term a[ ”b”, e[ ”d” ] ].

Variables can be used to match labels of data terms. For example a query
term X[ ”b” ] matches a data term a[ ”b” ] and as the result the variable X
is bound to the label a. Query terms may also use namespace variables to
bind them to namespace URIs.

A query term may specify an optional subterm using an expression of
the form optional t. If matching of a query term t against some subterm
succeeds then variable bindings for variables in t are obtained. Otherwise,
the evaluation of the query term containing optional t does not fail, but it
does not yield any bindings for the variables in t.

To specify subterms at a given position within a data term d a query
term of the form positionn q can be used. A data term matched by the
query term q must occur at the position specified by n in a sequence of
direct subterms of d. For example, as a result of matching a query term
tr[[ position 2 td[ X ] ]] against a data term tr[ td[ ”sugar” ], td[ ”12.90” ] ]
the variable X obtains a value ”12.90”. Xcerpt allows also to use a position
variable as a parameter n. For instance, the previous data terms is matched
by a query term tr[[ position X td[ ”sugar” ] ]] and the variable X obtains
a value 1.

Query terms may contain subterm negation which allows to express that
a data term must not contain subterms matching a certain query term. For
example, a query term a{{ ”b”, ”d”, without ”c” }} matches a data term
a[ ”b”, ”d”, ”e” ] but it does not match a data term a[”b”, ”c”, ”d” ]. Sub-
term negation is only reasonable in query terms being incomplete patterns.

Query terms may use regular expressions for text processing. The regular
expressions are based on POSIX syntax [39] and can be used either in a place
of strings or in a place of subterm labels in query terms. The regular expres-
sions are enclosed by / /. For example, a query term name{{ /.∗son.∗/ }}
matches any data term with a label name and a subterm being a string
containing a substring son.

Bodies of Xcerpt rules are queries. Queries are constructed from query
terms using logical connectives such as or, and, and not. Furthermore,
queries may be associated with external resources storing XML data or data

1To simplify notation we will usually denote variables by symbols consisting only of
capital letters and we will skip the keyword var used in Xcerpt to denote variables.

12
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terms. This is done by a construct of the form in[ r, Q ]. Its meaning is that
a query Q is to be evaluated against data specified by a URI r. Queries in
the body of a rule which have no associated resources are matched against
data generated by rules of the Xcerpt program. The logical connective or is
used in an expression of the form or{Q1, . . . , Qn}, which results in a union
of the answer substitution sets obtained for queries Q1, . . . , Qn. An expres-
sion and{Q1, . . . , Qn} results in a set of answer substitutions where each
substitution is a union of single substitutions obtained for each Q1, . . . , Qn

and binding variables to the same values2.
A query can be preceded with a keyword not which expresses query

negation. This is negation as failure like in logic programming i.e. a negated
query notQ succeeds if the query Q fails. As variables occurring in a negated
query do not yield bindings they must occur also in a rule body outside of
the negated query.

Queries can be augmented with non structural conditions using an ex-
pression of the form Q where {Condition}. Condition is a comparison
operation using operators such as >, =,≤, etc. The Condition expression
may use variables but only those which occur in the query Q. It may also
use arithmetic expressions.

Construct terms are used in rule heads to construct new data terms.
They are similar to data terms, but may contain variables. Data terms
are constructed out of construct terms by applying answer substitutions ob-
tained from a rule body. Construct terms may also use grouping constructs
all and some to collect all or, respectively, some instances that result from
different variable bindings. The grouping constructs may be accompanied
by an expression group by which is used to group results by the variables
whose values should not appear in the results. Another expression which
may follow the grouping constructs is order by. The grouping constructs
create sequences of data terms in arbitrary order and the expression order
by can be used to specify the order.

Construct terms may contain functions and aggregations. Functions,
such as add, mult, sub, etc., use a fixed number of arguments. Aggrega-
tions, such as sum, avg, min, use a variable number of arguments and their
arguments may contain grouping constructs.

Construct terms, similarly as query terms, may use optional subterms.
Such subterms may contain variables which remain unbound after evaluation
of a body of a rule (e.g. as they appear only in optional query terms). An
optional construct term is preceded with a keyword optional and may be
followed by a default value specified by a keyword with default. During an
evaluation, if any of the variables of an optional construct term is unbound
the construct term is omitted, or if a default value is specified, the construct
term is replaced by the default value.

A construct term c in a goal rule head may be associated with a resource
2The expressions or and and can be used also with square brackets in order to enforce

a specific evaluation order of the queries.
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2.1. INTRODUCTION TO XCERPT

r to which the goal results are written. This is done by a construction of
the form out[r, c]. If a head of a goal rule is a construct term which is not
associated with a resource the results of the rule are directed to the standard
output.

Example 2. Consider an XML document recipes.xml, which is a collection
of culinary recipes. The document is represented by a data term:

recipes[

recipe[ name["Recipe1"],

ingredient[ name["sugar"], amount[ attr{unit["tbsp"]}, 3 ] ],

ingredient[ name["orange"], amount[ attr{unit["unit"]}, 1 ] ] ],

recipe[ name["Recipe2"],

ingredient[ name["flour"], amount[ attr{unit["dl"]}, 3 ] ],

ingredient[ name["salt"], amount[ attr{unit["ml"]}, 1 ] ] ],

recipe[ name ["Recipe3"],

ingredient[ name["spaghetti"], amount[ attr{unit["kg"]}, 0.5 ] ],

ingredient[ name["tomato"], amount[ attr{unit["kg"]}, 0.4 ] ] ] ]

The Xcerpt rule queries the document and extracts the names of the recipes:

GOAL

recipe-names [ all var R ]

FROM

in[ "file:recipes.xml", recipes[[ recipe [[ name[ var R ] ]] ]] ]

END

Evaluation of the rule results in the answer substitutions: {R/”Recipe1”},
{R/”Recipe2”}, {R/”Recipe3”}. Thus, the result returned by the rule is:

recipe-names[ "Recipe1", "Recipe2", "Recipe3" ] 2

2.1.2 Formal Semantics

The section provides a formal semantics of a fragment of Xcerpt containing
basic and the most important Xcerpt constructions. The semantics (par-
tially presented earlier in [11, 56]) is substantially simpler than that of a
full Xcerpt [50] as it does not use the notion of simulation unification (a
process of matching terms). Another difference is that our data terms rep-
resent trees while in full Xcerpt terms are used to represent graphs. Other
Xcerpt features not dealt with are: functions and aggregations, non-pattern
conditions, optional subterms, position specifications, negation, regular ex-
pressions and label variables.

Now we formally define various constructs of Xcerpt.

Data Terms

As it was mentioned before, data terms are used to represent XML data.
XML element names are represented in data terms as labels. The infinite

14
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alphabet of labels will be denoted by L. Basic constants represent basic
values such as attribute values and all “free” data appearing in an XML
document – all data that is between start and end tag except XML elements,
called PCDATA (short for parseable character data) in XML jargon. Basic
constants occur as strings in XML documents but they can play a role of
data of other types depending on an adequate definition in DTD (or other
schema languages) e.g. IDREF, CDATA,. . . . The set of basic constants
will be denoted by B. In our notation we will enclose all basic constants in
quotation marks “ ”.

Definition 1. A data term is an expression defined inductively as follows:

� Any basic constant is a data term,

� If l is a label and t1, . . . , tn are n ≥ 0 data terms, then l[t1, . . . , tn] and
l{t1, . . . , tn} are data terms.

The linear ordering of children of the node with label l is denoted by en-
closing them by brackets [ ], while unordered children are enclosed by braces
{}.

A subterm of a data term t is defined inductively: t is a subterm of
t, and any subterm of ti (1 ≤ i ≤ n) is a subterm of l′[t1, . . . , tn] and of
l′{t1, . . . , tn}. Data terms t1, . . . , tn will be sometimes called the arguments
of l′, or the direct subterms of l′[t1, . . . , tn] (and of l′{t1, . . . , tn}). The
root of a data term t, denoted root(t), is defined as follows . If t is of the
form l[t1, . . . , tn] or l{t1, . . . , tn} then root(t) = l; for t being a basic constant
we assume that root(t) = $.

Query Terms

Here we formally define a query term:

Definition 2. Query terms are inductively defined as follows:

� Any basic constant is a query term.

� Any variable is a query term.

� If q is a query term, then desc q is a query term.

� If X is a variable and q is a query term, then X ; q is a query term.

� If l is a label and q1, . . . , qn (n ≥ 0) are query terms, then l[q1, . . . , qn],
l{q1, . . . , qn}, l[[q1, . . . , qn]] and l{{q1, . . . , qn}} are query terms (called
rooted query terms).

For a rooted query term q = lαq1, . . . , qnβ, where αβ are parentheses [ ], [[ ]], {}
or {{}}, root(q) = l and q1, . . . , qn are the child subterms of q. If q is a basic
constant then root(q) = $.

15
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2.1. INTRODUCTION TO XCERPT

A subterm of a query term is defined in a natural way. In particular, the
subterms of X ; q are X ; q and all the subterms of q.

Now we formally define which query terms match which data terms and
what are the resulting assignments of data terms to variables. We do not
follow the original definition of simulation unification. Instead we define a
notion of answer substitution for a query term q and a data term d. As
usual, by a substitution (of data terms for variables) we mean a set θ =
{X1/d1, . . . , Xn/dn }, where X1, . . . , Xn are distinct variables and d1, . . . , dn

are data terms; its domain dom(θ) is {X1, . . . , Xn}, its application to a
(query) term is defined in a standard way.

Definition 3 ([58]). A substitution θ is an answer substitution (shortly,
an answer) for a query term q and a data term d if q and d are of one
of the forms below and the corresponding condition holds. (In what follows
m,n ≥ 0, X is a variable, l is a label, q, q1, . . . are query terms, and d, d1, . . .
data terms; set notation is used for multisets, for instance {d, d} and {d}
are different multisets).

q d condition on q and d

b b b is a basic constant

l[q1, . . . , qn] l[d1, . . . , dn] θ is an answer for qi and di,
for each i = 1, . . . , n

l[[q1, . . . , qm]] l[d1, . . . , dn] for some subsequence di1 , . . . , dim
of d1, . . . , dn

(i.e. 0 < i1 < . . . < im ≤ n)
θ is an answer for qj and dij

,
for each j = 1, . . . ,m,

l{q1, . . . , qn} l{d1, . . . , dn} for some permutation di1 , . . . , din
of d1, . . . , dn

or (i.e. {di1 , . . . , din
} = {d1, . . . , dn})

l[d1, . . . , dn] θ is an answer for qj and dij

for each j = 1, . . . , n,

l{{q1, . . . , qm}} l{d1, . . . , dn} for some {di1 , . . . , dim
} ⊆ {d1, . . . , dn}

or θ is an answer for qj and dij

l[d1, . . . , dn] for each j = 1, . . . ,m,

X d Xθ = d

X ; q d Xθ = d and θ is an answer for q and d

desc q d θ is an answer for q
and some subterm d′ of d

We say that q matches d if there exists an answer for q, d.

Thus if q is a rooted query term (or a basic constant) and root(q) 6=
root(d) then no answer for q, d exists. If q = d then any θ is an answer
for q, d. A query l{{}} matches any data term with the label l. If θ, θ′ are
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substitutions and θ ⊆ θ′ then if θ is an answer for q, d then θ′ is an answer
for q, d. If a variable X occurs in a query term q then queries X ; q and
X ; desc q match no data term, provided that q 6= X and q is not of the
form desc · · · descX.

Each answer for a query term q binds all the variables of the query to
some data terms. For any such answer θ′ (for q and d) there exists an
answer θ ⊆ θ′ (for q and d) binding exactly these variables. We will call
such answers non redundant. From Definition 3 one can derive an algorithm
which produces non redundant answers for a given q and d. Construction
of the algorithm is rather simple, we skip the details. Redundant answers
allow for a simpler definition of an answer for a query.

Example 3. Consider a data term d = a[ b[ ”c” ] ] and query terms q1 =
a[ X ] and q2 = a[ b[ Y ] ]. An answer θ = {X/b[ ”c” ], Y/”c” } is a redundant
answer for both query terms and d. A non redundant answer for q1 and d is
θ1 = {X/b[ ”c” ] } and a non redundant answer for q2 and d is θ2 = {Y/”c” }.

Queries

A query is a connection of zero or more query terms using the connectives
and and or. It may furthermore be associated with resources against which
the query terms are evaluated.

A targeted query term is a pair in(r, q), of a URI and a query term3.
We assume that a URI r locates on the Web a data term δ(r).

Now we formally define a query and an answer for a query and a set of
data terms.

Definition 4. Let Z be a set of data terms. A query and an answer
substitution (shortly, an answer) for a query and a set of data terms is
inductively defined as follows.

� Any query term q is a query. A substitution θ is an answer substitution
for q and Z iff θ is an answer substitution for q and some d ∈ Z.

� Any targeted query term in(r, q) is a query. An substitution θ is an
answer substitution for in(r, q) and Z iff θ is an answer substitution
for q and δ(r).

� If Q1, . . . , Qn (n ≥ 0) are queries then and(Q1, . . . , Qn) and
or(Q1, . . . , Qn) are queries.

A substitution θ is an answer substitution for and(Q1, . . . , Qn) (re-
spectively for or(Q1, . . . , Qn)) and Z iff θ is an answer substitution
for each of (some of) Q1, . . . , Qn and Z.

3In Xcerpt syntax, the parameters of targeted query terms, similarly as the arguments
of and and or, are enclosed by brackets or braces. Here we decided to use normal paren-
thesis instead to make these construct distinct from query terms. Also, from the point of
view of our semantics, there is no need to have two kinds of parenthesis in this case.
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2.1. INTRODUCTION TO XCERPT

It follows from the definition that if Z ⊆ Z ′ and θ is an answer for Q
and Z then θ is an answer for Q and Z ′.

A subquery is defined in a natural way. In particular the subqueries of
in(r, q) are in(r, q) and all the subterms of q.

A query term q occurring in a query Q is a top query term if it is
standalone in Q i.e. it is not a part of a (targeted) query term. For example,
a[ b[ X ] ] is the only top query term of the query and( in( ”file:example.xml”,
c[ X ] ), a[ b[ X ] ] ).

An answer θ (for a query Q and set Z) will be called redundant if it
binds a variable which does not occur in Q. Similarly to the case of query
terms, for any such answer θ there exists a non redundant answer θ′ ⊆ θ for
Q and Z.

A query can be transformed into an equivalent one in a disjunctive nor-
mal form or(Q1, . . . , Qn), where each Qi is of the form and(Qi1, . . . , Qiki

)
and each Qij is a (targeted) query term (cf. [50, Proposition 6.4]).

Proposition 1. Let Q be a query, Z a set of data terms and Θ be the set
of answers for Q and Z. If Q′ is a disjunctive normal form of Q then Θ is
the set of answers for Q′ and Z.

Proof. A sketch. To obtain Q′ we can treat Q as a propositional formula and
transform it iteratively to an equivalent formula. Each such transformation
preserves the set of answers. For instance, the queries and(Q1, or(Q2, Q3))
and or(and(Q1, Q2), and(Q1, Q3)) are equivalent formulas, and by Definition
4 they have the same set of answers.

Construct Terms

Construct terms are used in constructing data terms which are results of
query rules.

Definition 5. A construct term and the set FV (c) of free variables of
a construct term c are defined recursively. If b is a basic constant, X a
variable, l a label, c, c1, . . . , cn construct terms (n ≥ 0), and k a natural
number then

b, X, l[c1, . . . , cn], l{c1, . . . , cn}, all c, some k c,

are construct terms. FV (b) = ∅, FV (X) = {X}, FV (l[c1, . . . , cn]) =
FV (l{c1, . . . , cn}) =

⋃n
i=1 FV (ci), FV (all c) = FV (some k c) = ∅. Con-

struct terms of the form l[c1, . . . , cn] and l{c1, . . . , cn} are called rooted
construct terms. The constructs all and some are called grouping con-
structs.

Notice that any data term is a construct term. (Also, a construct term
without any grouping construct is a query term).

18
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Query Rules

Before we define the notion of a query rule and its result we need to provide
some auxiliary definitions.

An application of a query to a set of data terms may result in many
answer substitutions. Thus we will use a notion of a substitution set which
is a set of substitutions of data terms for variables. In order to handle prop-
erly the grouping constructs in construct terms we also need an equivalence
relation on answer substitutions.

Definition 6. Given a substitution set Θ and a set V of variables, such
that V ⊆ dom(θ) for each θ ∈ Θ, the equivalence relation 'V ⊆ Θ × Θ is
defined as: θ1 ' θ2 iff θ1(X) = θ2(X) for all X ∈ V . The set of equivalence
classes of 'V is denoted by Θ/'V

.

The concatenation of two sequences S1, S2 of data terms will be denoted
by S1 ◦ S2. We do not distinguish between a data term d and the one
element sequence with the element d. A result of an application of an
answer substitution set to a construct term is defined as follows.

Definition 7. Let c be a construct term and Θ be a substitution set contain-
ing the same assignments for the free variables FV (c) of c (i.e. θ1 'FV (c) θ2

for any θ1, θ2 ∈ Θ). The application Θ(c) of the substitution set Θ to c is a
sequence of data terms defined as follows

� Θ(b) = b, where b is a basic constant

� Θ(X) = Xθ, where θ ∈ Θ

� Θ(l{c1, . . . , cn}) = l{Θ(c1) ◦ · · · ◦Θ(cn)}

� Θ(l[c1, . . . , cn]) = l[Θ(c1) ◦ · · · ◦Θ(cn)]

� Θ(all c′) = Θ1(c′) ◦ · · · ◦Θk(c′), where {Θ1, . . . , Θk} = Θ/'FV (c′)

� Θ(some k c′) = Θ1(c′)◦· · ·◦Θm(c′), where {Θ1, . . . , Θm} ⊆ Θ/'FV (c′)

and m = k if |Θ/'FV (c′)| ≥ k or m = |Θ/'FV (c′)| otherwise.

For Θ like in the definition above and a construct term c containing
neither all nor some, Θ(c) = cθ for any θ ∈ Θ. Notice that Θ(c) is defined
uniquely unless c contains all or some (and Θ(c) is defined uniquely up to
reordering provided c does not contain some). Notice also that Θ(c) is a one
element sequence unless c is of the form all c′ or some k c′.

Now we are ready to define a query rule and a result of a query rule
applied to a set of data terms. The set of results of a query rule is determined
by the external resources δ(ri) referred to in a body of the rule and the set
of data terms Z produced by query rules of a program.
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Definition 8. A query rule (shortly, rule) is an expression of the form
c ← Q, where c is a construct term not of the form all c′ or some k c′, Q
is a query and every variable occurring in c also occurs in Q. Moreover, if
or(Q1, . . . , Qn) is a disjunctive normal form of Q then every variable of c
occurs in each Qi, for i = 1, . . . , n.

The construct term c will be sometimes called the head and Q the body
of the rule.

If Θ is the set of all answers for Q and a set of data terms Z, and
Θ′ ∈ Θ/'F V (c) then Θ′(c) is a result for a query rule c ← Q and Z. The
set of results of p = c← Q and Z is denoted as res(p, Z).

Each result of a query rule is a data term, as an answer for a query term
binds all the variables of the rule to data terms.

In the definition above Θ is the set of all answers for Q and a set of data
terms Z. However, it is sufficient to consider only the set of non redundant
answers for Q and Z.

Example 4. Consider a set Z consisting of data terms:

cd[ title[”Empire Burlesque”], artist[”Bob Dylan”], year[”1985”] ]
cd[ title[”Hide your heart”], artist[”Bonnie Tyler”], year[”1988”] ]
cd[ title[”Stop”], artist[”Sam Brown”], year[”1988”] ]

The following rule queries the data terms from Z and extracts titles and
artists of the CD’s issued in 1988:

res[ name[ TITLE ], author [ ARTIST ] ]
← cd{ title[ TITLE ], artist[ ARTIST ], year[”1988”] }

Evaluation of the body of the rule results in the following set of non redundant
answers: Θ = {θ1, θ2}, where

θ1 = {TITLE/”Hide your heart”, ARTIST/”Bonnie Tyler”},
θ2 = {TITLE/”Stop”, ARTIST/”Sam Brown”}.

Thus the set of equivalence classes Θ/'{TITLE,ARTIST} = {{θ1}, {θ2}} and the
results of the rule and the set of data terms Z are:

res[ name[”Hide your heart”], author [”Bonnie Tyler”] ]
res[ name[”Stop”], author [”Sam Brown”] ]

The next query rule is similar. It uses all for grouping all the results
together and another all for grouping together the CD’s from the same
year.

results[ all res[ cds[ year [ YEAR ], allname[ TITLE ] ] ] ]
← cd{{ title[ TITLE ], year[ YEAR ] }}
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The evaluation of the body of the rule against the set of data terms Z results
in the set of non redundant answers: Θ′ = {θ′1, θ′2, θ′3}, where

θ′1 = {TITLE/”Empire Burlesque”,YEAR/”1985”},
θ′2 = {TITLE/”Hide your heart”,YEAR/”1988”},
θ′3 = {TITLE/”Stop”,YEAR/”1988”}.

The set of free variables of the construct term being the head of the query
rule is empty and the set of equivalence classes Θ′/'∅ = {{θ′1, θ′2, θ′3}}. The
set of free variables of the construct term being the argument of the first
all construct is {YEAR} and the set of equivalence classes Θ′/'{YEAR} =
{{θ′1}, {θ′2, θ′3}}. Thus the rule returns the following result:

results[ res[ cds[ year[”1985”], name[”Empire Burlesque” ]] ],
res[ cds[ year[”1988”], name[”Hide your heart” ], name[”Stop”]] ] ]

Programs

Here we present further definitions related to Xcerpt programs.

Definition 9. An Xcerpt program P is a pair (P,G) where P and G are
sets of query rules such that G ⊆ P and |G| > 0. The query rules from G
are called goals.

Now we describe the effect of applying a set of rules to a set of data
terms, and then the semantics of a program.

Definition 10 (Immediate consequence operator for rule results). Let P be
a set of Xcerpt query rules. RP is a function on sets of data terms such that
RP (Z) = Z ∪

⋃
p∈P res(p, Z).

Notice that if no grouping constructs appear in the rules from P then
RP (Z) is monotonic.

Definition 11 (Rule result, no grouping constructs). Let P = (P,G) be
an Xcerpt program without grouping constructs and P ′ = P\G. Given fixed
data terms δ(rj) associated with external resources occurring in the rules
from P , a data term d is a result of a rule p in P if d ∈ res(p, Ri

P ′(∅))
for some i ≥ 0.

A result of a program P is a data term which is a result of a goal of
P.

Example 5. Let P ′ = { p }, where p = c[ X ] ← or( X, in( r, b[X] ) ) and
δ(r) = b[ ”a” ]. The set of results of p is infinite and it contains sub-
sets RP ′(∅) = res(p, ∅) = { c[ ”a” ] }, R2

P ′(∅) = res(p, RP ′(∅)) = { c[ ”a” ],
c[ c[ ”a” ] ] }, . . . , Ri

P ′(∅) = res(p, Ri−1
P ′ (∅)) = { c[ ”a” ], . . . , ci[ ”a” ] }, for i >

0.
2
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Example 6. This example is an extension of the “Clique of Friends” exam-
ple from [50]. Consider an XML document addrBooks.xml with a collection
of address books where each address book has its owner and a set of entries
with information about people the owner knows. The information contains
an annotation about the relation between the owner and the particular per-
son such as: friend, colleague, family. The document is represented by a
data term:

addr-books[
addr-book [ owner[ ”Donald Duck” ],

entry[ name[ ”Daisy Duck” ],
relation[ ”friend” ],
phoneNo[ ”+112345” ],
address[ street[ ”Hayes 51” ],

zip-code[ ”21213” ],
city[ ”Los Angeles” ],
country[ ”USA” ] ] ],. . . ,

entry[. . .] ],. . . ,
addr-book [. . .] ]

The following Xcerpt program extracts a relation friend of a friend (foaf)
which is the transitive closure of a relation friend of (fo). The relation
fo is computed by the rule p1 and its transitive closure is computed by the
recursive rule p2. The third rule g, which is a goal, returns a data term with
a sequence of pairs representing the relation foaf.

p1 = fo[ X, Y ]← in( ”file:addrBooks.xml”,
addr-books{{

addr-book{{ owner [X],
entry{{name[Y ], relation[ ”friend” ] }} }} }} )

p2 = foaf [ X, Y ]← or( fo[ X, Y ], and( fo[ X, Z ], foaf [ Z, Y ] ) )

g = clique-of-friends[ all foaf {X, Y } ]← foaf [ X, Y ]

To define semantics of programs with grouping constructs we employ a
notion of static rule dependency to split programs into strata. This notion is
equivalent to the rule dependency used in [50]. We also introduce a weaker
kind of dependency, as the static dependency does not reflect some issues
related to types.

Definition 12 (Static rule dependency). Let P = (P,G) be an Xcerpt
program. A rule c ← Q ∈ P directly statically depends on a rule
c′ ← Q′ ∈ P\G, if a top query term from Q matches some instance of the
construct term c′. The fact that a rule p directly statically depends on a rule
p′ is denoted as p �s p′.

A rule p ∈ P statically depends on a rule p′ ∈ P\G if p �+
s p′ (where

�+
s is the transitive closure of �s i.e. p �+

s p′ if p �s p1 �s . . . �s pk �s p′

for some rules p1, . . . , pk in P\G where k ≥ 0).
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Definition 13 (Weak static rule dependency). Let P = (P,G) be an Xcerpt
program. A rule c← Q ∈ P directly weakly statically depends (shortly,
directly w-depends) on a rule c′ ← Q′ ∈ P\G, if a top query term from Q
matches some instance of the construct term c′′, where c′′ is c′ with every
occurrence of a variable replaced by a distinct variable. The fact that a rule
p directly w-depends on a rule p′ is denoted as p �w p′.

A rule p ∈ P weakly statically depends (shortly, w-depends) on a
rule p′ ∈ P\G if p �+

w p′. The program P is weakly statically recursive
(shortly, w-recursive) if p �+

w p for some p ∈ P . We also say that P\G is
w-recursive.

Static dependency between rules implies weak static dependency.

Example 7. Consider the following query rules of an Xcerpt program:

p1 = a[ Y ]← b[ ”d”, ”e”, Y ], p2 = b[ X, X, Y ]← c[ X, Y ].

It holds: p1 �w p2 but p1 �s p2. 2

We will need the notion of weak dependency in Chapter 4 describing type
inference. A simple algorithm for finding w-dependencies can be obtained
by a slight modification of the typing rules for query terms that will be
presented in Chapter 4. We skip the details.

Now we generalize the semantics of Definition 11 to programs with group-
ing constructs. The semantics is used in the proofs but not referred to ex-
plicitly in the thesis. Thus the rest of this section may be skipped at the
first reading.

If a query rule p in a program contains a grouping construct, it can be
executed only after all data terms queried by p have been obtained. This is
ensured in the following way. The query rules of the program are divided into
sets called strata. A query rule p′ with a grouping construct can statically
depend only on rules from a lower stratum. Hence no rule of the same
stratum as p′ can produce data that can be queried by p′. Moreover, for an
arbitrary rule p, no rule of a higher stratum than p can produce data that
can be queried by p. The rules from a given stratum are not executed until
the execution of the rules from lower strata is completed.

Definition 14 (Stratification). Let P = (P,G) be an Xcerpt program and
P1, . . . , Pn (n ≥ 0) be disjoint sets of query rules such that P\G = P1∪ . . .∪
Pn. The sequence P1, . . . , Pn, G is a stratification of P if for any pair of
rules p, p′ ∈ P\G, if p �+

s p′ then p ∈ Pi and p′ ∈ Pj, where 1 ≤ j ≤ i ≤ n
and if p has a grouping construct in its head then j < i.

Notice, that there may exist many different stratifications for a program.
Any program (P,G) without grouping constructs is stratifiable and its strat-
ification is P\G, G. As in [50] we assume that we deal with stratifiable
programs.
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Example 8. Consider a program P = ({p1, p2, p3, p4, g}, {g}), where:

g = g[ allX ]← h[ X ], p3 = b[ Y ]← c[ f [ Y ] ],
p1 = h[ X ]← a[[ X ]], p4 = c[ Y ]← in( r1, k[[ Y ]] ).
p2 = a[ allX ]← b[ X ],

Some of the possible stratifications of P are sequences {p3, p4}, {p1, p2}, {g}
and {p3, p4}, {p2}, {p1}, {g}. 2

Let P be a set of rules and k ≥ 0 be a number such that Rk
P (∅) =

Rk+1
P (∅). The set Rk

P (∅) will be denoted as R∞
P (∅).

Definition 15. Let P = (P,G) be an Xcerpt program, P1, . . . , Pn, G be a
stratification of P. Let Z0 = ∅ and, for j = 1, . . . , n, let Zj = R∞

Pj
(Zj−1).

Given fixed data terms δ(ri) associated with external resources occurring in
the rules from P , a data term d is a result of a rule p in P if d ∈ res(p, Zn).
A result of a program P is a result of a goal rule p ∈ G in P .

The set of results of a program P will be denoted as res(P).

According to this definition, if the program loops (i.e. Ri+1
Pj

(Zj−1) 6=
Ri

Pj
(Zj−1) for some j and every i = 1, 2, . . .) then Zj , . . . , Zn do not exist

and no results exist, for any p in P . For simplicity reasons we do not provide
a more sophisticated definition describing results of a looping program (i.e.
those obtained before the program enters the infinite loop).

All stratifications of a given program yield the same results. We omit a
justification.

Example 9. Consider the program P from Example 8 and assume that
the resource r1 is associated with a data term k[ f [ ”s” ], f [ ”t” ] ]. We want
to find the results of the program. Let P1 = {p3, p4}, P2 = {p1, p2} and
G = {g}. Then P1, P2, G is a stratification of the program and Z1 =
{ c[ f [ ”s” ] ], c[ f [ ”t” ] ], b[ ”s” ], b[ ”t” ] }, Z2 = Z1 ∪ { a[ ”s”, ”t” ], h[ ”s” ],
h[ ”t” ] }. The set res(g, Z2) of results of the program is { g[ ”s”, ”t” ] }.

2

2.2 XML Schema Languages

An XML schema language is a metalanguage used to describe classes of XML
documents. It is used to specify the structure of a document i.e. the possible
arrangement of tags and text. For example, the schema of a book catalog
may specify that all entries contain a title and an author, but the publisher
is optional. Despite XML documents are not required to have a schema,
often they have. If they conform to their schema they are called valid with
respect to the schema. The ability to test the validity of documents is an
important aspect of web applications that receive/send information to and
from many sources. Independent developers can agree to use a common
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schema for exchanging XML data and an application can use this agreed
upon schema to verify the data it receives.

Many languages for defining schemata are available. This section briefly
surveys the most important ones: DTD, XML Schema and Relax NG. Be-
sides them there is a number of less known schema languages like Schema-
tron4, Document Structure Description (DSD)5, Examplotron6, Schema for
Object-Oriented XML (SOX)7, Document Definition Markup Language
(DDML)8.

2.2.1 DTD

Document Type Definition (DTD) is a simple and the most popular XML
schema language. It is a standard defined by the World Wide Web Con-
sortium (W3C) [33] and it is included in the W3C XML recommendation.
DTDs allow to define possible structure of XML documents using the fol-
lowing markup declarations:

� Element Declarations, which are of the form:

<!ELEMENT element−name content−model >

They associate a content model with the elements named element-name.
The content model may have the following structure:

– EMPTY - the element has no content,

– ANY - the element can have any content,

– (#PCDATA | element−name | . . .)∗ - the element content is an ar-
bitrary sequence of character data and listed elements; this kind
of content model is called mixed,

– a deterministic9 regular expression over element names, which
can contain the standard operators: choice ”|”, sequence ”,”,
zero or more ”*”, one or more ”+”, zero or one ”?”. The element
content is a sequence of elements such that the corresponding
sequence of the element names matches the expression.

� Attribute List Declarations, which are of the form:

<!ATTLIST element−name attr−name1 attr−type1 qualifier1
...

attr−namen attr−typen qualifiern >

4http://xml.ascc.net/resource/schematron/Schematron2000.html
5http://www.brics.dk/DSD/dsd2.html
6http://examplotron.org
7http://www.w3.org/TR/NOTE-SOX/
8http://www.w3.org/TR/NOTE-ddml
9The formal meaning of this requirement is that the regular expressions are 1-

unambiguous in the sense of [14].
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where the element−name is the name of the element for which the
list of attributes is being defined, attr−namei is the the name of the
ith attribute being defined, attr−typei defines the type of data that
may be used for the value. The possible types of attributes are:

– CDATA - character data,
– ENTITY - reference to an external file such as a graphic file for

importing an image,
– ENTITIES - used to include multiple entities,
– ID - values of this type are used as identifiers,
– IDREF - used for referring occurrences of identifiers,
– IDREFS - used for referring occurrences of multiple identifiers,
– (val1 | . . . | valk) - used for an enumeration type. This is a list

of allowed values of the attribute.
– NMTOKEN - character data with some additional restrictions,
– NMTOKENS - a list of multiple name tokens,
– NOTATION - it is explained below.

A qualifier qualifieri is used in the declaration of an attribute to
additionally specify its value. It can be:

– a default value - the character data (CDATA) in a quoted string
form,

– #FIXED value - used to fix the value of the attribute,
– #IMPLIED - used if the attribute should be optional,
– #REQUIRED - used if the attribute should be mandatory.

� Entity Declarations, which are of the form:

<!ENTITY entity−name ”entity−value” >

Entities are variables used to define shortcuts to common text (e.g. if
an entity is referred in a DTD, during a processing of the DTD the
reference is replaced by the declared text). They can be also used
to include binary data in an XML document, like a PNG (Portable
Network Graphics).

� Notation Declarations, which are of the form:

<!NOTATION notation−name SYSTEM location >

Notation declarations can be used to identify external binary formats
and to specify helper applications for processing the format. The ref-
erence is given by the location which is a universal resource identifier
(URI) for a file name which may specify a local path or a complete
path over the Internet, for example,
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<!NOTATION pl SYSTEM /usr/bin/perl >

Example 10. The following DTD defines a structure of an XML document
for a book store:

<!ELEMENT bib (book* )>
<!ELEMENT book (title, (authors | editor), publisher, price )>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT authors (author*)>
<!ELEMENT author (last, first )>
<!ELEMENT editor (last, first, affiliation )>
<!ELEMENT title (#PCDATA )>
<!ELEMENT last (#PCDATA )>
<!ELEMENT first (#PCDATA )>
<!ELEMENT affiliation (#PCDATA )>
<!ELEMENT publisher (#PCDATA )>
<!ELEMENT price (#PCDATA )>

The main element of the document conforming to this schema has the name
bib and contains zero or more book elements, each of them having elements
named: title, editor or authors, publisher and price. Additionally, each
book element has a mandatory attribute year. Each element authors con-
tains a list of author elements which include elements last and first; an
element editor besides elements last and first contains an element affilia-
tion. The content of the remaining elements is text.

DTD is a simple XML schema language and it has a number of obvious
limitations:

� DTD schemata are written in a non-XML syntax.

� They do not allow defining multiple elements with the same name.
Thus, for example, it is not possible to define an element title as a
child of an element book and then define another element title with
different structure for a chapter.

� They have no support for namespaces.

� They only support a limited number of simple datatypes i.e. types
restricting the values of text nodes.

2.2.2 XML Schema

XML Schema [34, 44, 54] is an alternative schema language which is more
powerful but also more complex than DTD. It provides more precision in
describing document structures and contents of text nodes. In contrast to
DTD, it allows defining multiple elements with the same name and different
content. An important advantage of XML Schema is that schemata are
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specified in XML so no special syntax is needed. The description of XML
Schema presented in this section is based on [44].

XML Schema uses two kinds of types: simple types and complex types,
both of which constrain the allowable content of an element or attribute.

Simple Types

Simple types restrict the text that is allowed to appear as an attribute value,
or a text-only element content (text-only elements do not carry attributes or
contain child elements). Simple types can be primitive (hardwired meaning)
or derived from existing simple types. Derivation may be

� by a list: white-space separated sequence of elements of simple types,

� by a union: union of simple types,

� by a restriction, for instance a restriction on a list length (minLength,
maxLength), bounds on numbers (minInclusive, maxInclusive), re-
striction on text using patterns (Perl-like regular expressions).

XML Schema provides a number of predefined simple types (all the prim-
itive and some derived) such as: string, integer, float, date, etc.

Example 11. This is an example of a declaration of a simple type april date,
which is a restriction of a simple type date. (The example comes from [44].)

<simpleType name="april_date">

<restriction base="date">

<pattern value="\d{4}-04-\d{2}"/>

</restriction>

</simpleType>

The elements of the type april date are those elements of type date which
match the given pattern i.e. they have ”04” as a substring corresponding to
the month number.

Complex Types

Complex types restrict the allowable content of elements, in terms of the
attributes they can carry, and child elements they can contain. A Complex
Type declaration may contain:

� attribute declarations:

– <attribute name="..." type="..." use="..."/>

where type specifies the attribute type and use is either optional,
required, or prohibited,

– <anyAttribute ... />

allows the insertion of any attribute,
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� a content model declaration:

– empty content model,

– simple content model (only text is allowed),

– complex content model: a (restricted) combination of

* <sequence> ... </sequence>

* <choice> ... </choice>

* <all> ... </all>

containing element declarations or references of the form

* <element name="..." type="..." minOccurs="..."
maxOccurs="..."/>

* <element ref="..." minOccurs="..."
maxOccurs="..."/>

where name and type specify respectively the element’s name
and type, ref is a reference to an element definition, and
minOccurs and maxOccurs are constrains on the number of
occurrences,

* <any .../> - a declaration allowing the insertion of any el-
ement,

– mixed content model: implemented through a mixed attribute
in complexType declaration. The effect of this attribute when its
value is set to ”true” is to allow any text nodes within the content
model.

XML Schema requires complex content models to be deterministic i.e.
they must satisfy the constraint called Unique Particle Attribution [1]. This
restriction is similar to the restriction put on content models in DTD and it
is equivalent to the requirement that the content models are 1-unambiguous
in the sense of [14]. Another restriction related to a complex content model
is called Element Declarations Consistent [1]. It says that the content model
cannot contain two declarations or references to elements of the same name
and of a different type.

XML Schema allows to define element and attribute groups which are
named content models that can be reused in multiple locations as fragments
of content models.

Example 12. This is a definition of a type OrderType with a mixed content
model. Any element of this type must contain id attribute and an element
address or an element phone with zero or more email elements. (The ex-
ample comes from [44].)
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<complexType name="OrderType" mixed="true">

<choice>

<element ref="address"/>

<sequence>

<element ref="phone"/>

<element ref="email" minOccurs="0"/>

</sequence>

</choice>

<attribute name="id" type="unsignedInt" use="required"/>

</complexType>

XML Schema provides a mechanism of derived types also for complex
types. New complex types may be derived by extending or by restricting a
content model of an existing type.

� Derivation by extension: The effective content model of a new type
is the content model of the base type concatenated with the content
model specified in the type derivation declaration. Elements added via
extension are treated as if they were appended to the content model
of the base type in sequence. For instance, the type USAddress has
been derived by extension from the type Address. The content model
of USAddress is the content model of Address plus the declarations of
state and zip elements:

<complexType name="Address">

<sequence>

<element name="name" type="string"/>

<element name="street" type="string"/>

<element name="city" type="string"/>

</sequence>

</complexType>

<complexType name="USAddress">

<complexContent>

<extension base="Address">

<sequence>

<element name="state" type="USState"/>

<element name="zip" type="positiveInteger"/>

</sequence>

</extension>

</complexContent>

</complexType>

� Derivation by restriction: The values of the new type are a subset of
the values of the base type (as is the case with restriction of simple
types). The new type is defined in an usual way but with declaration
that it is a restriction of some other type. In the following example,
the type RestrictedPurchaseOrderType is derived by restriction from
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the type PurchaseOrderType. A full definition of the type Restrict-
edPurchaseOrderType is provided but with the indication that it is
derived by restriction from the base type PurchaseOrderType. Indeed
the new type RestrictedPurchaseOrderType is a subset of the base type
PurchaseOrderType as a purchase order of the new type must contain
a child element comment while a purchase order of the base type may
not contain it:

<complexType name="PurchaseOrderType">

<sequence>

<element name="shipTo" type="Address"/>

<element name="billTo" type="Address"/>

<element ref="comment" minOccurs="0"/>

<element name="items" type="Items"/>

</sequence>

</complexType>

<complexType name="RestrictedPurchaseOrderType">

<complexContent>

<restriction base="PurchaseOrderType">

<sequence>

<element name="shipTo" type="Address"/>

<element name="billTo" type="Address"/>

<element ref="comment" minOccurs="1"/>

<element name="items" type="items"/>

</sequence>

</restriction>

</complexContent>

</complexType>

2.2.3 Relax NG

XML schema language Relax NG [22, 55] has been defined by the Oasis
consortium. It is more expressive than DTD and it allows to specify things
which are not expressible in XML Schema. While still being simple and
easy to learn and maintain, Relax NG is capable to describe XML docu-
ments of high structural complexity and it is able to handle a huge range
of applications. It has two syntaxes: XML syntax, which can be used by
many existing tools like XML editors or browsers, and a compact non-XML
syntax which is well readable for human beings. For this reason we will use
the latter in this thesis.

Relax NG has a solid theoretical foundation in the theory of tree au-
tomata. A schema consists of production rules which are similar to pro-
duction rules from regular tree grammars. The left-hand side of a rule is a
nonterminal symbol and the right hand side can be text, a datatype from
an external library (e.g. XML Schema Datatypes [2]), an ordered or an un-
ordered list of element definitions, attribute definitions, and alternatives of
the former constructs.
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To introduce elements the keyword element is used, followed by a label
and a content model. For example,

Title = element title { text }

defines a nonterminal symbol Title which describes elements named title
with only text content.

The content model of an element is a list of nonterminals or further
definitions separated by ”,” (ordered sequence), by ”&” (unordered groups),
or by ”|” (alternatives). To specify repetitions of elements operators ”∗”
and ”+” can be used, similarly as in regular expressions.

The following grammar defines element book containing an unordered
sequence of an element title and one or more elements author :

Book = element book{
element title { text } &
element author { text }+

}

The operator ”&” is called interleave operator and it has a complex
semantics. It is not only used to define groups of elements which can occur
in any order but also it allows the elements of separate groups to interleave.
Consider the following example:

Book = element book{
element title { text } &
(element author { text }+,
element editor { text }+)

}

According to the abovementioned definition, an element book contains a
sequence of authors followed by a list of editors. Additionally, it contains an
element title which can occur at any position e.g. between elements author.

Attributes are introduced by the keyword attribute followed by the at-
tribute name and a specification of its allowable value.

The following fragment of a grammar defines element book as in the
previous example but additionally it specifies its attribute id whose allowable
value is of type ID imported from the external library XML Schema Datatype
(prefix xsd:). Note that the children of the element book have been defined
outside its content model by introducing new nonterminal symbols Title and
Author :

Book = element book{
attribute id { xsd:ID } &
Title &
Author+

}
Title = element title { text }
Author = element author { text }
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2.3 XQuery and its Type System

XQuery [25], a dominant XML query language developed by W3C, became
W3C recommendation in January 2007. This chapter presents a brief in-
troduction to XQuery. For a more detailed description a reader is referred
e.g. to [25, 40] (the book [40] is from 2003 and it refers to a little outdated
version of XQuery). Many examples in this chapter originate from the book
[40].

XQuery is a functional language where queries are expressions to be
evaluated. Expressions can be flexibly combined in order to create new ex-
pressions. XQuery extends the language XPath, used for addressing parts of
XML documents. XPath provides a means for selecting information within
existing XML document but it does not provide a way to construct new XML
elements. The newest versions of the languages, XPath 2.0 and XQuery 1.0,
are closely related, both of them make use of the same data model (the
abstract, parsed, logical structure of an XML document).

2.3.1 Data Model

The input and output of XQuery are defined formally in terms of a data
model [3] which provides an abstract representation of an XML document.
XML documents are represented as ordered trees with a document node as
the root node. There are six other kinds of nodes in the trees: element, at-
tribute, text, comment, processing instruction, and namespace nodes. Nodes
have identity and a linear ordering called document order in which each node
appears before its children.

Every value of an XQuery expression is an ordered sequence of nodes or
atomic values. Atomic values are instances of the built-in data types defined
by XML Schema, such as strings, integers, decimals, and dates.

Element and attribute nodes have a name, a type, a string value and a
typed value. For XML documents associated with a schema the types of
nodes are determined by schema validation process. For not validated data,
if no more specific type is known for a node, a type annotation xs:untyped
is assigned to an element node, and a type annotation xs:untypedAtomic is
assigned to an attribute node. (A type annotation xs:untypedAtomic is also
assigned to untyped atomic values). String value of a node is the concatena-
tion of all text from the text node descendants in document order. A typed
value of a node is a sequence of zero or more atomic values. It is derived
from the node’s string value and its type annotation.

2.3.2 Language Constructs

The section briefly describes the most important constructs of XQuery.
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Path Expressions

Path expressions are used in XQuery to locate nodes in XML data. A
path expression consists of a series of steps, separated by the slash, /. The
result of each step is a sequence of nodes. For example, the following simple
path expression returns book elements that are children of bib elements in
a books.xml document:

document("books.xml")/bib/book

Each step is evaluated in the context of a particular node, called the
context node. The context node of the path expression above is a document
node given by document("books.xml").

Every step consists of three parts. The first part, called the axis, spec-
ifies the direction of travel in the hierarchy. Some of the axes commonly
used in XQuery are (x stands for a path expression and y stands for an
element name or an attribute name): child axis e.g. x/child::y abbrevi-
ated as x/y, descendant-or-self axis e.g. x/descendant-or-self::node()/y
abbreviated as x//y, attribute axis e.g. x/attribute::y abbreviated as
x/@y, parent axis e.g. x/parent::node() abbreviated as x/.., self axis e.g.
x/self::node() abbreviated as x/.. The second part of the step is a node
test. It can be used to select nodes with a given name or nodes of a given
kind such as comment, attribute, processing instruction, etc. The third part
of a step is a predicate (or a list of predicates) which is a boolean condition
that selects a subset of nodes computed by a step expression. Predicates
are enclosed in square brackets. For example the query

document("books.xml")//book/author[last="Smith"]

returns author elements that are children of a book element and that have
a child element last whose value is ”Smith”. The query

document("books.xml")//book/author[1]

returns author elements that are the first child of any book elements occur-
ring in the document books.xml.

Element Constructors

A limitation of path expressions is that they only can select nodes. A full
query language needs a facility to construct new elements and attributes.
This facility in XQuery is called an element constructor and it uses XML
syntax. For example, here is an element constructor that creates an author
element:

<author>
<last>Johnson</last>
<first>Crockett</first>

</author>
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In the example above, the content of elements is constant. However it can
be generated dynamically by using XQuery expressions. Such expressions
are enclosed in curly braces to indicate that they are to be evaluated rather
than treated as literal text. The expressions are evaluated and replaced
by their values. For example, the following query returns an element books
whose content is a sequence of titles of books from a document ”books.xml”.

<books>{ document("books.xml")//book/title }</books>

FLWOR Expressions

The name FLWOR is an abbreviation formed by the initial letters of the
clauses that may occur in a FLWOR expression:

� for clause: introduces variables and for each variable it provides a se-
quence of values over which the variable is to iterate. Thus it generates
a sequence of tuples of variable bindings.

� let clause: introduces variables and binds them to the entire result of
an expression. Thus it adds the bindings to the tuples generated by
for clause.

� where clause: filters tuples by discarding the ones which do not satisfy
a condition.

� order clause: sorts the tuples.

� return clause: is evaluated once for each retained tuple and builds
the corresponding result.

This is an example of an FLWOR expression:

for $b in document("books.xml")//book
let $e := $b/author[1]/last
where $b/@year = "2005"
order by $e
return $b

The expression introduces a variable $b which iterates over book ele-
ments. In each iteration the variable $e obtains a new value which is a last
name of the first author for the currently chosen book. The FLWOR ex-
pression returns a list of book elements with the value of the attribute year
equal ”2005”. The returned book elements are sorted by the last name of
the first author of a book.

Functions

XQuery provides a library of predefined functions such as min(), max(),
count(), sum(), avg(), etc. Also users can define functions. A function
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definition must specify the name of the function and the names of its pa-
rameters. Optionally types of the parameters and the result type of the
function can also be specified. A function definition may be recursive. This
is an example of a function definition:

define function books-by-year($year as xs:integer)
as element(book)*{
for $b in document("books.xml")//book
let $e := $b/author[1]/last
where $b/@year = $year
order by $e
return $b

}

The result type of the function is declared as element(book)* (the type
notation is explained in the next section). The function returns book ele-
ments of the given year sorted by the last name of the first author.

2.3.3 Type System

XQuery is a strongly-typed language. Its type system is based on XML
Schema [2] and it supports XML Schema atomic types (such as string, in-
teger, dateTime, etc.), complex types from imported schemas, and XML
document structure types (such as element, attribute, node, comment, etc.).
XQuery types are integral part of the language: they belong to its semantics
and they may influence query results.

A type is defined as a set of constraints that defines a set of values in the
XQuery data model. A value matches a type if it satisfies the constraints.
XQuery uses types to check correctness of queries and to ensure that opera-
tions are being applied to data in appropriate ways (such as the arithmetic
operators which require numeric data). An important relation defined on
types is subtyping. A type T is a subtype of another type T ′ if all values
matching the type T match also the type T ′. Based on this relation the
equivalence of types can be defined. Two types T and T ′ are equivalent
only if T is a subtype of T ′ and T ′ is a subtype of T .

XQuery type system is intended to help in finding errors in programs.
Type errors can be detected during a static analysis phase which is per-
formed on a query only and which is independent on input data. In static
analysis XQuery type system can be used to find static type errors in queries
such as ”abc” + 3. A result of static typing of an XQuery program is an
abstract syntax tree which assigns to each subexpression its static type. As-
signing an empty type to an expression results in a type error. Besides static
types which are assigned to expressions during static analysis there are dy-
namic types which are assigned to values during query execution. Dynamic
types can also be used to detect type errors in the case when static type anal-
ysis is not performed. For instance sum(doc("products.xml")//price)
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raises an error if price does not contain a valid numeric data (required by
the function sum()). The type system has a property which guarantees that
any value returned by an expression conforms to the static type inferred for
the expression. As a consequence, a query which raises no type errors during
static analysis will also raise no type errors during execution on valid input
data.

Type Notation

XQuery has a formal type notation for defining types which is simpler and
more concise than XML Schema. Imported XML Schema type definitions
are translated into this notation. For example, the following XML Schema
type definition (the example comes from [40])

<xs:element name="rating" type="xs:string">

<xs:element name="user" type="User">

<xs:complexType name="User">

<xs:sequence>

<xs:element name="name">

<xs:complexType>

<xs:sequence>

<xs:element name="first" type="xs:string" minOccurs="0">

<xs:element name="last" type="xs:string">

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element ref="rating" minOccurs="0">

</xs:sequence>

<xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType>

is translated into

define element rating of type xs:string
define element user of type User

define type User {
attribute id of type xs:ID,
element name of type AnonymousType1,
element rating ?

}

define type AnonymousType1 {
element first of type xs:string ?,
element last of type xs:string

}

During the translation a unique name for each anonymous type is invented,
thus every element has a named type.
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The translation simplifies definitions by ignoring value constraints. For
example,

<xs:simpleType name="myPositiveInteger">

<xs:restriction base="xs:positiveInteger">

<xs:maxExclusive value="100">

</xs:restriction>

</xs:simpleType>

is translated into

define type myPositiveInteger {xs:positiveInteger}

Interleaving operator ”&” is used to represent All groups of XML Schema.
As XQuery needs closure for inferred types (any inferred type is a valid
type), the XML Schema restrictions such as Element Declarations Con-
sistent [1] and Unique Particle Attribution [1] are not present in XQuery.
Thus XQuery type formalism allows to define types that cannot be defined
by XML Schema.

The formal type notation is used in the formal XQuery semantics but
it is not available in XQuery syntax. The notation for referring to types
in XQuery queries, called sequence types, is a subset of the formal type
notation. The term sequence type is used to refer to a type of an XQuery
expression as such an expression evaluates always to a sequence (of nodes
or atomic values).

Some of the built-in XQuery types which can be used as sequence types
are:

� element() matches any element node,

� attribute() matches any attribute node,

� node() matches any node,

� text() matches any text node,

� empty() matches an empty sequence,

� xs:string, xs:decimal, xs:anyType, etc. match instances of the specific
XML Schema built-in types

The sequence type notation may refer to types imported from a schema.
A sequence type which refer to an element defined by a schema has two
parameters: the name of the element from the imported schema and the
name of the type. In order for an element to match a sequence type, both the
name of the element and its type must match. For example, a sequence type
element(creator, person) matches elements (one element sequences) with a
name creator and a type annotation person (or any other type derived
by restriction or extension from person). The second parameter can be
omitted, and if it is, the sequence type matches any element with the given
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name. Similar notation is used to refer to attributes defined by a schema.
For instance, a declaration attribute(@price, currency) matches attributes
named price of type currency.

In the notation for sequence types, occurrence indicators may be used
to indicate the number of items in a sequence: the character ”?” indi-
cates zero or one items, ” ∗ ” indicates zero or more items and ” + ”
indicates one or more items. Additionally, type operators can be used
for concatenation (”,”) and union (”|”). For example, a sequence type
(element(users) | element(articles))+ matches any non empty sequence of
elements named users or articles.

Type Conversions

To simplify typing rules of the XQuery type system, types of expressions
are approximated in a process called factorization [40]. In this process an
initial type is transformed to a type which is the choice of the item types
(representing one element sequences) that occur in the initial type followed
by an occurrence indicator. For example, a type (element a?, element b?) is
approximated as (element a | element b)∗.

Some operations of XQuery, such as function calls or processing of op-
erators that require numeric operands, require type promotion. Type
promotion is a process in which atomic values are promoted from one type
to another, for example during function calls or during processing of opera-
tors that require numeric operands. For example, a type xs:decimal can be
promoted to xs:double.

Type checking

Typechecking is performed in queries wherever types are declared e.g. in
function declarations, variable declarations. Function declarations may spec-
ify types of their arguments and results. A function which require an ar-
gument of a type T will accept an argument of different type T ′ if T ′ can
be promoted to T or if T can be derived (by restriction or extension) from
T ′. In variable declarations, types of variables can be declared explicitly. A
type error is raised if a variable obtains a value of a type which cannot be
promoted to the required type or from which the required type cannot be
derived.

The elements constructed by XQuery expressions can be validated against
schema types using validate expression. The expression returns a new el-
ement node (or a document node) with no parent. The new node and its
descendants are given type annotations resulting from the validation process
of the operand node.

Some other type based operations in XQuery are:

� instance of - an operator which tests whether a value matches a given
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type and returns a boolean value. For example,

3.14 instance of xs:decimal

returns true.

� typeswitch - it chooses an expression to evaluate based on the dynamic
type of an input value. Its usage can be illustrated by the example:

typeswitch($customer/billing-address)
case $a as element(*, USAddress) return $a/state
case $a as element(*, CanadaAddress) return $a/province
case $a as element(*, JapanAddress) return $a/prefecture
default return "unknown"

� treat as - the expression can be used to change the static type of the
result of an expression without changing its value and its dynamic
type. Its effect is twofold: (1) it assigns a specific static type to its
operand (a restriction of its actual static type), which can be used for
type-checking in a static analysis; and (2) at run-time, if the actual
value of the expression does not conform to the named type, it returns
an error value. For example, in the expression

$myaddress treat as element(*, USAddress)

the static type of $myaddress may be element(∗, Address), a less
specific type than element(∗, USAddress). However, at run-time, the
value of $myaddress must match the type element(∗, USAddress);
otherwise an error is raised.

2.4 DIG Interface

Ontologies provide information about concepts, roles and individuals in a
given application domain. Thus an ontology gives a common vocabulary to
be understood in the same way by various applications in the domain. A
main language used to define ontologies is OWL, developed by W3C. OWL
is based on description logics.

An OWL file representing an ontology is just an encoding of a set of
axioms. To make use of the axioms one needs an ontology reasoner. An
ontology reasoner makes it is possible to draw conclusions from the set of
axioms such as discovering implicit subclass relationships and discovering
class equivalence. To communicate with the reasoner we need to use a rea-
soner interface. For this purpose we have chosen DIG interface [8] which
is supported by many reasoners. The DIG interface is an API for a gen-
eral description logic system. It is capable of expressing class and property
expressions common to most description logics. Using DIG, clients can
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communicate with a reasoner through the use of HTTP POST requests. A
request is an XML encoded message of one of the following types: manage-
ment, ask or tell. Management requests are used e.g. to identify the reasoner
along with its capabilities or to allocate a new knowledge base and return
its unique identifier. Tell requests, containing tell statements, are used to
make assertions into the reasoner’s knowledge base. Ask requests, contain-
ing ask statements, are used to query the knowledge base. Responses to ask
requests contain response statements. Tell, ask and response statements are
built out of concept statements which are used to denote classes, properties,
individuals etc. Here we present an extract of DIG statements used in our
examples (C,C1, C2, . . . are concept statements):

� Concept statements:

– <catom name="CN "/> – a concept (class) CN,
– <ratom val="RN "/> – a role (property) RN,
– <some> R C </some> – the concept whose objects are in relation

R with some objects of a concept C (it corresponds to ∃R.C in
description logics).

� Tell statements:

– <defconcept name="CN "/> – introduces a concept CN,
– <defrole name=" RN "/> – introduces a role RN,
– <impliesc>C1 C2</impliesc> – introduces an axiom stating that

a concept C1 is subsumed by a concept C2.

� Ask statements:

– <subsumes>C1 C2</subsumes> – a Boolean query, it asks whether
a concept C2 is subsumed by a concept C1,

– <descendants>C</descendants> – it asks for the list of subclasses
of a concept C.

� Response statements:

– <true/> – if a statement is a logical consequence of the axioms
in the knowledge base,

– <false/> – if a statement is not a logical consequence of the ax-
ioms in the knowledge base,

– <error/> – if, for instance, a concept queried about is not defined
in the knowledge base,

– <conceptSet> <synonyms> C11 . . . C1n1 </synonyms>

...

<synonyms> Cm1 . . . Cmnm
</synonyms>

</conceptSet>

The response statement contains a list of concepts grouped by
synonyms i.e. equivalent concepts.
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DIG requests and responses are XML documents, some of their elements
contain attributes. For instance, the attribute id is used to associate the
obtained answers with the submitted queries.

Example 13. This is an example of a query request to be sent to an ontology
reasoner. It contains three DIG ask statements. The first two ask whether
concepts sugar and potato are subclasses of the concept gluten-containing.
The third one asks for direct subclasses of the class gluten-containing. (We
skip namespace declarations in the elements asks and responses.)

<asks uri="uri_of_knowledge-base" ... >

<subsumes id="q1">

<catom name="gluten-containing"/>

<catom name="sugar"/>

</subsumes>

<subsumes id="q2">

<catom name="gluten-containing"/>

<catom name="potato"/>

</subsumes>

<children id="q3">

<catom name="gluten-containing"/>

</children>

</asks>

This is a possible response to the query:

<responses ... >

<false id="q1"/>

<error id="q2" message="Undefined concept name potato

in TBox DEFAULT"/>

<conceptSet id="q3">

<synonyms> <catom name="flour"/> </synonyms>

<synonyms> <catom name="spaghetti"/> </synonyms>

</conceptSet>

</responses>
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Chapter 3

Type Specification

This chapter introduces a formalism called Type Definitions which we use
for defining classes of data terms. The formalism is a generalisation of the
formalism presented in [15]. Type Definitions play a similar role as schema
languages for XML. They are not meant to be a yet another competitive
schema language but rather a kind of abstraction of the existing schema
languages providing a common view of them. Such an abstraction is nec-
essary to be able to handle types defined by different schema languages in
one application and to be able to compare them.

Our intended application requires that basic operations on sets expressed
in the formalism (like intersection and checks for membership, emptiness
and inclusion) are decidable and efficient algorithms for them exist. A well
known such formalism is that of tree automata [24] (or tree grammars, which
are just another view of tree automata). However tree automata deal with
terms where each symbol has a fixed arity. This is not sufficient in our case
since in XML, the number of elements between a given pair of a start-tag
and end-tag is not fixed. That is why our Type Definitions are based on
unranked tree automata [13, 45] which combine tree grammars with regular
expressions. The latter are used to describe the possible sequences (or sets)
of children of a single node in a tree. Similar formalisms are employed for
XML processing languages such as XDuce [37], CDuce [9] or XCentric [23].
A novelty of Type Definitions is that they deal with mixed trees where the
order of children of a node may be irrelevant.

An important problem in a type system for an XML query language is
type checking: checking whether the results of queries (or transformations)
applied to XML data from a given type are within an another given type.
Existence of efficient algorithms for type checking of XML queries is of great
importance and it has been quite intensively investigated. Various cases
of such type checking problems for different XML query languages have
been studied e.g. in [5, 42] and references therein. The papers deal with
automata as abstractions of query languages and show that the problem is
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often undecidable or of non-polynomial complexity. They propose solutions
employing various restrictions on schema languages or on classes of XML
queries or transformations. In our work we are focused on the particular
query language Xcerpt. In order to perform type operations efficiently we
also propose a restriction on Type Definitions which results in more efficient
algorithms for type checking. The restricted class of Type Definitions is
called proper and it corresponds [27] to a single type tree grammar in the
sense of [45].

3.1 Type Definitions

This section introduces a formalism for specifying decidable sets of data
terms representing XML documents. First we specify a set of type names
T = {Top} ∪ C ∪ S ∪ V which consist of a type name Top and

� type constants from the alphabet C,

� enumeration type names from the alphabet S,

� type variables from the alphabet V.

A Type Definition associates type names with sets of data terms. The
set [[T ]] associated with a type name T is called the type denoted by T (or
simply type T ). The type [[Top]] is the set of all data terms. For T being a
type constant or an enumeration type name, the elements of [[T ]] are basic
constants.

Type constants correspond to basic types of XML schema languages such
as String or Integer. The set of type constants is fixed and finite; for each
type constant T ∈ C the set of basic constants [[T ]] is fixed. In our examples
we will use a type constant Text assuming that [[Text]] is the set of non
empty strings of characters. This is similar to #PCDATA in DTD. We also
assume that Text is a union of all types represented by type constants and
enumeration type names.

Each type variable T is associated with a set of data terms [[T ]] which
is specified in a way similar to that of [15] and described below. Similarly,
each enumeration type name T is associated with a finite set [[T ]] of basic
constants.

First we introduce some auxiliary notions. The empty string will be
denoted by ε. A regular expression over an alphabet Σ is ε, φ, any a ∈ Σ
and any r1r2, r1|r2 and r∗1 , where r1, r2 are regular expressions. A language
L(r) of strings over Σ is assigned to each regular expression r in a standard
way: L(φ) = ∅, L(ε) = {ε}, L(a) = {a}, L(r1r2) = L(r1)L(r2), L(r1|r2) =
L(r1) ∪ L(r2), and L(r∗1) = L(r1)∗.

Definition 16. A regular type expression is a regular expression over
the alphabet of type names T . We abbreviate a regular expression rn|
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rn+1| · · · |rm, where n ≤ m, as r(n:m), rnr∗ as r(n:∞), rr∗ as r+, and r(0:1)

as r?. A regular type expression of the form

T
(l1 : u1)
1 · · ·T (lk : uk)

k

where k ≥ 0, 0 ≤ li ≤ ui ≤ ∞ for i = 1, . . . , k, and T1, . . . , Tk are distinct
type names, will be called a multiplicity list.

Multiplicity lists will be used to represent multisets of type names. For-
mally, a multiplicity list r represents the set perm(L(r)) of all permutations
of the language L(r) 1.

Definition 17. A Type Definition is a set D of rules of the form

T → l[r], T → l{s}, or T ′ → c1| . . . |cn,

where T is a type variable, T ′ is an enumeration type name, l is a label, r
is a regular type expression, s is a multiplicity list, n ≥ 0, and c1, . . . , cn are
basic constants. A rule U→G ∈ D will be called a rule for U in D. We
require that for any type name U ∈ V ∪ S occurring in D there is exactly
one rule for U in D.

If the rule for a type variable T in D is as above then l will be called the
label of T (in D) and denoted labelD(T ) = l. For T being a type constant or
an enumeration type name we define labelD(T ) = $. The regular expression
in a rule for a type variable T is called the content model of T . If a
rule for a type variable T in D is T → l[r] (or T → l{r}) then [ ] (or { },
respectively) are called the parentheses of T .

We assume that alphabet of labels L∪{$} is totally ordered by a relation
≤; we call this ordering alphabetic ordering. A multiplicity list W1 . . .Wk,
where each Wi = T

(ni,1:ni,2)
i is sorted wrt. D if

� none of T1, . . . , Tk is Top and labelD(T1) ≤ . . . ≤ labelD(Tk), or

� Tk = Top and labelD(T1) ≤ . . . ≤ labelD(Tk−1).

Notice that for any multiplicity list, a sorted multiplicity list representing
the same multiset of type names can be obtained.

The formalism of Type Definitions is a slight generalisation of the for-
malism of [15] as it deals with a type Top and enumeration type names.
Another difference concerns type constants which in our approach are as-
sumed to have labels. This makes it possible to treat them in a simpler
way.

Example 14. Consider a Type Definition D:
1For a set of sequences Z, perm(Z) will denote the set of all permutations of the

sequences from Z.
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Cd → cd [Title Artist+ Category?]
Title → title[Text Subtitle?]
Subtitle → subtitle[Text]
Artist → artist [Text]
Category → ”pop” | ”rock” | ”classic”

D contains a rule for each of type variables: Cd, Title, Subtitle, Artist and
a rule for enumeration type name Category. Labels occurring in D are: cd,
title, subtitle, artist, and pop, rock, classic are basic constants.

Type Definitions are a kind of grammars, they define sets by means of
derivations, where a type variable T is replaced by the right hand side of
the rule for T and a regular expression r is replaced by a string from L(r);
if T is a type constant or an enumeration type name then it is replaced by
a basic constant from respectively [[T ]], or from the rule for T . This can be
concisely formalized as follows (treating Type Definitions similarly to tree
automata).

Definition 18. Let D be a Type Definition. We will say that a data term t
is derived in D from a type name T , iff there exists a mapping ν from the
subterms of t to type names such that ν(t) = T and for each subterm u of t

� if T = Top then ν(u) = Top,

� otherwise, if u is a basic constant then ν(u) ∈ C and u ∈ [[ν(u)]] or
ν(u) ∈ S and there exists a rule ν(u)→ · · · |u| · · · in D,

� otherwise ν(u) = U ∈ V and

– there is a rule U ← l[r] ∈ D, u = l[t1, . . . , tn], and ν(t1) · · · ν(tn) ∈
L(r),

– or there is a rule U ← l{r} ∈ D, u = l{t1, . . . , tn}, and ν(t1) · · · ν(tn)
is a permutation of a string in L(r).

The set of the data terms derived in D from a type name T will be denoted
by [[T ]]D.

Example 15. Given the Type Definition D from the previous example, a
data term

t = cd[ title[”Stop”], artist[”Sam Brown”], ”pop” ]

is derived from the type variable Cd. The type names assigned to the three
arguments of cd are, respectively, Title, Artist , Category, and the type con-
stant Text is assigned to the constants ”Stop”, and ”Sam Brown”.
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Notice that if T is a type constant then [[T ]]D = [[T ]]. If it is clear
from the context which Type Definition is considered, we will often omit
the subscript in the notation [[ ]]D and similar ones. For U being a set
of type names {T1, . . . , Tn}, we define a set of data terms [[U ]] = [[T1]] ∪
. . . ∪ [[Tn]]. For a regular type expression r we define [[r]] = { d1, . . . , dn |
d1 ∈[[T1]], . . . , dn ∈[[Tn]] for some T1 · · ·Tn ∈ L(r) }. Notice that if D ⊆ D′

are Type Definitions then [[T ]]D = [[T ]]D′ for any type name T occurring in D.
We use types(r) to denote the set of all type names occurring in the regular
expression r. We define a set o type names with a given label l occurring in a
regular expression r as typesD(l, r) = {T |T ∈ types(r) and label(T ) = l}.
Observe that if d ∈ [[T ]] then either T = Top or root(d) = label(T ).

In the next section we will need an algorithm for computation of a multi-
plicity list r representing the union of multisets represented by multiplicity
lists r1, . . . , rn. In general the union of such multisets cannot be repre-
sented by a multiplicity list. Thus we show a way how a multiplicity list
representing a superset of such union can be constructed. So we show how
to construct r such that perm(L(r1)) ∪ . . . ∪ perm(L(rn)) ⊆ perm(L(r)).
Let Q = {U1, . . . , Um} be the set of type names occurring in multiplicity

lists r1, . . . , rn. Let, for i = 1, . . . , n, r′i = U
(li1:u

i
1)

1 · · ·U (lim:ui
m)

m , where for

j = 1, . . . ,m, either U
(lij :u

i
j)

j is a subexpression of ri, or Uj does not appear

in ri and lij = ui
j = 0. The multiplicity list r is U

(l1:u1)
1 · · ·U (lm:um)

m , where
lj = mini=1,...,n(lij) and uj = maxi=1,...,n(ui

j) for j = 1, . . . ,m.

3.1.1 Proper Type Definitions

For our analysis of Xcerpt rules we need algorithms computing intersection
of sets defined by Type Definitions, and performing emptiness and inclusion
checks for such sets. To obtain an efficient algorithm for the inclusion check
we impose a restriction on Type Definitions which is discussed in this section.

Consider a Type Definition D and a content model r occurring in D.
We call the content model r proper, if the following property holds. The
only type name occurring in r is Top, or r does not contain Top and if two
distinct type names occurring in r have the same label then they are type
variables and they have different kind of parentheses.

We say that a Type Definition D is proper, if all content models occur-
ring in D are proper. Thus given a term l[c1 . . . cn] and a rule T → l[r] ∈ D or
a term l{c1 . . . cn} and a rule T → l{r} ∈ D, for each ci the root of ci (and the
parentheses of ci, if ci is not a basic constant) determines at most one type
name S such that S occurs in r and S is Top or labelD(S) = root(ci) = li
(and the parentheses of ci are the same as the parentheses of S, if ci is not
a basic constant). Notice that, for a proper Type Definition D, at most one
type constant or enumeration type name occurs in any regular expression of
D since all type constants and enumeration type names have the same label
$.
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The class of proper Type Definitions, when restricted to ordered terms
(i.e. without {}), is essentially the same as single-type tree grammars of [45].
Restriction to proper Type Definitions results in simpler and more efficient
algorithms although it imposes some limitations. We will state explicitly if
we require a Type Definition to be proper.

Example 16. Type Definition D1 = {A→a[ A |B |C ], B→b[ D ], C→
b[ Text ], D→c[Text]} is not proper because type names B,C have the same
label b, the same parentheses, and occur in one regular expression. In
contrast, D2 = {A→a[ A |B |D ], B→b[ CD ], C→b[ Text ], D→c[ Text ]} is
proper.

Now we explain how a non proper content model r from a Type Definition
D can be approximated by a proper one r′. The content model r is treated
in D either as a regular expression or as a multiplicity list. The algorithm
we present, creates new types, thus it creates a new Type Definition D′

that extends the Type Definition D with rules defining the new types. The
new content model has a property [[r]]D ⊆ [[r′]]D′ if r is treated as a regular
expression and perm([[r]]D) ⊆ perm([[r′]]D′) if r is treated as a multiplicity
list.

If a type name Top occurs in r then we replace each type name in r by
Top obtaining r′′. If r is treated as a multiplicity list then r′′ is of the form
Top(l1,u1) · · ·Top(lk,uk) and r′ = Top(l1+...+lk,u1+...+uk). Otherwise r′ = r′′.

Now we assume that Top does not occur in r. Let SC , S1, . . . , Sn be dis-
joint sets of type names such that SC∪S1 . . .∪Sn = types(r) and SC is a set
of type constants or enumeration type names and each Si is a set of all type
variables (occurring in r) with the same label and the same kind of parenthe-
ses. For the sets of type names SC , S1, . . . , Sn we construct corresponding
types TC , T1 . . . , Tn representing the unions (or supersets approximating the
unions) of the types from each set:

� If SC contains only enumeration type names then TC is an enumeration
type name and the rule defining [[Tc]] is obvious. Otherwise, TC is
Text (as Text is a union of all types represented by type constants or
enumeration type names).

� For a set Si of type names defined by rules Tij → li[rij ] the corre-
sponding type Ti is defined as Ti → li[ri1 | · · · | riki

], for j = 1, . . . , ki,
where ki = |Si|.

� For a set Si of type names defined by rules Tij → li{rij} for j =
1, . . . , ki and ki = |Si|, the corresponding type Ti is defined as Ti →
li{ui}, where ui is a multiplicity list representing the union (or an ap-
proximation of the union) of the languages represented by multiplicity
lists rij for j = 1, . . . , ki.

Finally, r′ is r where every type name T is replaced by the type name
Ts ∈ {TC , T1, . . . , Tn} such that T ∈ Ss (where Ss ∈ {SC , S1, . . . , Sn}).
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Additionally, if r is treated as a multiplicity list, in order for r′ to be a
multiplicity list, all its subexpressions of the form T

(l1,u1)
S , . . . , T

(lk,uk)
S must

be replaced by an expression T
(l1+...+lk,u1+...+uk)
S .

The algorithm can be used for creation of a proper Type Definition
defining types that are approximations of the types defined by a non proper
Type Definition. In order to obtain such a proper Type Definition the
algorithm must be applied to all non proper content models of D and to the
new content models created by the algorithm. Termination of this process
is due to the fact that the new content models are created only for the
types from D and for types representing unions of the types from D. As the
number of the types defined by D is finite, the number of possible unions of
the types is also finite.

Example 17. Consider a Type Definition D = {A→a[ A |B |C ], B→a[ C ],
C→c[ Text ] }, which is not proper. We want to construct a proper Type
Definition D′ defining types that are approximations of the types defined by
D. As the content model A |B |C of A is not proper we approximate it by
a proper one A∪̇B |A∪̇B |C, where the type A∪̇B represents the union of
types A and B and it is defined by a rule A∪̇B→a[ A |B |C ]. The con-
tent model of the type A∪̇B which is not proper must be replaced by a
proper content model being its approximation. This approximation, which
is already computed, is A∪̇B |A∪̇B |C. Thus the type Definition D′ is
{A→a[ A∪̇B |A∪̇B |C ], B→a[ C ], C→c[ Text ], A∪̇B→a[ A∪̇B |A∪̇B |C ]}.

3.2 Operations on Types

In this section we describe algorithms for basic operations on types: check for
emptiness, computing intersection, and check for inclusion. The algorithms
for latter two operations employ some standard operations on languages de-
scribed by regular expressions like inclusion and equality checks, computing
intersection of such languages. This can be done by transforming regular
expressions to deterministic finite automata (DFA’s) and using standard
efficient algorithms for DFA’s.

In the general case the number of states in a DFA may be exponentially
greater than the length of the corresponding regular expression [38]. Notice
that the XML definition [33] requires (Section 3.2.1) that content models
specified by regular expressions in element type declarations of a DTD are
deterministic in the sense of Appendix E of [33]. A similar requirement in
XML Schema is called Unique Particle Attribution. The formal meaning of
this requirement is that the regular type expressions are 1-unambiguous in
a sense of [14]. For such regular expressions a corresponding DFA can be
constructed in linear time.
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3.2.1 Emptiness Check

We show how to check if a type defined by a Type Definition is empty. In
what follows we assume that the regular expressions in Type Definitions do
not have useless symbols. A type name T is useless in a regular expression
r if no string in L(r) contains T . (If r contains a useless symbol then the
regular expression φ occurs in r.)

A type name T in a Type Definition D will be called nullable if no data
terms can be derived from T . In other words, [[T ]]D = ∅ iff T is nullable in
D.

To find nullable symbols in a Type Definition D we mark type names
in D in the following way. First we mark all occurrences of a type name
Top, all type constants and all enumeration type names (that do not denote
∅). Then we mark each unmarked type variable Ti in D with the rule for
Ti of the form Ti → l[ri] or of the form Ti → l{ri} such that there exists a
sequence of marked type names S1 · · ·Sm ∈ L(ri) (m ≥ 0). We repeat the
second step until an iteration which does not change anything. The type
names which are unmarked in D are nullable.

Here, we explain how to check whether there exists a sequence of marked
type names S1 · · ·Sm ∈ L(r) (m ≥ 0). Let λ be a parse tree of r (e.g. a
parse tree for a regular expression ((T ∗

1 |T2)T1)|T3 represented as a term is
or(then(or(star(T1), T2), T1), T3) ). We walk on the tree starting from its
root. For each visited node we do the following:

� if a node is an unmarked type name we replace it by φ (the node is a
leaf),

� if a node is star we replace it by ε and remove its child (the node
becomes a leaf),

� if a node is or we visit its children. If both of them were replaced by
φ we replace the node by φ; otherwise we replace it by a child which
was not replaced by φ,

� if a node is then we visit its children.

If the result tree does not have any φ node, there exists a sequence of marked
type names which belongs to L(r). Otherwise, such a sequence does not
exist. Assuming that the tree λ has n nodes the time complexity of the
operation is O(n).

If the number of types defined by D is m the check must be done at
most m2 times. Thus, the worst case time complexity of the type emptiness
checking is O(m2 n).

Example 18. Let us use the algorithm to find nullable type names in a Type
Definition D = {A→a[AB], B→b[B∗] }. The initial step does not mark any
type names. In the second step we mark B because ε ∈ L(B∗). In the next
iteration we cannot mark any other type names and the algorithm stops.
Since A is unmarked, it is nullable.
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3.2.2 Intersection of Types

Here we explain a way of obtaining the intersection of two types T and U
defined by a Type Definition D. To denote the intersection of types T and
U we introduce a new type name T ∩̇U . We do not require that the Type
Definition D is proper. A simpler algorithm for type intersection of types
defined by a proper Type Definition was presented in [58]. The algorithm
we present in general may produce results which are approximations i.e.
the set [[T ∩̇U ]] is a superset of the set [[T ]] ∩ [[U ]]. Such approximation is
necessary if there is a need to intersect types whose content model is not a
proper multiplicity list or if it is a multiplicity list distinct from Top∗ with
a type name Top appearing in it. This is because the intersection of two
languages represented by multiplicity lists not satisfying these conditions
may be not expressible by a multiplicity list. Thus, we introduce a notion of
an intersectable multiplicity list. A multiplicity list is intersectable if it is
Top∗ or if it is proper and Top does not appear in it. A multiplicity list with
a type name Top appearing in it can be approximated by an intersectable
multiplicity list Top∗. A multiplicity list without Top can be approximated
by a proper multiplicity list (obtained using the algorithm from Section
3.1.1). Such a multiplicity list is intersectable.

Example 19. Consider multiplicity lists r1 = A(1:2)B? and r2 = Top(2:2).
Intersection of the languages represented by r1 and r2, which is
perm(L(AA|AB)), cannot be represented by a multiplicity list.

The following algorithm produces exact results i.e. [[T ∩̇U ]] = [[T ]]∩ [[U ]] if
the Type Definition D does not contain non intersectable multiplicity lists.
Otherwise non intersectable multiplicity lists must be first approximated
by intersectable ones. This produces a Type Definition D′ to which the
algorithm is applicable. As a result we obtain D′′ such that [[T ∩̇U ]]D′′ ⊇
[[T ]]D ∩ [[U ]]D.

Now, we are ready to present an algorithm for obtaining the intersec-
tion of types T,U defined by a Type Definition D, which contains only
intersectable multiplicity lists. In order to simplify the presentation we in-
troduce an algorithm which computes intersection for each pair of types
from D. In what follows we do not distinguish type names T ∩̇U and U ∩̇T ,
and T and T ∩̇Top, for any type names T,U . We assume that, for any pair
T,U of type constants from D there exists another type constant T ∩̇U such
that [[T ∩̇U ]] = [[T ]] ∩ [[U ]]. For each pair T,U of type names defined by D
distinct from Top and such that at least one of them is not a type constant
we proceed as follows:

� If T,U are enumeration type names, or one of them is an enumeration
type name and the other is a type constant then D is augmented by
the rule T ∩̇U → c1| . . . |cn, where [[T ]] ∩ [[U ]] = {c1, . . . , cn} and T ∩̇U
is an enumeration type name.
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� If one of the type names T,U is a type variable and another is an
enumeration type name or a type constant then their intersection is
empty and D is augmented by the rule T ∩̇U → φ, where T ∩̇U is an
enumeration type name.

� If T and U are type variables and labelD(T ) 6= labelD(U) then their
intersection is empty and D is augmented by the rule T ∩̇U → φ, where
T ∩̇U is an enumeration type name.

� If T and U are type variables and D contain rules of the form T → l[r1]
and U → l{r2} or of the form T → l{r1} and U → l[r2] then the
intersection of T,U is empty and D is augmented the rule T ∩̇U → φ,
where T ∩̇U is an enumeration type name.

� If D contains rules of the form T → l[r1] and U → l[r2] then D is
augmented by the rule T ∩̇U → l[r], where T ∩̇U is a type variable,
L(r) = L(r′1)∩L(r′2) and r′1, r

′
2 are obtained in the following way. For

each Ti occurring in r1 let Si = {Ui1 . . . Uiki
} be the set of type names

occurring in r2 such that if Ti 6= Top

– Uij is Top, or

– Uij has the same label as Ti and if Ti is a type variable then Uij

has also the same kind of parentheses as Ti.

If Ti = Top then Si is the set of all type names occurring in r2. Then
r′1 is r1, where each symbol Ti is replaced by a regular expression
Ti∩̇Ui1| . . . |Ti∩̇Uiki

(or φ, if ki = 0). r′2 is obtained analogically to r′1.

� If D contains rules of the form T → l{r1} and U → l{r2} (where r1, r2

are intersectable) we try to compute a multiplicity list r representing
the set M = perm([[r1]]) ∩ perm([[r2]]) of sequences of data terms, in
the following way.

– if r1 = Top∗ then r = r2,

– otherwise, if r2 = Top∗ then r = r1,

– otherwise, (there is no Top in r1, r2) let r′1 be r1, where each Ti is
replaced by a type name Ti∩̇Ui and Ui is a type name occurring
in r2 such that Ui has the same label as Ti and if Ti is a type
variable then Ui has also the same kind of parentheses as Ti. As
r2 is proper only one such Ui can exist. If there is no such a type
name Ui in r2 then Ti is replaced by φ. Let r′2 be obtained from
r2 in the same way as r′1 is obtained from r1. If r′1 or r′2 contain
an expression of the form φl:u, where l > 0, then M = ∅ and
a multiplicity list representing M does not exist. Otherwise, r
is a regular expression obtained by the concatenation of regular
expressions r′1 and r′2, by removing subexpressions of the form
φ0:u and by replacing each pair of subexpressions of the form
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S(l:u) and S(l′:u′) (where S is a type name) by the expression
S(l′′:u′′), where l′′ = max(l, l′) and u′′ = min(u, u′).

If a multiplicity list r representing M is found then D is augmented
by the rule T ∩̇U → l{r}, where T ∩̇U is a type variable. Otherwise,
(M = ∅) D is augmented by the rule T ∩̇U → φ, where T ∩̇U is an
enumeration type name.

If the Type Definition D is proper the new Type Definition defining the type
T ∩̇U is also proper.

The presented algorithm employs an operation of intersection of two
regular languages L(r1) and L(r2). To intersect L(r1) and L(r2) we need
to build automata representing both languages and then build the prod-
uct automaton. If the regular expressions are 1-unambiguous [14], the au-
tomata representing the languages can be built in linear time and building
the product automaton requires polynomial time. Otherwise the complexity
of intersection of L(r1) and L(r2) is exponential.

Assume that D contains m1 rules, there is m2 type constants and m =
m1 + m2. To intersect two types T1, T2 defined in D, in the worst case we
may need to compute intersection of regular languages m2 times. Thus, if
D contains only 1-unambiguous regular expressions then the complexity of
the type intersection algorithm is polynomial. Otherwise, it is exponential.

Example 20. Consider a Type Definition D = {A→l[B|C], B→l[A+],
C→m[ ], A′→l[A′∗|C ′], C ′→m[C ′∗] }. We construct a Type Definition D′

which defines a type A∩̇A′ being the intersection of types A and A′

([[A∩̇A′]]D′ = [[A]]D ∩ [[A′]]D). D′ = {A∩̇A′ → l[B∩̇A′|C∩̇C ′], B∩̇A′ →
l[(A∩̇A′)+], C∩̇C ′ → m[ ] }. Example 22 will show that [[A]]D ⊆ [[A′]]D and
that is why [[A∩̇A′]]D′ = [[A]]D.

Example 21. The example shows how to obtain the intersection of types
T1, T2, where the content model of T1 is a non intersectable multiplicity
list. Consider a Type Definition D = {T1 → l{A?

1A
?
2}, T2 → l{A+}, A →

a[C∗], A1 → a[ ], A2 → a[CC], C → c[ ]}. As [[A1]] ∩ [[A]] = [[A1]] and
[[A2]]∩ [[A]] = [[A2]] the intersection of the types T1 and T2 would be expressed
as T1∩̇T2 → l{A1|A2|(A1A2)}. This is however not allowed as the content
model of T1∩̇T2 is not a multiplicity list (and it cannot be represented as a
multiplicity list). Thus, before intersecting T1, T2 we approximate the multi-
plicity list A?

1A
?
2 by an intersectable one. As the types A1, A2 have the same

label and the same kind of parentheses they can be approximated as a type A′

being their union and defined as A′ → a[(CC)?]. Thus the multiplicity list
A?

1A
?
2 can be approximated as A′?A′? which is equivalent to an intersectable

multiplicity list A′(0:2). The type T1 from D can be approximated as a type
T ′

1 with an intersectable multiplicity list T ′
1 → {A′(0:2)}. The intersection

of types obtained using the presented algorithm is T ′
1∩̇T2 → l{A′(1:2)}. The

type [[T ′
1∩̇T2]] is an approximation of the type [[T1]] ∩ [[T2]].
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3.2.3 Type Inclusion

The algorithm presented here is based on the approach taken in [15].
Let T1, T2 be type names defined in Type Definitions D1, D2, respec-

tively. T1 is an inclusion subtype of T2 iff [[T1]]D1 ⊆ [[T2]]D2 . We present an
algorithm which checks this fact. It is required that D2 is proper.

The first part of the algorithm constructs a set C(T1, T2) of pairs of types
to be compared. It is the smallest set such that

� if at least one of type names T1, T2 is Top then (T1, T2) ∈ C(T1, T2),

� if T1, T2 are type constants or enumeration type names then (T1, T2) ∈
C(T1, T2),

� if T1, T2 are type variables with the same kind of parentheses and
label(T1) = label(T2) then (T1, T2) ∈ C(T1, T2),

� if

– (T ′
1, T

′
2) ∈ C(T1, T2),

– D1, D2 contain, respectively, rules T ′
1 → l[r1] and T ′

2 → l[r2], or
T ′

1 → l{r1} and T ′
2 → l{r2} (with the same label l), and

– type names T ′′
1 , T ′′

2 occur respectively in r1, r2,and

* T2 is Top, or
* labelD1(T ′′

1 ) = labelD2(T ′′
2 ) and, if T1, T2 are type variables

they have the same parenthesis,

then (T ′′
1 , T ′′

2 ) ∈ C(T1, T2). As D2 is proper, for every T ′′
1 in r1, there

exists at most one T ′′
2 in r2 satisfying this condition.

The second part of the algorithm checks whether [[T ′
1]] ⊆ [[T ′

2]] for each
(T ′

1, T
′
2) ∈ C(T1, T2). We assume that the multiplicity lists occurring in

D1, D2 are sorted.

IF C(T1, T2) = ∅ THEN return false
ELSE for each (T ′

1, T
′
2) ∈ C(T1, T2) do the following:

IF at least one of T ′
1, T

′
2 is a type name Top

IF T ′
2 is a type name Top return true

ELSE return false
IF T ′

1, T
′
2 are enumeration type names or type constants

THEN check whether [[T ′
1]] ⊆ [[T ′

2]] and return the result
Let T ′

1 → l[r1] and T ′
2 → l[r2], or T ′

1 → l{r1} and T ′
2 → l{r2}

be rules of D1, D2, respectively
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IF a type name Top occurs in r2

(as r2 is proper no other type name except Top occurs in r2)
THEN let r′1 be r1 where every type name is replaced by Top
Check whether L(r′1) ⊆ L(r2)

ELSE
Let s2 be the regular expression r2 where every type name is
replaced by its label
Let s1 be the regular expression r1 where every type name,
except Top, is replaced by its label and the type name Top
is replaced by an arbitrary symbol not appearing in s2

Check whether L(s1) ⊆ L(s2)
IF for all pairs from C(T1, T2) the answer is true THEN return true
ELSE return false

The algorithm employs a check if [[T ′
1]] ⊆ [[T ′

2]], where each of T ′
1, T ′

2 is
either an enumeration type name or a type constant. This check is based on
recorded information about inclusion of the sets defined by type constants
and about which constants are members of these sets.

If the algorithm returns true then [[T1]]D1 ⊆ [[T2]]D2 . If it returns false
and D1 has no nullable symbols (i.e. [[T ]]D1 6= ∅ for each type name T in
D1) and no useless symbols then [[T1]]D1 6⊆ [[T2]]D2 . We omit a justification
which could be similar to the one presented in [15].

Example 22. Consider the Type Definitions from the Example 20: D =
{A→l[B|C], B→l[A+], C→m[ ] } and D′ = {A′→l[A′∗|C ′], C ′→m[C ′∗] }.
To check whether [[A]]D ⊆ [[A′]]D′ , first we construct set C(A,A′) which is
{(A,A′), (B,A′), (C,C ′)}. Then the second part of the algorithm checks if
L(l|m) ⊆ L(l∗|m), L(l+) ⊆ L(l∗|m) and L(ε) ⊆ L(m∗). Since all the checks
give positive results, we conclude that [[A]]D ⊆ [[A′]]D′ .

Notice that for a proper Type Definition D2 and 1-unambiguous regular
expressions [14] in D1, D2 the algorithm is polynomial. In the general case a
polynomial algorithm does not exist, as inclusion for a less general formalism
of tree automata is EXPTIME-complete [24].

3.3 Type Definitions and XML Schema Lan-
guages

For defining sets of XML documents we have introduced a simple and con-
cise formalism of Type Definitions. This section discusses what features of
particular XML schema languages are expressible by the Type Definitions
and which are not.

The main task of schema languages is to describe XML documents. How-
ever different approaches to that task provide a wide range of functionality.
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What is common for most XML schema languages is that the schemata de-
fined by them are transformations which given an instance document can
produce a PSVI (Post Schema Validation Infoset) that besides the informa-
tion from the original document includes default values, types, etc. In the
thesis we focus on one aspect of XML schema languages, namely defining
classes of documents (types). This implies that we neglect the other aspects
like, for example, an ability to describe default attribute values or to specify
processing instructions (notations in DTD).

Our formalism of Type Definitions is focused on defining possible tree
structure of XML documents and lefts out the aspect related to defining
specific types of text nodes. Thus we do not discuss here in details the
simple types which are available in XML schema languages. We believe that
our type system is flexible enough so that simple types can be implemented
based on type constants. In the current version of the type system there is
one type constant defined, namely Text, and it corresponds to a set of all
strings (text values). However it is possible to define other type constants
corresponding to simple types from DTD, XML Schema or Relax NG like
string, integer, float etc. In this case some additional mechanism must be
developed for validation according to these types. This is however out of
scope of this work.

To employ Type Definitions to specify attributes, one has to follow the
way of representing XML documents by data terms (described in Section
2.1.1). The attributes of elements of a particular type are represented by
a type name occurring at the beginning of the content model of the type.
If all the attributes of elements of a particular type are optional the type
name representing the attributes is followed by the question mark ’?’. In
our notation the type name representing attributes of elements of a type
T is T attr. Examples illustrating how attributes are represented by Type
Definitions are presented in the following sections.

3.3.1 DTD

From the point of view of the formal language theory DTD is a local tree
grammar (in the sense of [45]). Thus any set of documents which can be
defined by DTD can be also defined by a proper Type Definition. DTDs
are less expressive than Type Definitions as they cannot define two different
sets of elements with the same label e.g. one set containing elements with a
label title as a title of a book and another set of elements with a label title
as a title of a chapter.

A Type Definition representing a DTD contains a definition of a type
for each element declared in the DTD. The type names are the same as
the corresponding element names in the DTD. Declarations of entities and
notations in the DTD are neglected. As DTDs cannot define two different
sets of elements with the same label the corresponding Type Definition is
proper.
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Example 23. This is an example of a DTD:

<!ELEMENT bib (book* )>

<!ELEMENT book (title, (author+ | editor+ ))>

<!ATTLIST book year CDATA #REQUIRED >

<!ATTLIST book isbn CDATA #IMPLIED >

<!ATTLIST book language (en | sw | pl) >

<!ELEMENT author (last, first )>

<!ELEMENT editor (last, first )>

<!ELEMENT title (#PCDATA )>

<!ELEMENT last (#PCDATA )>

<!ELEMENT first (#PCDATA )>

and a corresponding Type Definition:

bib → bib [ book∗ ]
book → book [ book attr title (author+ | editor+) ]
book attr → attr { book year book isbn? book language }
book year → year [ Text ]
book isbn → isbn [ Text ]
book language → language [ lang ]
lang → ”en” | ”sw” | ”pl”
author → author [ last first ]
editor → editor [ last first ]
title → title [ Text ]
first → first [ Text ]
last → last [ Text ]

3.3.2 XML Schema

Generally, due to the Element Declarations Consistent requirement [1], XML
Schema corresponds to a single type tree grammar [45] and can be repre-
sented by proper Type Definition. However some features of XML Schema
(such as xsi:type mechanism which is explained later on) can cause prob-
lems and they make it impossible to represent XML Schema by proper Type
Definition. In this subsection we discuss relation of XML Schema to Type
Definitions focusing on the features of XML schemata whose transformations
to Type Definitions may be not clear, problematic or impossible.

We start with a simple example of an XML Schema with typical con-
structs.

Example 24. This is a fragment of XML Schema defining a set of elements
named book:

<element name="book">

<complexType>

<sequence>

<element name="title" type="string"/>
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<choice minOccurs="1" maxOccurs="unbounded">

<element name="author" type="string">

<element name="editor" type="string">

</choice>

</sequence>

<attribute name="isbn" type="string">

</complexType>

</element>

and a proper Type Definition defining a corresponding type Book:

Book → book [ Book attr Title (Author | Editor)+ ]
Book attr → attr {Book isbn }
Book isbn → isbn [ Text ]
Author → author [ Text ]
Editor → editor [ Text ]
Title → title [ Text ]

Below we present XML Schema features whose representation by Type
Definition is not obvious.

1. For defining types being sets of elements XML Schema uses element
definitions. Additionally XML schema allows to use type definitions
to define sets of sequences of elements and attributes. Such types
defined outside of element definitions can be later used in different
element definitions or as a basis for type derivation. For example, we
can define a type Book and then use it in definition of an element
book :

<complexType ="Book">

<sequence>

<element name="title" type="string"/>

<choice minOccurs="1" maxOccurs=" unbounded">

<element name="author" type="string">

<element name="editor" type="string">

</choice>

</sequence>

<attribute name="isbn" type="string"/>

</complexType>

<element name="book" type="Book"/>

In the formalism of Type Definitions the rules defining types corre-
spond to element definitions in XML Schema. Thus, when we trans-
form such a schema into a Type Definition we ignore definitions of
types and consider only definitions of elements. Before transforming
a schema into a Type Definition we perform a kind of normalization
on the schema i.e. we replace the references to types in element def-
initions by corresponding definitions of types and then remove the
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definitions of types which are not parts of element definitions. Such
operation applied to the schema above results in the schema and the
Type Definition from the Example 24.

2. XML Schema provides a type called anyType which is the most general
type from which all simple and complex types are derived. anyType
can be seen as a set of all XML documents. It is possible to use
anyType like other types. This work extended the formalism of Type
Definitions by introducing the type Top, which plays the same role as
anyType.

3. A construct all in XML Schema is used to specify the set of children of
an element when their order is irrelevant. More precisely, all permu-
tations of child elements are valid, as in XML child elements always
occur in some order. Representation of such content models by reg-
ular type expressions often requires to list explicitly all the possible
permutations. Although the number of all such permutations is finite,
it may be so big that listing all the possibilities may be unfeasible.
Note, that we cannot define such a content model with a multiplicity
list as multiplicity lists are used to specify unordered data terms e.g.
a[ b[ ], c[ ] ] is not of the type defined by a rule A→ a{B C}.

4. Type derivation by restriction of a complex type is a declaration that
the derived type is a subset of a base type. When a new type is derived,
its full content model must be specified in such way that the new type
is a logical restriction of the base type. Although such a declaration
of type inclusion is useful for some applications it has no practical
meaning for a type system where type inclusion checking is performed
based on a content model (and not on a type inclusion declaration).

5. Type derivation by extension of a complex type is a way to define a new
type based on a type already defined. The content model of the new
type is a sequence with the content model of the base type followed by a
new content model. This is virtually equivalent to defining a new type
from scratch by just explicit declaration of the whole content model.
Again, although type extension mechanism may provide important
information for some applications, from the point of view of our type
system it can be seen just as syntactic sugar.

6. Element and attribute groups are named content models that can be
reused in multiple locations as fragments of content models. This can
be also seen as syntactic sugar as any schema with element and at-
tribute groups may be easily rewritten as an equivalent schema (defin-
ing the same class of XML documents) without them.

7. Substitution group is a mechanism that allows elements to be sub-
stituted for other elements. More precisely, elements can be assigned
to a special group of elements that are said to be substitutable for a
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particular named element called the head element. Elements in a sub-
stitution group must have the same type as the head element, or they
can have a type that has been derived from the head element’s type.
For instance, consider a definition of an element article containing ele-
ments title, author, and comment. The element comment is defined as
a head element of a substitution group and elements authorComment
and reviewerComment are assigned to the substitution group.

<element name="article">

<complexType>

<sequence>

<element name ="title" type="string"/>

<element name ="author" type="string"/>

<element ref ="comment"/>

</sequence>

</complexType>

<element/>

<element name="comment" type="string"/>

<element name="authorComment" type="string"

substitutionGroup="comment"/>

<element name="reviewerComment" type="string"

substitutionGroup="comment"/>

The declaration implies that elements authorComment and reviewer-
Comment can be substituted for an element comment in the instance
document. Such a declaration can be expressed by the following Type
Definition:

Article → article [ Title Author (Comment |
| aComment | rComment) ]

Comment → comment [ Text ]
aComment → authorComment [ Text ]
rComment → reviewerComment [ Text ]

8. Abstract elements and xsi:type. XML Schema provides a mechanism
to force substitution for a particular element or type. When an element
is declared to be abstract, it cannot be used in an instance document
and only a member of the element’s substitution group can appear
in the instance document. When an element’s type is declared as ab-
stract, all instances of that element must contain the attribute xsi:type
indicating a derived type that is not abstract. Because of the mecha-
nism called xsi:type an XML Schema may not satisfy the constraints
of single type tree grammar. For instance, consider a schema defin-
ing an abstract type Book, which is then used to derive by restriction
the new types Book1 and Book2. Furthermore, the schema contains
a definition of an element book whose content is of the abstract type
Book :
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<complexType name="Book" abstract="true" >

<sequence>

<choice minOccurs="0" maxOccurs="unbounded">

<element name="author" type="string"/>

<element name="editor" type="string"/>

</choice>

<element name="title" type="string"/>

</sequence>

</complexType>

<complexType name="Book1">

<complexContent>

<restriction base="Book">

<sequence>

<element name="author" type="string"

minOccurs="0" maxOccurs="unbounded"/>

<element name="title" type="string"/>

</sequence>

</restriction>

</complexContent>

</complexType>

<complexType name="Book2">

<complexContent>

<restriction base="Book">

<sequence>

<element name="editor" type="string"

minOccurs="0" maxOccurs="unbounded"/>

<element name="title" type="string"/>

</sequence>

</restriction>

</complexContent>

</complexType>

<element name="book" type="Book"/>

<element name="library">

<complexType>

<sequence>

<element ref="book" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

An instance document of this schema contains elements book with a
content matching the content model of Book1 or Book2. Additionally,
it is required that every instance element book contains information
about the type of its content. For example,
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<library>

<book xsi:type="Book1">...</book>

<book xsi:type="Book2">...</book>

...

</library>

The abovementioned schema can be expressed by the following non
proper Type Definition:

Library → book [ (Book1 | Book2 )∗ ]
Book1 → book [ Book1 attr Author∗ Title ]
Book2 → book [ Book2 attr Editor∗ Title ]
Book1 attr → attr {Type1 }
Book2 attr → attr {Type2 }
Author → author [ Text ]
Editor → editor [ Text ]
Type1 → xsi :type {Text1 }
Type2 → xsi :type {Text2 }
Text1 → ”Book1”
Text2 → ”Book2”

Such a type specification can be approximated by a proper Type Def-
inition which allows the document to contain elements of the abstract
type Book. Then, the rule for Library could be:

Library → book [ Book∗ ]
Book → book [ Book attr (Author |Editor)∗ Title ]
Book attr → attr {Type }
Type → xsi :type {Text1 | Text2 }
Text1 → ”Book1”
Text2 → ”Book2”
Author → author [ Text ]
Editor → editor [ Text ]

Note that the type Library defined in this way is a superset of the
corresponding set defined by the schema. This is because elements of
type Library can contain book elements with both authors and editors
elements.

3.3.3 Relax NG

The formalism of Type Definitions and Relax NG schema language are close
to each other as both are based on the production rules from the regular tree
grammars. However Relax NG has some significant extensions comparing
to proper Type Definitions. We will discuss the most important ones.

Before the presentation of more advanced features of Relax NG consider
a simple Relax NG schema
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First = element first { text }
Second = element second { text }
Author = element author { First, Second }
Editor = element editor { First, Second }

Book = element book {
attribute isbn { text },
element title { text },
(Author+ | Editor+)

}

The schema can be expressed by the following proper Type Definition.

Book → book [ Book attr Title (Author+ | Editor+) ]
Book attr → attr {Book isbn }
Book isbn → isbn [ Text ]
Author → author [ First Second ]
Editor → editor [ First Second ]
Title → title [ Text ]
First → first [ Text ]
Second → second [ Text ]

A content model of Relax NG can constrain both attributes and elements.
It is illustrated by the next example. It presents a modified definition of
the element book containing an attribute isbn and a list of authors or an
attribute publisher and a list of editors:

Book = element book {
(attribute isbn { text },
element title { text },
Author+)
|
(attribute publisher { text },
element title { text },
Editor+)

}
First = element first { text }
Second = element second { text }
Author = element author { First, Second }
Editor = element editor { First, Second }

Such schema can be represented by a non proper Type Definition:

Book → book [ (Book attr1 Title Author+) |
| (Book attr2 Title Editor+) ]

Book attr1 → attr {Book isbn }
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Book isbn → isbn [ Text ]
Book attr2 → attr {Book publisher }
Book publisher → publisher [ Text ]
Author → author [ First Second ]
Editor → editor [ First Second ]
Title → title [ Text ]
First → first [ Text ]
Second → second [ Text ]

An interesting feature of Relax NG are co-occurrence constraints. They
allow to choose a different content model depending on a value of an element
or attribute. For example, we can define bibliography containing entries
which have different structure depending on the value of the attribute type:

bibliography = element bibliography{
element entry{

attribute type {"article"}
element author { text }
element title { text }
element journal { text }

}*,
element entry{

attribute type {"inProceedings"}
element author { text }
element title { text }
element bookTitle { text }

}*
}

Such a schema can be represented by a non proper Type Definition:

Bibliography → bibliography [ Entry∗1 Entry∗2 ]
Entry1 → entry [ Entry1 attr Author Title Journal ]
Entry1 attr → attr {Entry1 type }
Entry1 type → type [ Article ]
Article → ”article”
Entry2 → entry [ Entry2 attr Author Title BookTitle ]
Entry2 attr → attr {Entry2 type }
Entry2 type → type [ Proceedings ]
Proceedings → ”inProceedings”
Title → title [ Text ]
Author → author [ Text ]
BookTitle → bookTitle [ Text ]

There is another way to construct a Type Definition equivalent to the
Relax NG schema from above. The Type Definition could define only one
type corresponding to the element entry and the content model of the type
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would be a disjunction of the content models of the two types (from the
previous Type Definition) corresponding to the element entry. However,
the new Type Definition would again be non proper.

Another thing that cannot be used in a straightforward way in Type Def-
initions is the interleave operator &. The operator can be used in a content
model in addition to the standard operators from regular expressions. The
operator can be used to specify unordered patterns. The following exam-
ple defines a book element containing elements title, author, publisher which
may appear in any order. It can also contain an element subtitle, which can
occur only after the element title.

Title = element title { text }
Subtitle = element subtitle { text }
Author = element author { text }
Publisher = element publisher { text }
Book = element book {

(Title, Subtitle?) &
Author &
Publisher}

We may say that the content model of the book element is partially
ordered. In literature about regular languages the operator & is known
as shuffle operator. According to [41] the operation shuffle applied to two
regular languages is a regular language. Thus, a content model with the
operator & can be expressed by a regular expression without &. A regular
language L which is a result of shuffling two other regular languages L1, L2

can be obtained in the following way. Let A1, A2 be DFA representing L1, L2,
respectively. The language L is represented by an automaton A, which for
each pair of states si, s′j from A1, A2, respectively, has a corresponding state
sij . Provided that s0 and s′0 are the initial states of A1, A2, respectively, the
initial state of A is s00. For each pair of final states: si in A1 and s′j in A2,
the final state in A is sij . A has a transition with a label l from a state sij

to a state si′j only if there is a transition in A1 with a label l from a state
si to si′ . Similarly, A has a transition in with a label l from a state sij to a
state sij′ only if there is a transition in A2 with a label l from a state s′j to
s′j′ .

Relax NG allows to specify a content model of an element without pro-
viding its name. For example, the schema

Book = element book {
element title { text },
element * { text } }

defines an element book containing a title and an arbitrary element with a
text content. Such a schema cannot be expressed by a Type Definition.
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Chapter 4

Reasoning about Types of
Xcerpt Program Results

This chapter presents a method of type inference for results of Xcerpt pro-
grams. The method is presented formally for a substantial fragment of
Xcerpt whose semantics was presented in Section 2.1.2.

First, we present a way of performing type inference for single Xcerpt
rules. This is presented on an abstract level using typing rules which are
based on the syntax of Xcerpt rules. Then we describe a way of using the
single rule type inference method for type inference for programs. We also
introduce theorems expressing soundness of the type system; we provide
their proofs in Appendix A.1.

The chapter also provides a practical algorithm for type inference for
single query rules which is a concretization of the typing rules. Additionally
it provides typing rules for most of the remaining Xcerpt constructs i.e. the
constructs that are not included in the considered Xcerpt fragment. It shows
how type analysis can be used to determine dependencies between rules in a
program. It also discusses relations between errors in programs and results
of type inference and type checking.

4.1 Motivation

The main goal of the type system is to infer a type of program results given
a specification of the types of input data (e.g. XML documents that are
queried). The inferred result type is a superset of the set of results of the
program. The type analysis can be useful for the programmer for finding
errors in a program or to assure that the program is correct wrt. a type
specification.

Type inference for a program requires a specification of the types of
input data. However if such specification is not given by the programmer it
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is assumed that input data is of type Top. In such case, usually a less precise
approximation of the set of program results is inferred by the system. The
main purposes the type system can serve, depend on whether a specification
of the result type, called specified result type, for a program is given (i.e. the
specification can be provided by the programmer). If such a specification is
missing usage of the type system is limited to the following:

� The programmer can check manually if the inferred result type con-
forms to his/her expectations. As a part of type inference for a pro-
gram, types of variables occurring in query rules are computed. The
information about types of variables can help to find errors in the
program as the variables may be not of the types intended by a user.

� If the inferred result type is empty it means that the program will never
give any results. Formally such a program is correct with respect to
the type specification. Practically this is another kind of error.

� Inferred result types for the rules of the program can be used to auto-
matically determine dependencies between rules. This knowledge can
be used e.g. for optimization of evaluation of programs.

Moreover, if a specification of the required result type is provided, it can
be used for the following purposes:

� It can be checked whether the inferred result type is included in the
specified one. If such inclusion check succeeds the user can be sure
that the program is correct with respect to the type specification.

� It can be checked whether the intersection of the inferred result type
and the specified result type is not empty. If it is empty then the
program will not produce any results of the required type.

Section 4.4 presents further discussion on applying the type system to dis-
covering and locating errors in programs

4.2 Type Inference for Xcerpt

The section presents a way of performing type inference for Xcerpt programs.
The method we present can be seen as a descriptive type system: the typing
of a program is an approximation of its semantics. Based on the assumption
that a type of each database queried by the program is given (or roughly
approximated by Top), a way of inferring a type of results of a program is
presented.

First we introduce a notion of variable-type mappings. Then we present
typing rules which are used for typing various syntactic Xcerpt constructs.
They allow to infer a result type for a rule given a type of intermediate
data queried by the rule. Then we present a way of using the typing rules

68



i
i

“phd” — 2008/1/21 — 0:58 — page 69 — #79 i
i

i
i

i
i

CHAPTER 4. REASONING ABOUT TYPES

to infer a type of results of an Xcerpt program. The presented method
can be seen as an abstract version of a an algorithm for type inference for
Xcerpt programs. A precise algorithm can be easily developed based on the
presented method.

4.2.1 Variable-type Mappings

This section presents auxiliary definitions used later on in this chapter. In
what follows we assume a fixed Type Definition D (describing the type of
the database).

To represent a set of answers (for a query and a set of data terms) we
will use a mapping Γ: V → E (called a variable-type mapping), where V is
the set of variables occurring in the considered query rule and E is a set
of expressions. E contains 0, the type names from D, and expressions of
the form T1 ∩ T2, where T1, T2 ∈ E . Each expression E from E denotes a
set [[E]] of data terms: [[0]] = ∅, [[T ]] = [[T ]]D for any type name T , and
[[T1 ∩ T2]] = [[T1]] ∩ [[T2]]. The set of answer substitutions corresponding to a
mapping Γ: V → E is

substitutionsD(Γ) = { θ | ∀X∈V Xθ ∈ [[Γ(X)]] }.

(According to our convention, we will often skip the index D.) Notice that
if θ ∈ substitutions(Γ) then V ⊆ dom(θ) and if additionally θ ⊆ θ′ then
θ′ ∈ substitutions(Γ). For a set Ψ of variable-type mappings we define
substitutions(Ψ) =

⋃
Γ∈Ψ substitutions(Γ).

We define ⊥,> : V → E by ⊥(X) = 0 and >(X) = Top for every X ∈ V .
For Y1, . . . , Yk ∈ V, T1, . . . , Tk ∈ E , mapping [Y1 7→ T1, . . . , Yk 7→ Tk] : V →
E is defined as

[Y1 7→ T1, . . . , Yk 7→ Tk](X) =
{

Ti if X = Yi

Top otherwise.

We will not distinguish between expressions T ∩ Top and T , between T ∩ 0
and 0, and between T ∩ U and U ∩ T (where T,U ∈ E).

For any Γ1, Γ2 : V → E we introduce Γ1∩Γ2 : V → E such that

(Γ1 ∩ Γ2)(X) = Γ1(X) ∩ Γ2(X).

Notice that Γ ∩ ⊥ = ⊥ and Γ ∩ > = Γ for any Γ: V → E .
Inclusion of types induces a pre-order v on the mappings from V → E , as

follows. If Γ and Γ′ are such mappings then Γ v Γ′ iff [[Γ(X)]] ⊆ [[Γ′(X)]] for
each variable X ∈ V . Notice that Γ v Γ′ is equivalent to substitutions(Γ) ⊆
substitutions(Γ′), provided that [[Γ(X)]] 6= ∅ for each X ∈ V .

For a particular query there may be many possible assignments of types
for variables. That is why we will use sets of mappings from V → E . For
such sets Ψ1 and Ψ2 we define:

Ψ1 uΨ2 = {Γ1 ∩ Γ2 | Γ1 ∈ Ψ1, Γ2 ∈ Ψ2},
Ψ1 tΨ2 = Ψ1 ∪Ψ2.
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Hence Ψ u {⊥} = {⊥}, Ψ u {>} = Ψ, for any set of mappings Ψ. We will
not distinguish between Ψ t {⊥} and Ψ, and between Ψ t {>} and {>}.

4.2.2 Typing of Query Rules

Here we present typing rules for the syntactic constructs of Xcerpt: query
terms, queries, construct terms and query rules. The rules abstract from
lower level details and may be seen as an abstraction of an algorithm for type
inference. They are similar to proof rules of logic, rules used in operational
semantics [47], and those used in prescriptive typing [20]. Employing rules
makes it possible to describe type inference in a formal and concise way.

The typing rules were introduced earlier in a joint work [11]. However,
there are some minor changes in the rules presented here with respect to
the rules in [11]. For example, the errors reported in the errata for [11] are
fixed and the type Top is handled.

Let p be a query rule which may query intermediate results of the pro-
gram (i.e. results of the rules of the program) as well as external resources
(e.g. XML data). We assume that the intermediate results queried by p are
of a type expressed by a set of type names U defined by a Type Definition
D. We also assume that specifications of types of the external resources
(such as DTD’s which can be translated into Type Definitions) are given
by a mapping type. The mapping associates each resource r occurring in p
with a type T = type(r) defined by D. The type contains the data term
δ(r) referred to by r (i.e. δ(r) ∈ [[T ]]). If a type specification for a resource
r is missing then type(r) = Top.

Query terms

The rules in this subsection provide a way to derive variable-type mappings
for a query term given a type of data terms to which the query term is
applied. They derive facts of the form D ` q : T . Γ, where D is a Type
Definition, q a query term, T a type name, and Γ a variable-type mapping,
whose domain is the set of variables occurring in the considered query rule.
The intention is that if q is applied to a data term d ∈ [[T ]] then the resulting
answer substitution is in substitutions(Γ) for some Γ such that D ` q : T .Γ
can be derived.

A typing rule has a number of premises (written above the solid line)
and one conclusion (written below the solid line). The rules may also have
a number of conditions (written below the rule) that have to be fulfilled
whenever the rule is applied.

b ∈ [[T ]]
D ` b : T . Γ

(Const)

where b is a basic constant.
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Thus, for a query term being a basic constant any variable-type mapping
can be derived.

Γ v [X 7→ T ]
D ` X : T . Γ

(Var)

Thus, application of a query term being a variable X to a type T results
in a variable-type mapping which binds X to some T ′ such that [[T ′]]D ⊆
[[T ]]D.

D ` q : T . Γ Γ v [X 7→ T ]
D ` X ; q : T . Γ

(As)

D ` q : T . Γ
D ` desc q : T . Γ

(Descendant)

D ` desc q : T ′ . Γ
D ` desc q : T . Γ

(Descendant Rec)

where T ′ ∈ types(r) and r is the content model of T .

D ` q1 : T1 . Γ · · · D ` qn : Tn . Γ
D ` l αq1, · · · , qnβ : T . Γ

(Pattern)

where T = T1 = . . . = Tn = Top, or
the rule for T in D is of the form T → l[ r ]
or it is of the form T → l{ r } and (αβ = {} or αβ = {{}}),

s is r with every type name U replaced by U |ε,
T1 · · ·Tn ∈ L(r) if αβ = [ ],
T1 · · ·Tn ∈ L(s) if αβ = [[ ]],
T1 · · ·Tn ∈ perm(L(r)) if αβ = {},
T1 · · ·Tn ∈ perm(L(s)) if αβ = {{}}.

We explain the fact that given a query term q = lαq1, . . . , qnβ, the typing
rule (Pattern) requires the same variable-type mapping Γ to be obtained
for all the query terms q1, . . . , qn. (A similar fact will hold for the typing
rule (And Query) in the next subsection.) Obviously, typing rules may
produce different Γi for each qi (i = 1, . . . , n). However, (due to the rules
(Var) and (As)) they can produce also any ”smaller” mapping Γ′i for each
qi i.e. Γ′i v Γi. In particular, each Γ′i may be Γ′i = Γ1 ∩ . . . ∩ Γn = Γ.
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Queries

The rules in this subsection provide a way to derive variable-type mappings
for a query given types of data terms to which the query is applied. In
general a query may be applied to data terms produced by query rules of
an Xcerpt program. As their results may be of different types, we consider
here a set of type names U instead of a single type T .

From the rules below one can derive facts of the form D ` Q : U . Γ,
where Q is a query, U a finite set of type names and Γ a variable-type
mapping. If θ is an answer substitution for Q and data terms from [[U ]] then
θ ∈ substitutions(Γ) for some Γ such that D ` Q : U . Γ can be derived.

D ` q : T . Γ T ∈ U

D ` q : U . Γ
(Query Term)

where q is a query term.

D ` q : T . Γ
D ` in(r, q) : U . Γ

(Targeted Query Term)

where type(r) = T .

D ` Q1 : U . Γ · · · D ` Qn : U . Γ
D ` and(Q1, . . . , Qn) : U . Γ

(And Query)

D ` Qi : U . Γ
D ` or(Q1, . . . , Qi, . . . , Qn) : U . Γ

(Or Query)

where 1 ≤ i ≤ n.

Construct terms

The rules for construct terms use the variable-type mappings, inferred by
the rules for queries, to compute the result type of a query rule. To for-
mulate typing rules for construct terms we need an equivalence relation on
mappings:

Definition 19. Given a Type Definition D, a set Ψ of variable-type map-
pings and a set V of variables, such that V ⊆ dom(Γ) and substitutions(Γ) 6=
∅ for each Γ ∈ Ψ, the relation ∼V ⊆ Ψ × Ψ is defined as: Γ1 ∼V Γ2 iff
[[Γ1(X)]] ∩ [[Γ2(X)]] 6= ∅ for all X ∈ V . The set of equivalence classes of the
transitive closure ∗∼V of ∼V is denoted by Ψ/ ∗∼V

.

72



i
i

“phd” — 2008/1/21 — 0:58 — page 73 — #83 i
i

i
i

i
i

CHAPTER 4. REASONING ABOUT TYPES

The following rules allow to derive facts of the form D ` c : Ψ . s, where
c is a construct term, Ψ is a set of variable-type mappings (for which the
types are defined by D) and s is a regular type expression. The intention
is that if the application of a substitution set Θ to c results in a data term
sequence Θ(c) = d1, . . . , dn and Θ ⊆ substitutions(Ψ) then D ` c : Ψ . s can
be derived such that each di ∈ [[Ti]] and T1 · · ·Tn ∈ L(s). For correctness of
the rules it is required that for any Γ ∈ Ψ, substitutions(Γ) 6= ∅ and for any
Γ1, Γ2 ∈ Ψ, Γ1

∗∼FV (c) Γ2.

(Tb → b) ∈ D

D ` b : Ψ . Tb

(Const)

where b is a basic constant.

[[T1]] = [[Γ1(X)]] · · · [[Tn]] = [[Γn(X)]]
D ` X : {Γ1, . . . , Γn} . T1 | · · · |Tn

(Var)

where T1, . . . , Tn are type names.

D ` c1 : Ψ . s1 · · · D ` cn : Ψ . sn (Tc → lα r β) ∈ D

D ` lαc1, . . . , cnβ : Ψ . Tc

(Pattern)

where if αβ = [ ] then r = s1 · · · sn,
otherwise, r is a multiplicity list approximating
the regular expression s1 · · · sn (i.e. [[s1 · · · sn]] ⊆ perm([[r]])) and
obtained using the algorithm from the next subsection ”Dealing
with multiplicity lists”.

D ` c : Ψ1 . s1 · · · D ` c : Ψn . sn {Ψ1, . . . , Ψn} = Ψ/ ∗∼F V (c)

D ` all c : Ψ . (s1 | · · · | sn)+
(All)

D ` c : Ψ1 . s1 · · · D ` c : Ψn . sn {Ψ1, . . . , Ψn} = Ψ/ ∗∼F V (c)

D ` some k c : Ψ . (s1 | · · · | sn)(1:k)
(Some)

Note, that for construct terms not being of the form some k c and all c
the derived facts are of the form D ` cn : Ψ . T1| · · · |Tn, where T1, . . . , Tn

are type names.
We need to explain the fact that all the presented typing rules assume

the same Type Definition D to be given. The typing rules are to be used
to infer a result type for query rules which is not yet known and it cannot
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be defined by D which is assumed to be known from the very beginning.
Thus, in practical usage of the typing rules the Type Definition D must be
constantly updated by adding definitions of newly constructed types. This
will result in a new Type Definition D′ ⊇ D. The intention is that the facts
derived by the typing rules will hold for the extended Type Definition D′.

Dealing with multiplicity lists. Here we discuss some issues related
to handling multiplicity lists by the typing rules for construct terms.

Notice, that the rule (Var) requires that a Type Definition D defines
types T1, . . . , Tn such that [[Ti]] = [[Γi(X)]]. In particular, this means that if
Γi(X) is not a type name i.e. it is an expression of the form Ai1 ∩ . . .∩Aiki

,
Ti is a type name representing the intersection of types Ai1, . . . , Aiki

. How-
ever, if D contains non intersectable multiplicity lists it may be impossible
to define a type being the intersection of given types. For such cases an
application of the rule (Var) is impossible and some approximations must
be done. This is expressed by the typing rule (Var Approx).

[[T1]] ⊇ [[Γ1(X)]] · · · [[Tn]] ⊇ [[Γn(X)]]
D ` X : {Γ1, . . . , Γn} . T1 | · · · |Tn

(Var Approx)

We assume that the types T1, . . . , Tn in the rule (Var Approx) are
computed by, first, approximating the multiplicity lists from D by inter-
sectable multiplicity lists using the method described in Section 3.2.2 and
then computing the needed intersections of types.

Now we present a way of construction of a multiplicity list approximat-
ing a regular expression s1 · · · sn used by the typing rule (Pattern) for
construct terms. If c1, ..., cn are rooted construct terms then s1, ..., sn are
type names. Thus s1 · · · sn is a multiplicity list and we take r = s1 · · · sn.
Moreover, if the labels of c1, ..., cn are distinct then r is an intersectable
multiplicity list. In a general case, each subexpression si of the regular ex-
pression s1 · · · sn is of the form (e1| · · · |em)(1:k), where m > 0, k > 0 is a
number or∞ and each subexpression of ej of si is a type name or it has the
same form as si. Let s′1 · · · s′n′ be a proper regular expression which is an ap-
proximation of the regular expression s1 · · · sn (i.e. [[s1 · · · sn]] ⊆ [[s′1 · · · s′n′ ]])
and which is obtained using the algorithm from Section 3.1.1. Then each s′i
is of the form (e1| · · · |em)(1:k) as above. Moreover, the intersection of any
pair of types represented by distinct type names occurring in s′1 · · · s′n′ is
empty.

To approximate s1 · · · sn by a multiplicity list, for each type name T ap-
pearing in s′1 · · · s′n′ we need to count the minimal number lT and maximal
number kT of its occurrences in the elements of the language L(s′1 · · · s′n′).
To do that we transform each s′i of the form (a(l1:k1)

1 | · · · |a(lm:km)
m )(l:k) into

a regular expression s′′i = (a(l′1:k1∗k)
1 · · · a(l′m:km∗k)

m ), where l′j = l ∗ lj if m = 1
and l′j = 0 if m > 0. The minimal and the maximal numbers of occur-
rences of each type name are the same in the strings of the language L(s′i)
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and L(s′′i ). We proceed with the same transformation for each subexpres-

sion a
(l′j :k

′
j)

j of s′′i . In this way we obtain an expression s′′′i of the form

U
(lU1 :kU1 )
1 · · ·U (lUp :kUp )

p , where each Uj is a type name. Now we concate-
nate the expressions s′′′i , for i = 1, . . . , n′ and replace multiple occurrences
of the same type name Uj by one occurrence for which the values of kUj

and lUj
are sums of the corresponding values for different occurrences of Uj .

The resulting expression r is a multiplicity list approximating the regular
expression s1 · · · sn i.e. [[s1 · · · sn]] ⊆ perm([[r]]).

Query Rules

For a given Type Definition D, query Q and a set U of types names, the
rules for queries nondeterministically generate variable-type mappings. Now
we describe which sets of generated mappings are sufficient for the purpose
of approximating the semantics of query rules.

Definition 20. Let D be a Type Definition. Let Q be a query term and W
a type name, or Q a query and W a set of type names. A set {Γ1, . . . , Γn}
of variable-type mappings is complete for Q and W wrt. D if

� D ` Q : W . Γi for i = 1, . . . , n, and

� if D ` Q : W . Γ and substitutions(Γ) 6= ∅, then there exists i ∈
{1, . . . , n} such that Γ v Γi.

Let Q be a query and W a set of type names or Q a query term and W
a type name from D. Here we explain a way a complete set of variable-type
mappings for Q and W can be obtained.

Consider a derivation tree [47] for a fact D ` Q : W . Γ. The non leaf
nodes of the tree are labelled by quadruplets D ` Q′ : W ′ . Γ, where Q′ is a
query and W ′ is a set of type names or Q′ is a query term and W ′ is a type
name from D. Leafs of the tree can be labelled by expressions of the form
Γ v [X 7→ T ]. The derivation tree for D ` Q : W . Γ has for each subquery
Q’ of Q:

� exactly one node labelled D ` Q′ : W ′ . Γ (for some W ′), if Q′ is not
of the form desc q

� at least one node labelled D ` Q′ : W ′ . Γ (for some W ′), if Q′ is of
the form desc q

Let us construct a derivation tree for D ` Q : W . Γ. As Γ will be
computed at the end we start the construction from a root labelled D `
Q : W. . From the conditions in the typing rules it follows that for each
newly constructed node labelled D ` Q′ : W ′. there is a finite number
of possibilities of choosing its children. We require that any label cannot
occur twice on a path of a tree. (Otherwise, a label D ` desc q : W ′.
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(for some q and W ′) could occur more than once on a path). In this way
we discard loops which are unproductive. When the tree is constructed we
compute Γ as follows. Let Γ = [X1 7→ S1, . . . , Xn 7→ Sn], where X1, . . . , Xn

are the variables occurring in the leafs of the tree , and each Si is of the
form Ti1 ∩ . . . ∩ Timi

, and Tij occurs in Si iff the condition Γ v [Xi 7→ Tij ]
occurs in the tree. Let nQ be the number of subqueries of Q, ndesc be the
number of the subqueries of the form desc q, and nT be the number of type
names defined by D. A number of non leaf nodes of a tree constructed in
this way is not greater then nQ + ndesc ∗ nT . As there is a finite number of
possibilities of choosing the set of children of each node, the set Λ of trees
which can be constructed in this way is finite (for given Q and W ).

Consider an arbitrary derivation tree λ for D ` Q : W . Γ. If we remove
from it iteratively parts of paths of the form D ` desc q : W ′ . Γ, . . . , D `
desc q : W ′.Γ we will obtain a tree which is isomorphic to some tree λ′ ∈ Λ.
Moreover, for each node in λ labelled D ` Q′ : W ′ . Γ the corresponding
node in λ′ is labelled D ` Q′ : W ′ . Γ′. Additionally, Γ v Γ′, as Γ′ is the
most general variable type mapping satisfying the conditions of the tree λ.
Thus, the set of variable-type mappings corresponding to the trees from Λ
is complete for Q and W .

The following rule will be used to infer a type of query rule results. It
allows to derive facts of the form D ` (c← Q) : U . s1 | · · · | sn where c←Q
is a query rule, U is a finite set of type names and si are regular type
expressions. The intention is that if we apply a query rule c←Q to a set
of data terms of a type [[U ]] then we obtain results belonging to the set
[[s1 | · · · | sn]].

D ` c : Ψ1 . s1 · · · D ` c : Ψn . sn {Ψ1, . . . , Ψn} = Ψ/ ∗∼F V (c)

D ` (c← Q) : U . s1 | · · · | sn

(Query Rule)

where Ψ is complete for Q and U wrt. D,
for each Γ ∈ Ψ, substitutions(Γ) 6= ∅.

Note, that as a construct term c cannot be of the form some k c′ and
all c′, the derived facts are of the form D ` (c ← Q) : U . T1 | · · · | Tn,
where T1, . . . , Tn are type names. The set of type names derived for a query
rule p and a set of type names U will be denoted as resType(p, U). Thus

resType(p, U) = {T1, . . . , Tn},

where D ` p : U . T1 | · · · | Tn.

Example 25. Consider a Type Definition D = {T → l[A∗B C], A→ ”a”,
B→ ”b”, C→ ”c”, R1 → a[A+A], R2 → a[A+B], R3 → a[(A |B)+C] } and
the query rule

a [ allX, Y ] ← l [[ X, Y ]]
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abbreviated as c0 ← q. We apply the query rule to a set of types U =
{T,A, B, C}. First we need to find a complete set of mappings Ψ0 for q
and U . If we apply the query term q to the type T using the rules for
query terms we can derive facts D ` q : T . Γi for i = 1, . . . , 4, where
Γ1 = [X 7→A, Y 7→A], Γ2 = [X 7→A, Y 7→B], Γ3 = [X 7→A, Y 7→C] and Γ4 =
[X 7→B, Y 7→C]. If we apply the query term q to the type A,B or C we
cannot derive anything using the rules. Hence, the rules for queries allow
us to derive D ` q : U . Γi for i = 1, . . . , 4. The set Ψ0 = {Γ1, Γ2, Γ3, Γ4} is
complete for q and U . Since FV (c0) = {Y }, Ψ0/ ∗∼FV (c0)

= {Ψ1, Ψ2, Ψ3},
where Ψ1 = {Γ1}, Ψ2 = {Γ2}, Ψ3 = {Γ3, Γ4}. Now we apply each of Ψi to
the construct term c0. Using the rules for construct terms we can derive the
following facts: D ` c0 : Ψ1 . R1, D ` c0 : Ψ2 . R2 and D ` c0 : Ψ3 . R3.
Using the rule (Query Rule) we can derive D ` c0←q : U .R1 |R2 |R3. It
means that if the rule c0 ← q is applied to a set of data terms from [[U ]] all
the obtained results are in the set [[R1 |R2 |R3]].

The following theorem expresses the correctness of the typing rules wrt.
the semantics given in Section 2.1. More precisely, it expresses the existence
of a type derivation for a rule whenever it has a result for some set of data
terms Z of the type denoted by a set U of type names. It also expresses that
any type derived for a query rule p and a set of type names U , is a correct
approximation of the set of results for p and any set Z of data terms of the
type denoted by U i.e. res(p, Z) ⊆ [[resType(p, U)]].

Theorem 1 (Soundness of type inference for a rule). Let D be a Type
Definition and p be a query rule, where for each targeted query term in(r, q)
in p there is a type name T = type(r) defined in D. Let U be a set of type
names and Z a set of data terms such that Z ⊆ [[U ]].

If a result for p and Z exists then there exist s and D′ such that D′ ⊇ D
and D′ ` p : U . s.

If D ` p : U . s and d is a result for p and Z, then d ∈ [[s]].

Proof. See Appendix A.1.1.

4.2.3 Typing of Programs

In the previous sections we presented a method for type inference for a query
rule given a type of intermediate data queried by the rule. The method
allows to compute the set resType(p, U) of type names for a rule p and a
type U of intermediate data (produced by rules of the program). Here we
show how the method can be used in a context of a program where for a
particular rule the type U is not known. Thus we present a way of typing
Xcerpt programs instead of single rules.

The following algorithm is based on the fixed point semantics of Xcerpt
expressed by the Definitions 11 and 15. It iteratively computes types of
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intermediate results of query rules given a type of intermediate results ob-
tained in the previous step (in the first iteration the type of intermediate
results is empty). This process is repeated until a fixed point is reached i.e.
the type of intermediate results does not change in the consecutive steps.

Definition 21 (Immediate consequence operator for rule result types). Let
P be a set of Xcerpt query rules. TP is a function defined on sets of type
names such that

TP (U) =
⋃
p∈P

resType(p, U).

Our proofs of Theorems 2, 3 below are based on monotonicity of TP ,
which implies [[T i

P (∅)]] ⊆ [[T j
P (∅)]] for i ≤ j. Sufficient conditions for mono-

tonicity (Corollary 1 in Appendix A.1.2) are:

� no grouping constructs in the rules of P ,

� if the head of a rule from P contains a construct term l{c1, . . . , cn}
then c1, . . . , cn are rooted construct terms with distinct labels,

� the type names occurring in the argument of TP and the type of each
external resource occurring in P are specified by a Type Definition in
which all multiplicity lists are intersectable.

We conjecture that Theorems 2, 3 hold in a more general case.

Theorem 2. Let P = (P ′, G) be an Xcerpt program and P = P ′\G. As-
sume that TP is monotonic. If d is a result of a rule p in P ′ then there
exists i > 0 such that

d ∈ [[resType(p, T i
P (∅))]] ⊆ [[TP ′(T i

P (∅))]].

If [[T j+1
P (∅)]] = [[T j

P (∅)]] for some j > 0 then the above holds for i = j.

Proof. See Appendix A.1.2.

Example 26. Consider the Xcerpt program P = ({p1, p2, g}, {g}) from Ex-
ample 6 (in Section 2.1):

p1 = fo[ X, Y ]← in( ”file:addrBooks.xml”,
addr-books{{ addr-book{{

owner [X], entry{{name[Y ], relation[ ”friend” ] }} }} }} ),
p2 = foaf [ X, Y ]← or( fo[ X, Y ], and( fo[ X, Z ], foaf [ Z, Y ] ) ),
g = clique-of-friends[ all foaf {X, Y } ]← foaf [ X, Y ]
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and the following Type Definition

AddrBs → addr-books[ AddrB∗ ]
Owner → owner[ Text ]
AddrB → addr-book[ Owner Entry∗ ]
Name → name[Text]
Entry → entry[ Name Rel PhNo∗ Address? ]
Rel → relation[ RelCat ]
RelCat → ”friend” | ”family” | ”colleague” | ”acquaintance”
PhNo → phoneNo[ Text ]
Address → address[ Street ZipC? City Country? ]
Street → street[ Text ]
ZipC → zip-code[ Text ]
City → city[ Text ]
Country → country[ Text ]

Assume that the XML document queried by the rule p1 is of the type AddrBs
from the Type Definition i.e. type(”file:addrBooks.xml”) = AddrBs. We
want to infer result types of the rules of the program.

We employ TP where P = {p1, p2}. TP (∅) = resType(p1, ∅)∪resType(p2,
∅). The type inference algorithm returns resType(p1, ∅) = {Fo}, where the
type Fo is defined as Fo → fo[Text Text ], and resType(p2, ∅) = ∅ (as the
rule p2 does not query any external data). Thus TP (∅) = {Fo}.

T 2
P (∅) = TP (TP (∅)) = TP ({Fo}) = resType(p1, {Fo}) ∪ resType(p2,

{Fo}) = {Fo} ∪ {Foaf } = {Fo,Foaf }, where the rule for Foaf is Foaf →
foaf [Text Text ]. Similarly T 3

P (∅) = {Fo,Foaf }. Hence, U∞ = {Fo,Foaf } is
a fixed point of TP .

Now, we can obtain the final result types of the rules of P: resType(p1,
U∞) = {Fo}, resType(p2, U

∞) = {Foaf } and resType(g, U∞) = {Cof },
where the type Cof is defined as Cof → clique-of-friends{Foaf +}. 2

Termination

There are two difficulties related to computing a fixed point of TP . First,
we have to check whether the current iteration of TP produces a fixed point.
Then, the iterations TP may not terminate (all the sets [[T i

P (∅)]] may be
distinct).

As [[T i
P (∅)]] ⊆ [[T i+1

P (∅)]], for checking [[T i
P (∅)]] = [[T i+1

P (∅)]] it is sufficient
to check if [[T i

P (∅)]] ⊇ [[T i+1
P (∅)]]. This cannot be done efficiently (the task

is EXPTIME-hard), and an algorithm is complicated. The algorithm for
checking type inclusion presented in Section 3.2.3 is simple and efficient but
it can only be applied to proper Type Definitions. This restriction is often
not satisfied by the Type Definitions created by evaluating TP .

Here we show that for non w-recursive programs the computing of a fixed
point terminates and determining when the fixed point is obtained is easy.
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Proposition 2. Let P be a set of rules and n > 0. If [[Tn−1
P (∅)]] 6= [[Tn

P (∅)]]
then there exist p1, . . . , pn ∈ P such that pn �w · · · �w p1.

Proof. See Appendix A.1.2.

From the Proposition it follows that if P is not w-recursive then the
fixed point of TP is reached in at most |P | steps: [[T i

P (∅)]] = [[T i+1
P (∅)]] for

any i ≥ |P |. Thus T
|P |
P (∅) is a fixed point of TP . Moreover, if the longest

chain pk �w · · · �w p1 of rules in P contains k rules then the fixed point is
reached in k steps.

Dealing with Recursion

Weak static recursion in a program P can prevent reaching a fixed point of
TP , thus it may make impossible inferring result types of query rules of P.
Now we show how this problem can be overcome.

One way of assuring that a fixed point will be reached in a w-recursive
program P is breaking the cycles in the graph of relation �w of P. This
can be achieved by selecting a rule p belonging to the cycle, finding an
approximation [[Wp]] of the set of results of p in some independent way
(described later on), and removing p from the program. Instead, Wp is
added to the type computed at each iteration. Thus instead of computing
T i

P (∅), we compute T̂ i
P (∅), where T̂P (U) = TP\{p}(U) ∪Wp.

This approach can be applied to break all cycles detected in the graph.
Let P = (P ′, G) and P = P ′ \G. Assume that P0 = { p1, . . . , pm} are rules
removed from P to break all cycles. Assume also that a set of type names
W = Wp1 ∪ . . . ∪Wpm

is an approximation of their results, i.e. that if d is
a result of pi in P then d ∈ [[Wpi

]]. Instead of TP , we employ T̂P , defined
by T̂P (U) = TP\P0(U) ∪W . If all cycles are broken in the the program,
i.e. there is no w-recursion in P\P0, then the fixed point U∞ of T̂P will be
found after at most |P | −m iterations: U∞ =

⋃∞
i=1 T̂ i

P (∅) =
⋃|P |−m

i=1 T̂ i
P (∅).

(This follows from Proposition 2, which also holds for T̂P with basically the
same proof.) The fixed point U∞ approximates the set of results of the non
goal rules of P.

To make the approach work, we must know how to find a correct approx-
imation Wp of the set of results of a rule p in P. A rough approximation
can be obtained based on the head h of p alone. If no variable occurs twice
in h then the approximation is the type of all instances of h. Otherwise we
take the set of all instances of h′, where h′ is h with each variable occur-
rence replaced by a distinct variable. For instance, such an approximation
for a rule c[ a[ X ], X ] ← Q is the type T defined by a Type Definition
D = {T → c[ ATop ], A→ a[ Top ] }.

A more precise approximation can be provided by the user. In this case
it should be checked that the approximation is indeed correct. This can be
achieved by checking whether [[resType(p, U∞)]] ⊆ [[Wp]] for each employed
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approximation Wp of the results of a rule p. (The problems with inefficiency
of inclusion checking, discussed in the previous section, can be avoided by
requiring that the Type Definition provided by the user is proper.)

We presented a method of approximating the result sets of w-recursive
programs. The following theorem establishes its correctness.

Theorem 3. Let P = (P ′, G) be an Xcerpt program, P = P ′ \G, and P0 ⊆
P such that P \P0 is not w-recursive. Assume that TP is monotonic. Let W

be a set of type names, and let T̂P (U) = TP\P0(U)∪W for any set U of type
names. Let U∞ = T̂ k

P (∅) be a fixed point of T̂P (i.e. [[T̂P (U∞)]] = [[U∞]]). If
[[resType(p, U∞)]] ⊆ [[W ]] for each p ∈ P0 then

d ∈ [[resType(p, U∞)]] ⊆ [[U∞]] for any result d of a rule p ∈ P ,
d ∈ [[resType(p, U∞)]] ⊆ [[TP ′(U∞)]] for any result d of a rule p ∈ P ′,
[[TP (U∞)]] ⊆ [[U∞]] and [[T j

P (∅)]] ⊆ [[U∞]] for any j > 0.

Moreover, U∞ in the last three lines may be replaced by T j
P (U∞), for any

j > 0.

Proof. See Appendix A.1.2.

It follows from the theorem that · · · ⊆ [[T i
P (∅)]] ⊆ [[T i+1

P (∅)]] ⊆ · · · ⊆
[[T j+1

P (U∞)]] ⊆ [[T j
P (U∞)]] ⊆ · · · .

The theorem shows a way of more precise approximation of the set of
program results. After obtaining a fixed point U∞ of T̂P , we iteratively
apply TP a few times. An intuitive explanation is that in U∞ the approx-
imation of the results of a rule p ∈ P0 is the same as that given by W .
Analyzing the results of p applied to the data from [[U∞]] may exclude some
data terms from [[W ]]. Thus it may improve the approximation of results
of p, which in turn may improve the approximation of results of the rules
which w-depend on p.

Example 27. Consider an Xcerpt program P = ({p1, p2, g}, {g}), where

p1 = c[ b[ X ] ]← and( c[ X ], in( res, descX ) ),
p2 = c[ X ]← in( res, b[[ a[ X ] ]] ),
g = r[ all X ]← c[ X ]

and a Type Definition D = {A→a[ Text ], T→b[ (A |T |Text)∗ ]}. Assume
that the type of the resource res is T .

We want to approximate the set of results of P. We show that a fixed
point cannot be obtained by computing T i

P (∅) where P = {p1, p2}. Then we
apply Theorem 3. As [[W ]] we first use the set of all instances of the head of
the w-recursive rule p1. Then we show how a better approximation can be
obtained by employing a more precise initial specification W .

We first find that, independently from U , resType(p2, U) = {C1}, where
the rule for C1 is C1→ c[ Text ]. This is because the query in( res, b[[ a[ X ] ]] )
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binds X to a value from [[Text ]]. Thus TP (U) = resType(p1, U)∪resType(p2,
U) = resType(p1, U) ∪ {C1}.

Hence TP (∅) = resType(p1, ∅) ∪ {C1} = ∅ ∪ {C1} = {C1}. Now
resType(p1, {C1}) = {C2}, where type C2 is defined by the rules C2→ c[ B1 ],
B1→ b[ Text ] (as the query c[X] binds X to a value from [[Text ]] and
in( res, descX ) binds X to a value from [[{Text , A, T}]]). Hence TP (TP (∅)) =
TP ({C1}) = {C2} ∪ {C1}.

Generally we obtain T i
P (∅) = {C1, . . . , Ci} (i > 1), with rules Cj→c[Bj−1],

Bj→b[Bj−1] (for j > 1). All the sets [[T i
P (∅)]] are distinct and a fixed point

will never be reached.
We can however approximate the results of P by applying Theorem 3.

The program with p1 removed is not w-recursive. The set of results of p1 can
be approximated by the set [[Ca]] of all the instances of the head of p1; the type
Ca is defined by rules Ca→c[ Ba ], Ba→b[ Top ]. We look for a fixed point of
T̂P , where T̂P (U) = T{p2}(U)∪{Ca} = resType(p2, U)∪{Ca}. By the discus-
sion following Proposition 2, the fixed point is U∞ = T̂ 1

P (∅) = {C1, Ca}. As
an approximation of the set of results of P we obtain resType(g, {C1, Ca}) =
{R} where type R is defined as R→r[ (Text |Ba)+ ].

To obtain a better approximation we can apply TP to the set U∞. U∞
1 =

TP (U∞) = resType(p1, U
∞)∪{C1} = {C ′

1}∪{C1}, where type C ′
1 is defined

by the rules C ′
1→c[ B′

1 ], B′
1→b[ Text |B′ ], B′→b[ Text |A |T ]. This allows

to obtain a more precise type of the goal rule which is resType(g, U∞
1 ) =

{R1}, where type R1 is defined as R1→r[ (Text |B′
1)+ ].

By applying TP to U∞ multiple times we can further improve the pre-
cision of the approximation. U∞

i = T i
P (U∞) = {C1, C

′
i}, where type C ′

i is
defined by the rules C ′

i→c[ B′
i ], B′

i→b[ Text |B′
i−1 ] for i > 1. This produces

a type Ri of results of P defined as Ri→r[ (Text |B′
i)

+ ].
The above approximations are obtained based on the automatic rough

approximation Ca of the set of results of the rule p1. However, the user
can provide a more precise result type of the rule p1 than Ca e.g. a type
Cu defined by the rules Cu→c[ Bu ], Bu→b[ Text |Bu |Cu ]. Based on this
a fixed point of the operator T̂ ′

P (U) = T{p2}(U) ∪ {Cu} can be computed,
which is U∞

u = {C1, Cu}. To make sure that the approximation Cu pro-
vided by the user is correct we test whether [[resType(p1, U

∞
u )]] ⊆ [[Cu]].

resType(p1, U
∞
u ) = {C}, where type C is defined by the rules C→c[ B ],

B→b[ Text |B ]. As [[C]] ⊆ [[Cu]] the test is successful.
To improve the approximation U∞

u of the set of results of p1, p2 we can
apply the operator TP to U∞

u . U∞
u1

= TP (U∞
u ) = {C1, C}. Further applica-

tions of TP to U∞
u provide the same results i.e. T i

P (U∞
u ) = U∞

u1
, for i > 0.

Based on U∞
u1

we obtain a precise type Ru of the goal rule which is defined
as Ru→r[ (Text |B)+ ]. 2
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4.2.4 Exactness of Type Inference

In this section we present reasons of inaccuracies of the type inference and
discuss when the type inference is exact. Also the section suggests some
ways of possible improvements in the type system.

Query terms

The set of variable type mappings Ψ produced by the typing rules for query
terms expresses a superset Θ of the set of possible answers for a query term
q. If q does not contain restricted variables (i.e. a construct ;) then the set
Θ is the exact set of answers.

Proposition 3. Let D be a Type Definition without nullable type names,
and whose content models do not contain useless type names. Let q be a
query term, T a type name from D, and Θ = { θ |D ` q : T . Γ, θ ∈
substitutionsD(Γ) }. If q does not contain ; then each θ ∈ Θ is an answer
for q and some d ∈ [[T ]]D.

Proof. See Appendix A.2.

Example 28. Consider a Type Definition D = {T→l[A], A→a[B∗], B→”b”}
and a query term q1 = l[ X;a[ ] ]. The typing rules for query terms allow to
infer the fact D ` q1 : T .Γ, where Γ = [X 7→ A]. The set substitutionsD(Γ)
is not the exact set of answers for the query term q1 and a database of
type T i.e. it contains substitutions which cannot be answers for q1 e.g.
θ = {X/a[”b”]}. In contrast, the same mapping Γ can be inferred for the
query term q2 = l[ X ] and substitutionsD(Γ) is the exact set of answers for
q2 and a database of type T .

The paper [26] presents a way of avoiding approximations when handling
query terms with a construct ;.

Queries

The set of variable type mappings Ψ produced by the typing rules for queries
expresses a superset Θ of the set of possible answers for a query Q. If Q does
not contain restricted variables (i.e. a construct ;) and multiple occurrences
of the same resource (as an argument of a construct in(. . .)) under the scope
of a construct and(. . .) then the set Θ is the exact set of answers.

Example 29. Consider a Type Definition D = {A→a[ B|C ], B→b[ Text ],
C→c[ Text ]} and a query Q = and( in(r, a[ b[ X ] ]), in(r, a[ c[ X ] ])). As-
suming that type(r) = A the typing rules for query terms and queries allow to
infer the fact D ` Q : ∅.Γ, where Γ = [X 7→Text]. The set substitutionsD(Γ)
is not the exact set of answers for Q and ∅ as substitutionsD(Γ) 6= ∅ and
the set of answers for Q and ∅ is empty.
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Proposition 4. Let D be a Type Definition without nullable type names,
and whose content models do not contain useless type names. Let U be a
set of type names from D, Q be a query and Θ = { θ |D ` Q : U . Γ, θ ∈
substitutionsD(Γ) }. Let T1, . . . , Tn be type names in D such that type(ri) =
Ti for each targeted query term in(ri, qi) in Q (i = 1, . . . , n). If Q does not
contain ; and multiple occurrences of the same resource (as an argument
of a construct in(. . .)) under the scope of a construct and(. . .) then for each
θ ∈ Θ there exist

� data terms d1, . . . , dn of types T1, . . . , Tn, respectively,

� a set Z ⊆ [[U ]]D of data terms

such that θ is an answer for Q′ and Z, where Q′ is Q with each targeted
query term in(ri, qi) replaced by a targeted query term in(r′i, qi), such that
δ(r′i) = di.

Proof. See Appendix A.2.

Construct Terms and Query Rules

This section presents sources of inaccuracies which are related to construct
terms. Then it summarizes all conditions for a query rule result type to be
exact.

First, we define what we mean by an exact result type of a query rule.
Let D be a Type Definition, U be a set of type names from D, Q be a query,
and T1, . . . , Tn be type names in D such that type(ri) = Ti for each targeted
query term in(ri, qi) in Q. A type [[R]]D is an exact result type for c ← Q
with respect to U and T1, . . . , Tn iff the following two conditions hold:

� any data term dr which is a result for c ← Q and some set of data
terms Z ⊆ [[U ]] belongs to [[R]]D i.e. dr ∈ [[R]]D

� for each data term d ∈ [[R]]D there exist

– data terms d1, . . . , dn of types T1, . . . , Tn, respectively,

– a set of data terms Z ⊆ [[U ]]

such that d is a result for c← Q′ and Z, where Q′ is Q with each tar-
geted query term in(ri, qi) replaced by a targeted query term in(r′i, qi),
such that δ(r′i) = di.

The typing rules for construct terms introduce an approximation which
is related to the constructs all and some. Because of the constructs the
typing rules for construct terms cannot consider each variable type mapping
separately. The mappings must be grouped into equivalence classes which
make a result type of query rules not exact even if the query rule is without
all and some.
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Example 30. Let T1, T2 be types such that [[T1]] ∩ [[T2]] 6= ∅. Let Γ1 =
[X 7→T1, Y 7→T2], Γ2 = [X 7→T2, Y 7→T1] and let Ψ = {Γ1, Γ2} be a complete
set of variable-type mappings for some query Q and some set of types U .
Additionally, we assume that the set substitutionsD(Ψ) is an exact set of
answers for Q. Consider a query rule c[X, Y ]← Q. As Γ1, Γ2 belong to one
equivalence class with respect to the free variables of c[X, Y ], the inferred
result type for c[X, Y ] ← Q produced by the typing rule (Query Rule) is
R, which is defined as R → c[ (T1|T2)(T2|T1) ]. This type is not exact set
of possible results as it contains data terms which cannot be results for the
query rule c[X, Y ]← Q e.g. c[t1, t2], where t1, t2 ∈ [[T1]]\[[T2]].

The inaccuracies related to equivalence classes of variable-type mappings
do not occur, if all equivalence classes that appear in the derivation of the
inferred result type for a query rule, consist of one variable-type mapping
only.

Unfortunately, this condition is not sufficient for the inferred result type
to be exact. There is another reason of inexactness which is related to group-
ing constructs. For example, an inferred result type for a rule c[ allX ]← Q
can be defined as R → c[ T+ ] for some T . A data term d of the type R
can have the same data term appearing multiple times as a direct subterm
of d. However, according to the Xcerpt semantics (Section 2.1.2) all direct
subterms of each result d′ of the rule are distinct. Thus e.g. a data term
c[ ”a”, ”a” ] cannot be a result of the rule although it can be of type R.

Abandoning the constructs all and some would make it possible to create
a simpler typing rule for query rules. Such a simpler typing rule allows to
avoid the approximations related to equivalence classes:

D ` c : Ψ . s D ` Q : U . Γ Ψ = {Γ}
D ` (c← Q) : U . s

(Query Rule 2)

where c does not contain constructs all and some.
Note, that the typing rule does not require a complete set of variable-type

mappings.

Example 31. Let T1, T2, Γ1, Γ2, Ψ be defined as in Example 30. We consider
the same query rule c[X, Y ]← Q. To obtain the result type of the query rule
we apply the typing rule (Query Rule2) twice: once for Γ1 and once for
Γ2. The first application of (Query Rule2) results in the result type R1

defined as R1 → c[ T1T2 ] and the second application results in the result type
R2 defined as R2 → c[ T2T1 ]. The type of results [[R1|R2]] is exact as it does
not contain data terms which cannot be results of the query rule.

Another reason of impreciseness of the inferred result type is the approxi-
mation introduced in the rule (Pattern). In the case where αβ = { } in the
rule, the regular expression s1 · · · sn must be approximated by a multiplicity
list.
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An inferred result type for a query rule p may be also inexact if a con-
struct term in p contains multiple occurrences of the same variable. In such
case each occurrence of the same variable in a construct term must be re-
placed with the same value. It is not sufficient for the values to be of the
same type. It may be impossible to represent such a set of results by our
formalism.

Example 32. Consider a query rule c[X, X] ← l[X] which is applied to a
data term of type T defined by a Type Definition D = {T → l[Text] }.
The inferred result type for the query rule would be R defined as R →
c[Text Text]. Although a data term d = c[”text1”, ”text2”] belongs to [[R]], d
cannot be a result for the query rule as every result is a data term with two
identical subterms.

Another issue which may lead to inexactness of an inferred result type
is a Type Definition containing non intersectable multiplicity lists. For such
Type Definitions it may be needed to use the construct term typing rule
(Var Approx) which may cause the inferred result type to be not exact.

Now, we sum up the conditions needed for an inferred result type of a
query rule to be exact. Let D be a Type Definition, U a set of type names,
c ← Q a query rule , and T1, . . . , Tn types of databases queried by Q. Let
[[R]]D be a type of results inferred with the typing rules (of the previous
sections) for c← Q and types U, T1, . . . , Tn. The type [[R]]D is an exact type
of results of p = c← Q wrt. U, T1, . . . , Tn if

� the Type Definition D

– does not contain non intersectable multiplicity lists,

– does not contain content models with useless or nullable type
names,

� the body Q of p

– does not contain a construct ;,

– does not contain multiple occurrences of the same resource under
the scope of a construct and(. . .),

� the head c of p

– does not contain constructs all and some,

– does not contain curly braces ({ }),
– does not contain multiple occurrences of a variable,

� all equivalence classes that appear in the derivation of the inferred
type consist of one variable-type mapping only.
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The last condition is satisfied if (1) any two types defined by D, except
Top, are disjoint, and (2) Top appears in no content model in D, and (3)
for each external resource r appearing in Q, type(r) 6= Top.

The abovementioned conditions can be generalized for a program. The
type inferred for a program is exact if the program is not recursive, and
if the conditions are satisfied for the rules of the program and the Type
Definition defining types of queried data. Moreover it is required that the
Type Definition defining result types inferred for rules in a program also
satisfies the abovementioned conditions for a Type Definition. The first of
the conditions, namely, that the Type Definition does not contain non in-
tersectable multiplicity lists, is satisfied if the heads of rules of the program
do not contain curly braces ({ }). In order to assure that the second con-
dition (no content models with useless or nullable type names) is satisfied
the presented type inference algorithm must be augmented by a procedure
which eliminates useless and nullable type names from content models of
the inferred types.

4.2.5 Type Inference Algorithm for Query Rules

We presented a type inference algorithm for programs given an algorithm for
type inference for single rule. The latter was presented only in an abstract
way by means of typing rules. Here we present a concrete algorithm for a
single query rule, that is an implementation of the typing rules from Section
4.2.2. The algorithm computes the type of results resType(p, U) of the query
rule p = c← Q which is applied to data terms of type [[U ]] (i.e. data terms
produced by other query rules) and data terms from the resources specified
in the query rule Q (i.e. from external databases). We assume that a set
of types U is given as an input to the algorithm together with the types of
resources occurring in Q (given by the mapping type for each resource ri).
All these types are defined by a given Type Definition D. The algorithm
consists of two main steps. First, a complete set of variable-type mappings
Ψ for Q and U must be found. Then, based on Ψ types of query rule results
are built.

Computing a complete set of variable-type mappings

Here we describe a method for computing a complete set of variable-type
mappings. The method, which is based on typing rules for queries, is imple-
mented as a procedure mappingSet and presented later on in this section.
First, we present a procedure match which describes a way of typing query
terms, which are parts of queries. The procedure computes a complete set
of variable type mappings for a given query term q and a given type T .

For a type name T we define a set of reachable type names reachable(T )
in the following way. If T is not a type variable then reachable(T ) = ∅. Let
r be a content model of T . A type name T ′ ∈ reachable(T ) iff
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� T ′ ∈ types(r), or

� T ′ ∈ types(r′′), where T ′′ ∈ reachable(T ) is a type variable and r′′ is
a content model of T ′′.

Now we are ready to present the procedure match.

match(q, T ) :
IF q is a variable X THEN

return {[X 7→ T ]}
IF q is of the form X ; q′

return {[X 7→ T ]} umatch(q′, T )
IF q is of the form desc q′ THEN

return match(q′, T ) t
⊔

T ′∈reachable(T ) match(q′, T ′)
(Now q is a rooted query term or a basic constant).

IF T = Top THEN return {>}
IF root(q) 6= label(T ) THEN return ∅
IF T is a type constant or a special type name THEN

IF q is a basic constant in [[T ]] THEN return {>} ELSE return ∅
let q = lαq1 · · · qnβ (n ≥ 0),
IF { } are the parentheses for T and (αβ = [ ] or αβ = [[ ]]) THEN

return ∅
let r be the regular type expression in the rule for T in D
let s be r with every type name U replaced by U |ε

let L′ =


L(r), if αβ = [ ]
perm(L(r), if αβ = { }
L(s), if αβ = [[ ]]
perm(L(s)), if αβ = {{ }}

return {Γ1 ∩ . . . ∩ Γn | T1 . . . Tn ∈ L′,
Γ1 ∈ match(q1, T1), . . . , Γn ∈ match(qn, Tn) }

The procedure match is inefficient in general. The crucial operation
which determines its complexity is finding sequences of type names T1, . . . , Tn

belonging to a permutation of a regular language L(r). In the worst case,
there may be mn sequences of T1 · · ·Tn ∈ L(r) (where m is a number of
distinct type names occurring in r). In such a worst case the set of mn

sequences already contains all the permutations of each sequence belong-
ing to the set. Hence, the worst case time complexity for the operation is
O(mn). Thus, for a practical usage of the algorithm some optimizations
are needed. Notice, that the elements of the sequence T1, . . . , Tn are to be
matched1 with respective subterms of the query term q = lαq1 · · · qnβ. If
a subterm qi is a rooted query term it can only match the type Top or a
type whose label is the same as the root of qi. Often, there will be only one
or two type names occurring in r with a given label as we expect that the

1The expression ’a query term matches a type’ is used informally here. It means that
the query term matches some data term of the type.

88



i
i

“phd” — 2008/1/21 — 0:58 — page 89 — #99 i
i

i
i

i
i

CHAPTER 4. REASONING ABOUT TYPES

algorithm will often deal with proper Type Definitions. Thus, it is possible
to fix (or constrain) some type names in sequences T1 · · ·Tn ∈ L(r). This
will decrease the number of cases to be considered. This optimization will
not be very helpful for query terms with a relatively big number of unrooted
query terms (e.g. variables) among q1, . . . , qn. In this case the practical us-
age of the algorithm may be impossible. However, it seems that for cases
occurring in practice the optimized algorithm can be used effectively. Our
experiments show that the time of the computation is reasonable for up
to four distinct variables among q1, . . . , qn when the corresponding content
model consists of four distinct type names.

Example 33. Consider a Type Definition D = {T → l{T1 T ∗
2 }, T1 →

a[Text], T2 → b[Text]} and a query term q = l{{X;b[′′s′′], Y }}. We execute
match(q, T ). In the first run of the procedure we obtain L′ = perm(T ?

1 T ∗
2 ).

Thus the sequences of type names of the length two belonging to L′ are
T1T2, T2T1, T2T2. Then for each such a sequence of type names we call
match for relevant query terms and types:

� match(X;b[′′s′′], T1) and receive ∅

� match(Y, T1) and obtain {[Y → T1]}

� match(X;b[′′s′′], T2) and obtain {[X → T2]}

� match(Y, T2) and obtain {[Y → T2]}

Now we consider only two sequences, namely T2T1 and T2T2, for which we
get not empty sets of mappings. Thus as a result for match(q, T ) we get
a set of mappings {[X → T2, Y → T1], [X → T2, Y → T2]}. The received
result is not exact. The mappings show that X may be bound to data terms
of type T2. In fact X can be bound only to such data terms of T2 which have
′′s′′ inside.

Finally, we are ready to present the procedure mappingSet(Q,U) that re-
turns a set of variable type mappings for a query Q a a set of type names U .
The procedure is an implementation of typing rules for queries. Moreover it
expresses the way of derivation of complete set of variable-type mappings de-
scribed in Section 4.2.2. Thus, the set Ψ = mappingSet(Q,U) is a complete
set of variable type mappings for Q and U .

We assume that the types from U are defined by a Type Definition D as
well as the types of resources occurring in Q which are given by a mapping
type(ri).
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mappingSet(Q,U) :
IF Q is of the form or(Q1, . . . , Qn) then

return mappingSet(Q1, U) t . . . tmappingSet(Qn, U)
IF Q is of the form and(Q1, . . . , Qn) then

return mappingSet(Q1, U) u . . . umappingSet(Qn, U)
IF Q is of the form in(r, q) then

return match(q, type(r))
IF Q is a query term q then

return
⊔

T∈U match(q, T )

The values of the mappings from Ψ = mappingSet(Q,U) may be ex-
pressions of the form T1 ∩ . . . ∩ Tn, where each Ti is a type name. Consider
the set WΨ of all such expressions

WΨ =
{

T1 ∩ . . . ∩ Tn

∣∣∣∣ T1 ∩ . . . ∩ Tn = Γ(X), Γ ∈ Ψ, X ∈ V
n > 1, each Ti is a type name

}
.

For any expression E ∈ WΨ, [[E]] is the intersection of types defined by D.
Provided that D does not contain non intersectable multiplicity lists, using
the algorithm from the Section 3.2.2 we can construct a Type Definition
DΨ such that for each E ∈ WM there exists a type variable TE for which
[[TE ]]DΨ = [[E]]. Moreover, [[T ]]DΨ = [[T ]]D for all type variables occurring in
D (hence for those occurring in Ψ). If D is proper then DΨ is proper. If D
contains non intersectable multiplicity lists, first it must be approximated
by a Type Definition without such multiplicity lists. In consequence the
obtained set of variable-type mappings will represent an approximation of
the set of substitutions represented by the previous set of mappings.

From the obtained set of mappings Ψ we remove all the mappings which
bind variables to empty types. Such empty types may be results of type
intersections. To determine if a type is empty we can use the algorithm
from the Section 3.2.1. The set of mappings Ψ′ obtained in this way is
still a complete set of variable type mappings. Moreover, for each Γ ∈ Ψ′,
substitutions(Γ) 6= ∅.

Computing Type of Query Rule Results

Here we present a second step of type inference for a query rule c← Q and a
set of types U . We assume that a complete set Ψ of variable type mappings
for Q and U is given. Moreover, all variable-type mappings from Ψ are of
the form [X1 7→ T1, . . . , Xn 7→ Xn] where T1, . . . , Tn are not nullable type
names defined by the Type Definition D.

First we present a way to obtain a set of equivalence classes Ψ/ ∗∼V
given

a set of variable type mappings Ψ = {Γ1, . . . , Γn} and a set of variables V
(such that V ⊆ dom(Γ) for each Γ ∈ Ψ). We divide the set of mappings Ψ
into one element sets Ψ1, . . . , Ψn such that each Ψi = {Γi}. Now we join
the sets of mappings under the following condition. Two sets Ψi and Ψj can
be joined if there exists Γ′ ∈ Ψi and Γ′′ ∈ Ψj such that Γ′ ∼V Γ′′ i.e. for
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each variable X ∈ V , [[Γ′(X)]] ∩ [[Γ′′(X)]] 6= ∅. To decide if the intersection
of two types is empty algorithms for type intersection and type emptiness
can be employed. We continue joining the sets of mappings inductively until
no joint is possible. The set of sets of variable type mappings obtained in
this way is the set of equivalence classes Ψ/ ∗∼V

. Assume that the method is
implemented as a function eqClasses(Ψ, V ) returning the set Ψ/ ∗∼V

. The
complexity of the presented procedure is polynomial provided that checking
whether the intersection of two types is empty, is also polynomial. This
is not the case if the content models of the types to be intersected, are
not 1-unambiguous regular expressions. In this case the complexity of the
presented procedure is exponential.

The following procedure buildType(c, Ψi) returns a regular type expres-
sion rΨi

. The arguments of the function are a construct term c, a set of
variable type mappings Ψ′ ∈ Ψ/ ∗∼F V (c)

(where FV (c) stands for the set of
the free variables of c) and a Type Definition D. Let Ψ1, . . . , Ψn be the
equivalence classes of Ψ. The function buildType(c, Ψi) is called for each Ψi

(i = 1, . . . , n). The union of the types produced by all the calls [[rΨ1 | · · · |rΨn
]]

is a superset of the set of results of the query rule c← Q.
During the execution of the procedure new types are being created and

the Type Definition D is being extended with rules defining the new types.
We assume that a procedure define(N → ...) adds a rule N → ... to the
Type Definition, and that N is a new type name, not occurring elsewhere.
In this way a Type Definition DΨi

is constructed such that D ⊆ DΨi
.

buildType(c, Ψ′) :
IF c is a basic constant THEN

define(Tc → c)
return Tc

IF c is a variable THEN
let {Γ1, . . . , Γn} = Ψ′

let Ti = Γi(c) for i = 1, . . . , n
return (T1| . . . |Tn)

IF c is of the form l αc1, . . . , cnβ THEN
let ri = buildType(ci, Ψ′) for i = 1, . . . , n
define(Tc → l α r1 . . . rn β)
return Tc

IF c is of the form all c THEN
let {Ψ1, . . . , Ψn} = eqClasses(Ψ′, FV (c))
let ri = buildType(c, Ψi) for i = 1, . . . , n
return (r1| . . . |rn)+

IF c is of the form some k c THEN
let {Ψ1, . . . , Ψn} = eqClasses(Ψ′, FV (c))
let ri = buildType(c, Ψi) for i = 1, . . . , n
return (r1| . . . |rn)(1:k)

Given a set of types U , a Type Definition D and a complete set of
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variable-type mappings Ψ, a set of results for the query rule p = c← Q is a
subset of

R =
⋃

Ψi∈eqClasses(Ψ,FV (c))

[[buildType(c, Ψi)]]

The conditions for the set R to be the exact set of results are specified in
Section 4.2.4.

For a construct term c being the head of a query rule the function
buildType(c, Ψi) returns a regular type expression of the form Ti1| · · · |Tiki

.
The set of results R is the union of types T11, . . . , T1k1 , . . . , Tn1, . . . , Tnkn

produced by the calls buildType(c,Ψi) (where {Ψ1, . . . , Ψn} = Ψ/ ∗∼F V (c)
).

Each of the types Tij is defined by a Type Definition DΨi
. However we

can assume that the types Tij are defined by one Type Definition DΨ

which is a union of Type Definitions DΨi
for i = 1, . . . , n (type name

conflicts should be resolved by renaming type names). Assuming that
M = {T11, . . . , T1k1 , . . . , Tn1, . . . , Tnkn

} the set of results R can be expressed
as [[M ]]DΨ . The inferred result type for a rule p is expressed as

resType(p, U) = {T11, . . . , T1k1 , . . . , Tn1, . . . , Tnkn
}

In general, the newly constructed Type Definition DΨ is not proper. It
may be impossible to describe R by a proper Type Definition. If needed,
DΨ can be approximated by a proper Type Definition using the algorithm
from Section 3.1.1.

Example 34. Consider the query rule p:

result [ name[TITLE ], author [ARTIST ] ] ←
in (”http://www.example.com/cds.xml”,

catalogue{{ cd{title[TITLE ], artist [ARTIST ] }}})

We will abbreviate the rule p by c ← Q, and Q by in(url, q). Assume that
type(url) = Catalogue defined by a Type Definition D:

Catalogue → catalogue [ Cd∗ ]
Cd → cd [ Title Artist+ ]
Title → title [ Text ]
Artist → artist [ Text ]

We want to use the presented algorithm to infer the type of the results for
the query rule. First, we call mappingSet(Q, ∅) to obtain a complete set of
variable-type mappings for Q and ∅ (as we assume that the query rule queries
only the external database). It executes match(q, Catalogue). As a result
mappingSet returns a set of mappings Ψ = {Γ1, Γ2} where Γ1 = [TITLE→
Artist, ARTIST→Artist], Γ2 = [TITLE→Title, ARTIST→Artist]. The
set of equivalence classes of Ψ is {{Γ1}, {Γ2}}. A call of buildType(c, {Γ1})
results in extending the Type Definition D with the following definitions of
types:
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Result1 → result [ Name1 Author1 ]
Name1 → name [ Artist ]
Author1 → author [ Artist ]

and a call of buildType(c, {Γ2}) extends D with

Result2 → result [ Name2 Author2 ]
Name2 → name [ Title ]
Author2 → author [ Artist ]

Thus, finally the inferred result type of the query rule is resType(p, ∅) =
{Result1, Result2}, where the types Result1, Result2 are defined by a Type
Definition D′:

Result1 → result [ Name1 Author ]
Result2 → result [ Name2 Author ]
Name1 → name [ Artist ]
Name2 → name [ Title ]
Author → author [ Artist ]
Title → title [ Text ]
Artist → artist [ Text ]

4.2.6 Typing of Remaining Xcerpt Constructs

The type system defined formally in the previous sections is restricted to the
fragment of Xcerpt whose semantics was presented in Section 2.1.2. Here we
present a way of extending the type system to most of the remaining Xcerpt
construct whose semantics we do not formally define in this thesis. Thus
we do not provide a soundness proof for this extension of the type system.
The types which can be inferred using the typing rules from this section
roughly approximate sets of results of Xcerpt rules. To handle new Xcerpt
constructs we introduce here two new type constants, namely Num and Int.
They denote types being the sets of, respectively, all strings representing
numbers and all strings representing integers. Thus the following relation
holds: [[Int]] ⊆ [[Num]] ⊆ [[Text]].

We present typing rules for new constructs related to query terms, queries,
and construct terms. The typing rules should be treated as a complement
to the rules introduced in Section 4.2.2.

Query terms

D ` l αq1, · · · , qk, · · · , qnβ : T . Γ
D ` l αq1, · · · , optional qk, · · · , qnβ : T . Γ

(Optional 1)
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D ` l αq1, · · · , qk−1, qk+1, · · · , qnβ : T . Γ
D ` l αq1, · · · , qk−1, optional qk, qk+1, · · · , qnβ : T . Γ

(Optional 2)

D ` l αq1, · · · , qk−1, qk+1, · · · , qnβ : T . Γ
D ` l αq1, · · · , qk−1, without qk, qk+1, · · · , qnβ : T . Γ

(Without)

where αβ = {{}} or αβ = [[ ]].

D ` l αq1, · · · , qk−1, qk, qk+1, · · · , qnβ : T . Γ
D ` l αq1, · · · , qk−1, position n qk, qk+1, · · · , qnβ : T . Γ

(Position)

where T = Top or the parentheses of T are [ ] and
n is a number.

D ` l αq1, · · · , qk−1, qk, qk+1, · · · , qnβ : T . Γ
D ` l αq1, · · · , qk−1, position X qk, qk+1, · · · , qnβ : T . Γ u [X 7→ Int ]

(PositionVar)

where T = Top or the parentheses of T are [ ].

D ` l αq1, · · · , qnβ : T . Γ
D ` X αq1, · · · , qnβ : T . Γ u [X 7→ Text]

(LabelVar)

where l is an arbitrary label.

D ` r : T . Γ
(RegExpr)

where r is a regular expression and
either T = Top or T is a type constant or an enumeration type name.

Queries

D ` notQ : U . Γ
(Not Query)
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D ` Q : U . Γ
D ` Q where con : U . Γ

(WhereQuery)

Construct terms

D ` c1 : Ψ . s1 · · · D ` ck : Ψ . sk · · · D ` cn : Ψ . sn

(Tc → lαs1 · · · sk? · · · snβ) ∈ D

D ` lαc1, . . . , optional ck, . . . , cnβ : Ψ . Tc

(PatternOpt)

D ` c1 : Ψ . s1 · · ·D ` ck : Ψ . sk · · ·D ` cn : Ψ . sn D ` c′k : Ψ . s′k
(Tc → lαs1 · · · (sk|s′k) · · · snβ) ∈ D

D ` lαc1, . . . , optional ck default c′k, . . . , cnβ : Ψ . Tc

(PatternOptDef)

D ` c1 : Ψ . s1 D ` c2 : Ψ . s2

D ` f(c1, c2) : Ψ . Tc

(Funct)

where Tc = Num, s1, s2 are type names such that [[s1]] ⊆ [[Num]],
[[s2]] ⊆ [[Num]] and f is one of the functions:
add, sub, mult, div or

Tc = Text, s1, s2 are type names such that [[s1]] ⊆ [[Text]],
[[s2]] ⊆ [[Text]] and f is the function concat.

D ` c1 : Ψ . s1 · · · D ` cn : Ψ . sn

D ` g(c1, . . . , cn) : Ψ . Tc

(Aggreg)

where g is an aggregation:
count and Tc = Int, or
first and Tc = s1, or
join, Tc = Text and for each type name T occurring in

regular expressions s1, . . . , sn, [[T ]] ⊆ [[Text]], or
either sum, avg, min or max, Tc = Num and for

each type name T occurring in regular expressions s1, . . . , sn,
[[T ]] ⊆ [[Num]].

4.3 Type-based Rule Dependency

In this section we discuss rule dependencies that describe data flow in Xcerpt
programs. Determining dependencies between rules is needed, for example
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to divide programs into strata. Rule dependencies are also important from
the point of view of an efficient evaluation of programs [35]. So far, in the
thesis, we have used two kinds of rule dependency: static dependency and
weak static dependency (Def. 12 and 13). Both notions of rule dependency
only approximate the data flow in programs i.e. the fact that a rule (weakly)
statically depends on some other rule does not mean that the rule will ac-
tually use the data produced by the other rule. That is why we present
another notion of rule dependency, which precisely reflects the data flow
between rules.

Definition 22 (Dynamic rule dependency). Let P = (P,G) be an Xcerpt
program and p ∈ P and p′ ∈ P\G be query rules. The rule p directly
dynamically depends on p′ (which is denoted as p � p′), if a top query term
from the body of p matches a result of p′ in P .

A rule p ∈ P dynamically depends on a rule p′ ∈ P\G if p �+ p′.

It follows that p � p′ implies both p �s p′ and p �w p′.

Example 35. Consider the rules p3, p4 from Example 8:

p3 = b[ Y ]← c[ f [ Y ] ],
p4 = c[ Y ]← in( r1, Y ).

p3 � p4 iff the data term δ(r1), specified by the URI r1, is of the form f [ t ]
(for some data term t), while p3 �s p4 independently from δ(r1).

Dynamic rule dependency, which is essential for an efficient program eval-
uation, cannot be determined without knowing the actual data on which a
program is evaluated. Thus it cannot be determined during a static analysis
of the program. Static rule dependency can be used to approximate dy-
namic rule dependency of rules in a program. Here we show how to employ
types and the presented type inference methods to approximate dynamic
dependency. The goal is to obtain better approximations than those given
by static dependency.

Let P = (P ′, G) be an Xcerpt program and P = P ′ \G. By a typing of
P we mean an approximation of the set of rule results of P by a set of type
names. Formally, U is a typing for P if [[U ]] contains each result of each rule
from P . We presented two ways of obtaining such a typing: finding a fixed
point of TP or applying Theorem 3 (for recursive programs). Let UP be a
typing for P and UP

i = resType(pi, U
P ) for each pi ∈ P .

The function resType is not useful for finding dynamic rule dependencies.
This is because the fact resType(pi, U

P
j ) 6= ∅ does not imply pi � pj . The

rule pi may query external data so resType may return a non empty type
independently of UP

j (including cases when no data in UP
j is matched by

any top query term in pi). The inverse implication, i.e. pi � pj implies
resType(pi, U

P
j ) 6= ∅, is neither true2. Thus we need some better way of

2Consider query rules: p1 = c[ X ]← and[ a[ X], b[ X ] ],
p2 = a[ X ]← d[ X ].

resType(p1, UP
2 ) = ∅ although p1 � p2 (unless p2 produces no results).
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Figure 4.1: Relation between dependencies for rules in a program.

using types to approximate dynamic rule dependencies.
A part of the process of obtaining resType(p, U) is typing of query terms.

Given a query term q and a type T ∈ U of data to which q is applied,
mappings of variables occurring in q to types are constructed. The mappings
specify sets of substitutions (of data terms for variables). If q matches
some data term d from [[T ]] then a variable-type mapping Γ is produced; Γ
describes a non empty set of substitutions. (The set contains the result, or
some of the results, of matching q with d.)

The algorithm for resType can be easily augmented to compute a Boolean
function matchesType whose arguments are a query rule p and a set of type
names U ; matchesType(p, U) is true iff a Γ describing a non empty set of
substitutions is obtained for a top query term q from p and a type T ∈ U .
Thus the following holds.

Proposition 5. Let P = (P ′, G) be an Xcerpt program and p, p′ ∈ P ′. If
p � p′ then matchesType(p, U) for any set U of type names such that the
results of p′ are contained in [[U ]].

Now we can define a new kind of rule dependency.

Definition 23 (Type-based dependency). Let P = (P ′, G) be an Xcerpt
program, P = P ′\G, pi ∈ P , UP be a typing of P , and UP

i = resType(pi, U
P ).

A rule p ∈ P ′ type-based directly depends on pi (denoted by p �t pi) if
matchesType(p, UP

i ).

Proposition 6. If p � p′ then p �t p′. If p �t p′ then p �w p′.

On the other hand, neither p �s p′ implies p �t p′ nor p �t p′ implies
p �s p′. Both the type-based rule dependency and the static rule depen-
dency approximate dynamic rule dependency in a program. Combining
them provides better approximation than any of them separately. Figure
4.1 presents relation between different kinds of rule dependencies.

Example 36. Consider a Type Definition D = {T → l[ T1 T2 T ∗
1 ],

T1→ ”e” | ”f”, T2→ ”e” } and an Xcerpt program P = ({g, p1, p2, p3}, {g})
which queries an external resource res of type T . Next to the rules of the
program there are specifications of the corresponding result types inferred for
them:
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g = a[ X ]← b[ ”e”, ”f”, X ] A→ a[ T2 ]
p1 = b[ X, Y, Z ]← in( res, l[ X, Y, Z ] ) A1 → b[ T1 T2 T1 ]
p2 = b[ X, X, Y ]← in( res, l[ X, Y ] ) A2 → b[ T1 T1 T2 ]
p3 = b[ X, Z, Y ]← in( res, l[ X, Y, Z ] ) A3 → b[ T1 T1 T2 ]

The rule g can dynamically depend only on the rule p3 and only this
dependency should be considered by optimal evaluation of the program. The
rule g type-based depends only on the rules p2, p3 and statically depends on
the rules p1, p3. (Hence g �w p1, g �w p2 and g �w p3.) Thus combination
of type-based dependency and static dependency better approximates dynamic
dependency than both dependencies separately. 2

4.4 Discovering of Type Errors

We describe here how the presented type system can be used for discovering
errors. Examples illustrating this topic can be found in Chapter 6.

Type Errors

We define correctness of Xcerpt programs wrt. a type specification of the
input data and a type specification of program results. The type specifica-
tion of the input data specifies the type of the data queried by a program.
Thus it is given by the mapping type which assigns a type type(r) for each
external resource r occurring in the program. The type specification of pro-
gram results specifies the type of expected results of the program. This
type is called specified result type. Formally the program is correct wrt. a
type specification if the data produced by the program is of the specified
result type provided that the data terms corresponding to the external re-
sources queried by the program are of the types determined by the mapping
type (i.e. provided that δ(r) ∈ [[type(r)]] for each resource r occurring in the
program). Correctness of a program wrt. a type specification is called type
correctness. If the program is not type correct we say that there is a type
error in it.

The type system presented in this chapter allows checking type correct-
ness of programs. Given the type of the queried data the type system is
able to infer a result type [[T1| · · · |Tn]] of the program which is a superset
of the set of results of the program. We refer to this type as the inferred
result type. Then type correctness of the program can be proved by checking
whether the inferred result type is included in the specified result type TS of
the program. A positive result of such typechecking (i.e. checking whether
[[Ti]] ⊆ [[TS ]] for i = 1, . . . , n) implies type correctness of the program.

Generally, a typechecking failure is not a proof of type incorrectness
of a program because the inferred result type is only an approximation (a
superset) of the set of program results. However, for some restricted form
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of Xcerpt programs and Type Definitions (described in Section 4.2.4) the
inferred result type is the exact set of program results. In such case a
typechecking failure is a proof of an unquestionable type error. Otherwise
a typechecking failure is a hint that the program results may not be of the
specified result type.

In addition to defining type correctness of a program we define type
correctness of a particular rule of the program. Type correctness of a rule p
is defined wrt. a specification of types of the external resources queried by
the rule and a specification describing the set [[U ]] of allowed results of non
goal rules of the program. (Thus U is the specified result type for non goal
rules.) Moreover, if p is a goal rule, its type correctness is defined wrt. a
specification describing the set [[TS ]] of allowed results of goal rules (i.e. the
specified result type of the program). A query rule p is type correct if it
satisfies one of the conditions:

� p is a non goal rule and when it is applied to a set of data terms Z ⊆
[[U ]] it produces results belonging to the set [[U ]] i.e. res(p, Z) ⊆ [[U ]]
for any Z ⊆ [[U ]],

� p is a goal rule and when it is applied to a set of data terms Z ⊆ [[U ]]
it produces results belonging to the set [[TS ]] i.e. res(p, Z) ⊆ [[TS ]] for
any Z ⊆ [[U ]].

If a rule is not type correct we say that there is a type error in the rule. Type
correctness of all rules in a program implies type correctness of the program.
Hence finding the type incorrect rule(s) can be understood as locating the
reason(s) why the program is type incorrect.

Type correctness of particular rules can be proved similarly as type
correctness of programs, by checking whether the inferred result type of
the rule is included in the specified result type i.e. by checking whether
[[resType(p, U)]] ⊆ [[U ]], if p is a non goal rule; and whether [[resType(p, U)]] ⊆
[[TS ]], if p is a goal rule.

Checking type correctness of rules and programs requires checking whether
the inferred result type is included in the specified result type U or TS . This
checking can be done using the algorithm for Type Inclusion. The algorithm
requires that the types TS and U are specified by a proper Type Definition
D. Sometimes it may be impossible to represent a specified result type by
a single type name. Thus [[TS ]] and [[U ]] may represent unions of types and
TS , U may be sets of type names. In order to be able to use the algorithm for
Type Inclusion to check whether a type [[T ]] is included in the union of types
[[U1]] ∪ . . .∪ [[Un]], where T,U1, . . . , Un are type names, U1, . . . , Un must sat-
isfy the following condition. If Ui, Uj (1 ≤ i ≤ n, 1 ≤ j ≤ n) are distinct type
variables, they must have a different label or a different kind of parentheses.
Then, if T is a type variable, checking whether [[T ]] ⊆ [[U1]] ∪ . . .∪ [[Un]], can
be reduced to checking whether [[T ]] ⊆ [[Uk]] (1 ≤ k ≤ n), where Uk is Top
or it is a type variable with the same label and the same kind of parentheses
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as T . If there is no such Uk among U1, . . . , Un the result of the inclusion
check is negative. If T is not a type variable the inclusion check is obvious.

Weak Type Errors

There is another method of discovering type errors in programs. It can be
checked whether the intersection of the inferred result type and the specified
result type of a program is empty. Empty intersection of both types implies
that the program does not produce any results of the specified result type. If
the intersection is empty and the program produces any results then there is
a type error in the program. In order to refer to such situation we introduce
a notion of a weak type error. A weak type error does not imply a type error
in the case when the set of possible program results is empty.

Emptiness Errors

The situation when the inferred result type of a program (or of a rule)
is empty suggests that something is wrong in the program. Formally the
program is type correct as the empty type is a subtype of any specified
result type. However, as a program (or a rule) with an empty result type
will not produce any results, this situation is usually not intended by the
programmer and she should be informed about this. If the inferred result
type of a program (or of a rule) is empty we say that there is an emptiness
error in the program. Notice that for discovering emptiness errors there is
no need for any specification of the result type. An algorithm for checking
type emptiness was presented in Section 3.2.1.

Location of Errors

Based on the type analysis the programmer may suspect an existence of
an error in a particular rule as e.g. the type system indicated (a possibility
of) a type error for the rule. The available information about the rule (the
type of the queried data and the specified result type) is not sufficient to
automatically discover a reason of an error in the rule. It is not possible
to define in a natural way what is the actual reason of a rule being type
incorrect. For example, in general it cannot be automatically determined
whether the error is due to a wrong body or a wrong head of the rule.
Finding an actual reason of the error is a task of the programmer who can
interpret the type information provided by the type system, such as the
types inferred for particular variables in the rule. Thus type analysis can be
used as a tool which facilitates understanding what the rule actually does.

Example 37. Consider a non goal rule of some program

c[ X ]← in( r, a[ b[ X ] ] )

and the following Type Definition D = {U→c[ B ], A→a[ B ], B→b[ Text ] }.
Let us assume that the specified result type for the rule is U and that type(r) =
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CHAPTER 4. REASONING ABOUT TYPES

A. The inferred result type for the rule obtained from the type system is a
type C defined by the rule C→c[ Text ]. As [[C]] * [[U ]] and as the inferred
result type is the exact set of results of the rule (i.e. no approximations were
performed), there is a type error in the rule. However we cannot say whether
the type error is due to a wrong body or due to a wrong head of the rule.
The error can be eliminated by correcting the body or by correcting the head
of the rule. We can change the body of the rule obtaining

c[ X ]← in( r, a[ X ] ).

The inferred result type for this rule is C ′ defined by the rule C ′→c[ B ]. As
[[C ′]] ⊆ [[U ]] the rule is type correct. We can change only the head of the
initial rule obtaining

c[ b[X] ]← in( r, a[ b[ X ] ] ).

The inferred result type for this rule is also C ′ and the rule is type correct.

In practice it is likely that an error in one rule will generate emptiness
errors for many rules in the program. In order to facilitate finding the actual
reason of an emptiness error, it would be useful to locate the rules for which
the emptiness error is a direct consequence of the actual error, and not a
consequence of an empty result type inferred for other rules. Finding such
rules is easy for non recursive programs. In this case the rule dependency
tree for the program can be constructed. Then the programmer is informed
about those rules with an emptiness error that do not depend on other rules
with an emptiness error.

4.5 Relation to XQuery Type System

Section 2.3 shortly introduced XQuery and its type system. Here we discuss
some differences and similarities between our type system and XQuery type
system.

� Similarly as XQuery, Xcerpt has its own data model (i.e. data terms)
for representing XML data. However XQuery data model is more
complex and it takes into account more features of XML documents. In
XQuery, XML documents are represented as ordered trees with nodes
of different kinds such as attribute, comment, processing instruction,
etc. In contrast, data terms are mixed trees where children of a node
can be ordered or unordered. Moreover all nodes of such trees are of
the same kind and such features of an XML document as comments
and processing instructions are neglected. In contrast to data terms,
in the XQuery data model, each node has a unique identity. Hence a
node and its copy are not considered identical.

Another difference is that element and attribute nodes from XQuery
data model are associated with types. The type annotations are either
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xs:untyped (or xs:untypedAtomic) or are determined in a schema vali-
dation process. Thus, when XML data is processed by XQuery, each
XML element is of a unique type. In contrast, in our approach any
data term can belong to an unlimited number of types. Even given a
fixed Type Definition, a data term can belong to a number of types.

While our types are sets of data terms, XQuery types can be seen
as expressions. A notion of a type as a set in XQuery is derived –
relation matches defines the set of values that match a given type [25,
Section 2.5.4]. Notice that elements of such a set are sequences of trees
(not single trees as in the types defined by Data Definitions). In both
approaches the notions of subtyping are similar; both are defined by
means of set inclusion.

� XQuery is a strongly typed language and its type system is its integral
part. The results of some operations of XQuery depend on the type
annotation of data. On the other hand, the Xcerpt semantics does
not deal with types at all. Our type system is added on the top
of the Xcerpt language. Hence our type system can be classified as
descriptive, and that of XQuery as prescriptive.

� XQuery defines correctness of programs wrt. types by a number of
conditions that must be satisfied. For example, a value of a function
argument has to be in the relation matches with the required type of
the argument. Similar conditions are stated for function result types,
for types of variables etc. In our type system the only condition for
type correctness of a program (or a rule) is that all its results belong
to the specified result type.

� XQuery provides both dynamic and static typing and static typing is
optional. In the case of dynamic typing computed values of expressions
are checked wrt. types when a program is being executed. We deal only
with static typing where type analysis is performed before program
execution.

� In XQuery, the result of static typing is an abstract tree which assigns
a type to each subexpression. In our Xcerpt type system, we assign
types only to variables in expressions and for the whole Xcerpt query
rules. In XQuery, assigning the empty type to an expression results
in a type error. In our system, assigning the empty type to a rule
(a variable) does not imply that the rule is incorrect. Such a fact is
instead reported as a specific kind of error, namely emptiness error.

� Similarly as in XQuery we use an internal formalism to represent types,
which originally can be specified in various XML schema languages.
However, the formalism for defining types of XQuery is more com-
plex and provides more flexibility. XQuery allows to define elements
with specified content and unspecified name. It handles XML Schema
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simple types and includes mechanisms dealing with them. Our type
system does not deal with the simple types of XML Schema, but we
expect that it can be easily extended to do so. XQuery type formalism
resigns from XML Schema restrictions such as Element Declarations
Consistent and Unique Particle Attribution. Based on our experience
with Type Definitions we can argue that relaxing such restrictions re-
sults in inefficient algorithms (non polynomial) for performing opera-
tions on types such as checking type inclusion. Checking type inclusion
cannot be done efficiently, as this task for a less general formalism of
tree automata is EXPTIME-complete [24]. There is no discussion re-
lated to typing algorithms, and to complexity of operations on types
in [25].

� In both type systems type analysis can be performed without any
type specification of the queried data. Also in this case type analysis
can facilitate discovering errors. In our type system the queried data is
assumed to be of type Top if no more specific type is given. In XQuery
non validated data is of a type xs:untyped or xs:untypedAtomic.
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Chapter 5

Type System Prototype

This chapter presents a prototype of the type system (typechecker) imple-
mented as a part of this thesis. Similarly to the prototypical runtime system
for Xcerpt, it has been implemented in the functional language Haskell. The
prototype has been attached as a module to the Xcerpt prototype. The cur-
rent version of the typechecker supports type specifications given with the
formalisms of Type Definitions or DTDs.

The prototype is restricted to the fragment of Xcerpt for which the formal
semantics is provided (in Section 2.1.2). Moreover, it is restricted to non
recursive Xcerpt programs. It is still under development and the goal is to
extend it towards the full Xcerpt.

The prototype of the type system together with the Xcerpt runtime
system can be accessed online via the link http://ida.liu.se/∼artwi/
XcerptT.

5.1 Usage of the Prototype

This section uses the notation where square brackets [ ] and the elements
denoted by triangle parentheses <...> belong to a metalanguage1.

The type system is invoked like the standard Xcerpt runtime system
(i.e. executing xcerpt or xcerpt.exe). To perform type checking (or type
inference) of a program a parameter -t is used:

xcerpt -t <program file> [<type specification>]

The typing mechanism can also be invoked using the interactive Xcerpt
command mode with the command:

:type <program file> [<type specification>]

1[ ] represents optional part and <...> is a nonterminal which can be replaced with a
text without spaces.
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In the abovementioned commands <program file> is an Xcerpt program and
<type specification> is a text file specifying the types of external resources
(i.e. the resources referred to in targeted query terms in(r, q) in the program)
and the types of expected results. <type specification> file may contain:

� a Type Definition i.e. rules defining types,

� input type specifications; each such specification specifies a type type(r)
of a queried resource r,

� output type specifications specifying result types for particular rules.

The input type specification has the syntax:

Input::
[ resource = <resource URI> ]
[ typedef = <typedef location> ]
typename = <type name>

and the output type specification has the syntax:

Output::
[ rule = <index> ]
[ typedef = <typedef location> ]
typename = <type name>

where

� <resource URI> is an URI of the resource being queried whose type
we specify. If the parameter resource is omitted the input type spec-
ification specifies a type of every resource occurring in the <program
file> whose type was not specified (overridden) by other input type
specification. A <type specification> can contain at most one input
type specification without the parameter resource.

� <typedef location> is a URI of an external file containing a Type Def-
inition (or DTD). If the the parameter typedef is omitted the input
or output type specification refers to the local Type Definition i.e.
specified in the current <type specification> file.

� <type name>, if used in an input type specification, it is a type name
specifying the type of the resource the specification refers to. If it
is used in an output type specification it is a type name specifying
the result type of the rule the specification refers to. It can be the
most general type Top or a type name which is defined in the Type
Definition or the DTD the input or output type specification refers to.
If the specification refers to a DTD then a type name can be one of
the element names declared in the DTD.
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CHAPTER 5. TYPE SYSTEM PROTOTYPE

� <index> is a number of the query rule in the Xcerpt program whose
output type we specify. It can be obtained by counting the query rules
in the program starting from one e.g. the index of the second query rule
in a program is 2. If the parameter rule is omitted the output type
specification concerns the first goal in the Xcerpt program (or the first
query rule if the program contains no goals). A <type specification>
can contain at most one output type specification without the param-
eter rule.

Example 38. This is an example of a <type specification> file books.xts:

Publications -> publications[ Book* Article* ]

Article -> article[ Title Author+ Proceedings ]

Proceedings -> proceedings[ Title Editor+ ]

Book -> book[ Title Author+ Editor+ ]

Title -> title[Text ]

Author -> author[ P ]

Editor -> editor[ P’ ]

P -> person[ S ]

P’ -> person[ F? S? ]

Person -> person[ F+ S ]

F -> firstname[ Text ]

S -> surname[ Text ]

AuthorsEditors -> authors-editors[ Person+ ]

Input::

resource = file:publications.xml

typename = Publications

Output::

rule = 1

typename = AuthorsEditors

Invoking the typing mechanism (e.g. with the command xcerpt -t
<program file> <type specification>) starts the process of type inference
for the program. The type inference is done using the knowledge of types
of resources given by input type specifications. If the type of a resource is
not specified by any input type specification it is assumed to be the most
general type Top (which can be seen as a default type of a resource). After
the type of results for each query rule of the program has been inferred, type
checking is performed for each query rule for which output type specification
is provided and for which the inferred result type is not empty. Type check-
ing for a rule includes an inclusion check: it is checked whether the inferred
result type is included in the corresponding output type (specified by the
output type specification). If the check fails an intersection emptiness check
is performed: it is checked whether the intersection of the inferred result
type and the specified output type is empty. Thus there are three possible
results of type checking for a rule:
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� OK - the inferred result type is included in the specified type i.e. the
rule is correct wrt. the specified type,

� Failed - the intersection of the inferred result type and the specified
type is empty i.e. there is a weak type error for the rule,

� Unsuccessful - the inferred result type is not included in the specified
type but the intersection of both types is not empty i.e. the rule may
be incorrect wrt. the specified type.

Invoking the typing mechanism without <type specification> parameter
has the same effect as invoking it with an empty <type specification> file.

As a result of typing an Xcerpt program we get a printout that for each
query rule of the program, contains

� the inferred result type for the rule (0 stands for empty result type),
for example, Rule 2: Person,

� if there is a result type specified for the rule and if the inferred result
type is not empty, the result of type checking, for example,
Type checking: Failed,

� variable-type mappings for variables occurring in the rule (∗ → Top
stands for the mapping >, cf. Section 4.2.1)

Moreover the printout contains a Type Definition defining all the inferred
types and the types of the queried resources.

For the types being intersection of other types their content model is
provided by a DFA instead of a regular type expression2. A DFA is presented
by descriptions of all its states. Each such a description is of the form
Si => a1 > Ski1 . . . an > Skin , where Si is the number of the state being
described, a1, . . . , an are the symbols of the alphabet on which the DFA
is defined and each Skij

is the number of the state reached from the state
Si by reading the symbol aj . Additionally, the number of the state being
described may be preceded by the character ’>’ which denotes the initial
state or it may be followed by the character ’!’ which denotes a final state.
This is an example of a DFA corresponding to the language defined by a
regular expression AF ∗:

0 => A>0 F>0
>1 => A>2 F>0
2! => A>0 F>2

A name given by the system for a type being the intersection of types
T1,T2 is T1^T2. The type checker also invents type names for the newly

2For any regular expression a DFA representing the same language may be constructed
[38].
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inferred types. The devised new type names are the labels of the corre-
sponding construct terms occurring in heads of query rules. If there is a
need to define a type with a type name which has already been used the
new type name is augmented with an index i.e. a number added at the and
of the type name (underscore separated). If a type name with a given index
already exists the new type name has the index increased by 1.

Example 39. Here we present an output of the type system prototype for
the following Xcerpt program:

GOAL

authors-editors[ all var X ]

FROM

books[[

book{{

title[ var Y ],

author[ var X ],

editor[ var X ]

}}

]]

END

CONSTRUCT

books[ all var X ]

FROM

in{ resource{ "file:publications.xml" },

desc var X -> book{{ }}

}

END

A type specification for the program is given by publications.xts file from the
previous example. The obtained output is:

=========================================================

Rule 1: authors-editors

Type checking: Failed (no results of type AuthorsEditors)

---------------------------------------------------------

Y->Text, X->P^P’

=========================================================

Rule 2: books

---------------------------------------------------------

X->Book

=========================================================

=========================================================

Type Definition:

---------------------------------------------------------

authors-editors -> authors-editors[ P^P’+ ]

books -> books[ Book+ ]

Publications -> publications[ Book* Article* ]

Article -> article[ Title Author+ Proceedings ]
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Proceedings -> proceedings[ Title Editor+ ]

Book -> book[ Title Author+ Editor+ ]

Title -> title[ Text ]

Author -> author[ P ]

Editor -> editor[ P’ ]

P -> person[ S ]

P’ -> person[ F? S? ]

Person -> person[ F+ S ]

F -> firstname[ Text ]

S -> surname[ Text ]

AuthorsEditors -> authors-editors[ Person+ ]

P^P’ -> person[

0 => S>0

>1 => S>2

2! => S>0

]

=========================================================

The printout contains the inferred result types for the first and the second
rule, which are respectively, authors-editors and books. It also contains
information of the inferred types for the particular variables occurring in
the rules. All the types are defined by the Type Definition from the bottom
of the printout. As an output type specification is provided for the first rule
the printout contains the result of type checking for the rule.

Figure 5.1 presents a screenshot of the online type system interface.

5.2 Overall Structure of the Source Code

The source code of the runtime Xcerpt system together with a type system
structured using Haskell’s hierarchical module mechanism is shown in the
Figure 5.2. Most of the modules shown there are discussed in the description
of Xcerpt prototype in [50]. Here, we present a short description of the parts
related to the type system. With respect to the Xcerpt prototype two new
submodules have been added to the implementation:

� Xcerpt.Typing implements the core part of the type system. It con-
tains the files:

– Type.hs containing an implementation of the Type Inference al-
gorithm

– TypeIncl.hs containing an implementation of the Type Inclusion
algorithm

– TypeInter.hs containing an implementation of the Type Inter-
section algorithm.

� Xcerpt.RegExp implements regular expressions and automata using
a Haskell library[53]. The library has been modified to support lists
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Figure 5.1: Type system prototype interface.

of strings instead of lists of characters. Additionally, the submod-
ule contains the file ProductDfa.hs used for construction of product
automata.

Additionally, some files has been added to the modules already existing
in the Xcerpt prototype:

� Xcerpt/Parser has been extended with two files TD.hs and DTD.hs
which are used to parse Type Definitions and DTDs.

� Xcerpt/Data has been extended with the files

– TypeDef.hs containing data structures and definitions of basic
operations for Type Definitions.

– Mapping.hs containing data structures and definitions of basic
operations for variable type mappings.
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Data

IO

Parser

Show

EngineNG

RegExp

Typing

Methods

Xcerpt

Xcerpt.hs

XcerptCGI.hs

XcerptInteractive.hs

Figure 5.2: Overall module and file structure of the Xcerpt runtime sys-
tem together with the type system; modules denoted by rectangles, files
by rounded rectangles, added modules related to the type system in grey,
modified modules or files in light grey.

� Xcerpt/EngineNG has been extended with the file Typing.hs contain-
ing the main functions controlling the type system.

� Xcerpt has been extended with the file Helper.hs containing basic
helper functions.

Furthermore, some of the files in the already existing Xcerpt prototype has
been modified. The files Xcerpt.hs, XcerptInteractive.hs, XcerptCGI.hs
have been extended with options supporting the type system.
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Chapter 6

Use Cases

This chapter presents examples of simple scenarios showing the way the
presented type system can be helpful for programmers for checking correct-
ness of Xcerpt programs. The examples show the way the type system can
facilitate finding errors in programs. The programs presented in this chap-
ter, except the last one (as the prototype is not operational for recursive
programs), have been type checked by our prototype and the corresponding
printouts are presented in Appendix B.

6.1 CD Store

Consider a Type Definition:

Cds → bib [ Cd∗ ]
Cd → cd [ Title Artist+ Category? ]
Title → title [ Text ]
Artist → artist [ Text ]
Category → ”pop” | ”rock” | ”classic”

The query rule below queries a document cds.xml of the type Cds defined
above. The intention of the query rule is to collect artists together with all
the titles of the CD’s of the category ”pop”.

CONSTRUCT

pop-entries[

all entry[

var ARTIST,

all var TITLE

]

]

FROM

in{ resource[ "file:cds.xml" ],

bib{{
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cd[[ var TITLE, var ARTIST, "pop" ]]

}}

}

END

First, we assume that no result type specification is given for the rule.
Printout CDstore.1 in the appendix is the result of typing the query

rule by the typechecker. We assume that the intention of an author of
the query rule is that the variable TITLE will be bound to data terms
title[...] and the variable ARTIST will be bound to data terms artist [...].
The type system infers the types of variables used in the query rule. They are
given by the variable-type mappings: [TITLE 7→Title, ARTIST 7→Artist],
[TITLE 7→Artist, ARTIST 7→Artist]. As the variable TITLE is intended
(by the programmer) to take values only of the type Title, the inferred
types for variables suggest that the query rule is incorrect with respect to
the programmer’s expectations.

Based on the inferred types of variables the query rule result type is
inferred. The inferred result type is pop-entries defined as

pop-entries → pop-entries [ entry+ ]
entry → entry [ Artist (Title | Artist)+ ]
Artist → artist [ Text ]
Title → title [ Text ]

Looking at this definition of the inferred result type of the rule, the
programmer can also realize that the results of the rule may be different
from expected ones (as an entry should not contain more than one artist).

Now, let us assume that a result type specification is provided for the
rule and the specified result type is Entries as defined below:

Entries → pop-entries [ Entry∗ ]
Entry → entry [ Artist Title+ ]
Artist → artist [ Text ]
Title → title [ Text ]

Printout CDstore.2 in the appendix corresponds to this case. Now
the system can automatically check that the inferred result type pop-entries
is not included in the type Entries (as the type entry is not a subtype of
the type Entry). This information suggests a type error. However, a type
inclusion check failure is not a proof of a type incorrectness of the program as
the inferred result type pop-entries is not exact1 (as the query rule uses the
construct all). There is no weak type error for the rule as the intersection

1 The inferred result type pop-entries is a superset of the actual set of possible results
which is [[Entries′]] defined as

Entries′ → pop-entries[Entry ′+]
Entry ′ → entry[Artist (Title | Artist)∗ Title (Title | Artist)∗]
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of the types Entries and pop-entries is not empty. Nevertheless, there is
a type error for the rule. The intention for the query rule is to produce a
result containing entries with one artist and all his/her titles (at least one).
However, the query rule may produce a result with entries containing more
than one artist, for example:

pop-entries[

entry[ artist[ "artist1" ], title[ "title1" ] ],

entry[ artist[ "artist2" ], title[ "title1" ], artist[ "artist1" ] ]

]

The abovementioned result is obtained if the query rule is applied to a data
term:

bib[

cd[

title[ "title1" ],

artist[ "artist1" ],

artist[ "artist2" ],

"pop"

]

]

6.2 Bibliography

Consider the following Type Definition:

Bibliography → bib [ (Book | Article | InProceedings)∗ ]
Book → book {Title Authors Editors Publisher? }
Article → article {Title Authors Journal? }
InProceedings → inproc {Title Authors Book }
Title → title [ Text ]
Authors → authors [ Person∗ ]
Editors → editors [ Person∗ ]
Publisher → publisher [ Text ]
Journal → journal {Title Editors }
Person → person [ FirstName LastName ]
FirstName → first [ Text ]
LastName → last [ Text ]

6.2.1 No Result Type Specified

The query rules from this section query a document bibliography.xml of the
type Bibliography defined above.

CONSTRUCT

result[

all var AUTHOR,
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titles[ all var TITLE ]

]

FROM

in{ resource[ "file:bibliography.xml" ],

Bib{{

Book{{ Author[ var AUTHOR ], Title[ var TITLE ] }}

}}

}

END

The corresponding printout in the appendix is Bibliography.1. The query
rule returns no results when it is applied to a document of type Bibliography
because of the labels’ mismatch. The labels occurring in the body of the rule
are written with capital letters while labels occurring in the Type Definition
are written with lower case letters. Thus, the query rule does not match
the type of the database and the result type inferred for this query rule is
empty. We get an emptiness error for the rule.

This is another example of a query rule with an emptiness error.

CONSTRUCT

results[

all publisher[ var NAME , var URL ]

]

FROM

in{ resource[ "file:bibliography.xml" ],

bib{{

book{{ publisher[ name[ var NAME ], url[ var URL ] ] }}

}}

}

END

The corresponding printout in the appendix is also Bibliography.1. The
inferred result type is empty due to the fact that the query term in the body
of the query rule cannot be matched against data terms of type Bibliography.
This is because the query looks for name[...] and url [...] as direct subterms
of publisher [...] while data terms of type Publisher contain only text.

The next query rule does not match the document because of the square
brackets used to match data terms book{...}. According to the type of the
document direct subterms of book{...} are unordered and cannot be matched
with a query term being an ordered pattern.

CONSTRUCT

result[

all var AUTHOR,

titles[ all var TITLE ]

]

FROM

in{ resource[ "file:bibliography.xml" ],

bib[[

book[[ title[ var TITLE ], author[ var AUTHOR ] ]]
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]]

}

END

The corresponding Printout in the appendix is also Bibliography.1.
An emptiness error is obtained also for the next query rule. This is

caused by the wrong usage of the variable PERSON. Its first occurrence
will be bound to data terms of the type Person while its second occurrence
will be bound to direct subterms of a data term person[...] which can be of
the type either FirstName or LastName. As the intersection of type Person
with each of latter types is empty the inferred query result type is also
empty.

CONSTRUCT

result[

all var PERSON,

titles[ all var TITLE ]

]

FROM

in{ resource[ "file:bibliography.xml" ],

bib{{

book{{

editors{{ var PERSON }}

}},

book{{

authors{{

person{{ var PERSON }}

}}

}}

}}

}

END

The corresponding printout in the appendix is Bibliography.1.

6.2.2 Result Type Specified

The next example of a query rule illustrates a transformation of an XML
document to a format similar to HTML. The format is defined by the fol-
lowing Type Definition which specifies the result type TextBook 2:

TextBook → book [ Cover Body ]
Cover → cover [ Title Author∗ Publisher? ]
Body → body [ Abstract? Chapter∗ ]
Title → title [ Text ]
Author → author [ Text ]
Publisher → publisher [ Text ]
Abstract → abstract [ Text ]

2 The Type Definition and the two following examples of query rules were devised by
Sacha Berger.
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Chapter → chapter [ Title Section∗ ]
InlineContent → inline [ Text | Bf | Em ]
Section → section [ Title? (Paragraph | Table | List)∗ ]
Em → em [ InlineContent ]
Bf → bf [ InlineContent ]
Paragraph → p [ InlineContent∗ ]
Table → table [ TableRow+ ]
List → list [ ListItem ]
TableRow → tr [ TableCell∗ ]
ListItem → item [ InlineContent∗ ]
TableCell → td [InlineContent∗ ]

Consider a query rule which queries a document bibliography.xml :

CONSTRUCT

book[

cover[ title[ "List_of_Books" ] ],

body[

table[

all tr[

td[ var TITLE],

td[ all em [ var FIRST, var LAST ] ]

]

]

]

]

FROM

in{ resource [ "file:bibliography.xml" ],

bib{{

book{{

title[ var TITLE ],

authors[[

person{{

first[ var FIRST ],

last[ var LAST ]

}}

]]

}}

}}

}

END

Let us assume that no type specification for the document bibliogra-
phy.xml is provided. In such case the system infers a very rough approxi-
mation of the set of results of the rule (printout Bibliography.2) and the
inferred result type book is not included in the specified result type Text-
Book. Thus a type error is possible. To make sure about that it is checked
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whether the intersection of the inferred result type and the specified result
type is empty. Indeed the intersection is empty. A weak type error, which
we get, implies that the rule will not return any results of the type Text-
Book. Notice that the weak type error has been obtained without any type
specification for the queried data.

The weak type error is due to the structure of the construct term used
as a head of the query rule. The construct term creates a data term body [...]
with a data term table[...] as a direct subterm. According to the type
specification body [...] can not contain any table[...] direct subterms. Note
that in this case the inferred types of variables do not matter. Whatever
variable-type mappings we get from the body of the query rule the result
type is still wrong due to the structure of the construct term which does not
conform to the specified result type.

Consider another query rule which queries the document bibliography.xml.
This time we assume that both type specifications are given i.e. type spec-
ification for the document bibliography.xml (the type Bibliography) and a
result type specification for the rule (the type TextBook).

CONSTRUCT

book[

cover[ title [ "Books" ] ],

body[

chapter[

title[ "List_of_Books_and_Authors"],

section[

table[

all tr[

td[ inline [ var TITLE ] ],

td[ inline [ var NAME ] ]

]

]

]

]

]

]

FROM

in{ resource[ "file:bibliography.xml" ],

bib{{

book{{

title[ var TITLE ],

desc var NAME

}}

}}

}

END

A type error is possible for the query rule as the inferred result type book
is not included in the type TextBook (printout Bibliography.3). We are

119



i
i

“phd” — 2008/1/21 — 0:58 — page 120 — #130 i
i

i
i

i
i

6.2. BIBLIOGRAPHY

not sure about type incorrectness of the rule as the inferred result type is
not exact (due to a construct all). This time there is no weak type error
discovered for the rule, which means that the rule may produce results of
the specified result type. Thus the structure of the head of the rule conforms
to the specified result type. The type inclusion check failure is due to the
variables which get wrong values i.e. not of the types required by the result
type specification. The variable NAME used in the body of the query rule
can be bound to any data term which is a direct or an indirect subterm
of book [...] (except a data term title[...]). Thus, the variable NAME may
be mapped to the types: Authors, Editors, Publisher, etc. In the construct
term the variable NAME is used to build content of cells of a table and
according to the type specification it should be of a one of the types allowed
for subterms of inline[...] which are Text, Bf and Em. A type error is likely
as the union of the inferred types for the variable NAME is not included in
the union of the types Text, Bf and Em.

The next rule is almost the same as the previous one. The difference is
in the usage of the variable NAME in the body of the rule, which now can
be bound only to the direct subterm of an element last [...].

CONSTRUCT

book[

cover[ title [ "Books" ] ],

body[

chapter[

title[ "List_of_Books_and_Authors"],

section[

table[

all tr[

td[ inline [ var TITLE ] ],

td[ inline [ var NAME ] ]

]

]

]

]

]

]

FROM

in{ resource[ "file:bibliography.xml" ],

bib{{

book{{

title[ var TITLE ],

desc last[ var NAME ]

}}

}}

}

END

The result of type checking performed by the type system for the rule is
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positive. Thus the rule is correct wrt. the specified result type TextBook.
The corresponding typechecker printout is Bibliography.4.

6.3 Bookstore

Here we present an example of an Xcerpt program being one of the use cases
for Xcerpt presented in [50]. As no result type specification is given for the
program the type system is only able to perform type inference and check
emptiness of the inferred types. This results in a specification of the inferred
result type for the program. Such a type specification provided by the
inference mechanism can be used for documentation purposes. Additionally,
it can be used by a programmer to check manually if the inferred result type
conforms to his/her expectations.

The use case is similar to one from XQuery Use Cases (XMP-Q5 in
[21]). The program queries two online bookstores and provides a summary
over the prices for books in both book stores. The summary is given using
two representations: HTML representation and a representation suitable
for mobile devices, in the WML format (wireless markup language3). The
program uses rule chaining to separate the query part from the presentation
part and creates an intermediate representation for the data (in the example
below: for each book, a book-with-prices[...] data term containing title[...],
price-a[...] and price-b[...] subterms for the price in the first bookstore and
the price in the second bookstore). This representation is then queried by
the two rules that create HTML and WML representations.

The schemata defining the structure of databases for the two bookstores
are given in [50] using the Relax NG notation and can be expressed by the
following Type Definition. The definition of type Bib is expressed also by
the DTD from Example 10 (Section 2.2.1).

Bib → bib [ Book∗ ]
Book → book [ Book attr Title (Authors | Editor) Publisher Price ]
Book attr → attr {Book year }
Book year → year [ Text ]
Title → title [ Text ]
Authors → authors [ Author∗ ]
Author → author [ Last First ]
Editor → editor [ Last First Affil ]
Last → last [ Text ]
First → first [ Text ]
Affil → affiliation [ Text ]
Publisher → publisher [ Text ]
Price → price [ Text ]
Reviews → reviews [ Entry∗ ]

3http://www.wapforum.org/DTD/wml 1.1.xml
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Entry → entry [ Title Price Review ]
Review → review [ Text ]

The type of the document bib.xml is Bib and the type of the document
reviews.xml is Reviews. This is the Xcerpt program:

GOAL

out{

resource[ "file:prices.html" , "html" ],

html[

head[ title [ "Price Overview" ] ],

body[

table[

tr[ td[ "Title" ],

td[ "Price at A" ],

td[ "Price at B" ] ],

all tr[ td[ var Title ],

td[ var PriceA ],

td[ var PriceB ] ]

]

]

]

}

FROM

books-with-prices[[

book-with-prices[[

title[[ var Title ]],

price-a[[ var PriceA ]],

price-b[[ var PriceB ]]

]]

]]

END

GOAL

out{

resource[ "file:prices.wml" , "xml" ],

wml[

all card[

"Title: " , var Title ,

"Price A: " , var PriceA,

"Price B: " , var PriceB

]

]

}

FROM

books-with-prices[[

book-with-prices[[

title[[ var Title ]],

price-a[[ var PriceA ]],

price-b[[ var PriceB ]]
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]]

]]

END

CONSTRUCT

books-with-prices[

all book-with-prices[

title[ var T ],

price-a[ var Pa ],

price-b[ var Pb ]

]

]

FROM

and{

in{ resource [ "file:bib.xml" ],

bib[[

book[[

title[ var T ],

price[ var Pa ]

]]

]]

},

in{

resource[ "file:reviews.xml" ],

reviews[[

entry[[

title[ var T ],

price[ var Pb ]

]]

]]

}

}

END

The type system infers results types of the rules. The inferred result type
for the third query rule is books-with-prices. The inferred result types for
the first and the second goal are respectively html and wml. These types
are defined by the following Type Definition:

books-with-prices → books-with-prices [ book-with-prices+ ]
book-with-prices → book-with-prices [ title price-a price-b ]
price-a → price-a [ Text ]
price-b → price-b [ Text ]
title → title [ Text ]

html → html [ head body ]
head → head [ title1 ]
title1 → title [ Text1 ]
Text1 → ”Price Overview”

123



i
i

“phd” — 2008/1/21 — 0:58 — page 124 — #134 i
i

i
i

i
i

6.4. CLIQUE OF FRIENDS

body → body [ table ]
table → table [ tr tr+

1 ]
tr → tr [ td td1 td2 ]
td → td [ Text2 ]
Text2 → ”Title”
td1 → td [ Text3 ]
Text3 → ”Price at A”
td2 → td [ Text4 ]
Text4 → ”Price at B”
tr1 → tr [ td3 td3 td3 ]
td3 → td [ Text ]

wml → wml [ card+ ]
card → card [ Text5 Text Text6 Text Text7 Text ]
Text5 → ”Title : ”
Text6 → ”PriceA : ”
Text7 → ”PriceB : ”

The corresponding printout in the appendix is Bookstore. Since no
result type specification is given the type system checks only if the inferred
result type for each rule is not empty. If a result type specification was given,
the type system could check whether the data produced by the program
conforms to HTML and WML formats.

6.4 Clique of Friends

Consider the program from Examples 6,26 consisting of three query rules,
p1, p2, g, respectively:

CONSTRUCT

fo[ var X, var Y ]

FROM

in[ "file:addrBooks.xml",

addr-books{{

addr-book{{

owner[ var X ],

entry{{ name[ var Y ], relation[ "friend" ] }}

}}

}}

]

END

CONSTRUCT

foaf[ var X, var Y ]

FROM

or[

fo[ var X, var Y ],
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and[ fo[ var X, var Z ], foaf[ var Z, var Y ] ]

]

END

GOAL

clique-of-friends[ all foaf[ var X, var Y ] ]

FROM

foaf[ var X, var Y ]

END

The program queries the document addrBooks.xml of type AddrBs de-
fined by the following Type Definition:

AddrBs → addr-books[ AddrB∗ ]
AddrB → addr-book[ Owner Entry∗ ]
Owner → owner[ Name ]
Entry → entry[ Name Rel PhNo∗ Address? ]
Name → name[ Text ]
Rel → relation[ RelCat ]
Address → address[ Street ZipC? City Country? ]
PhNo → phoneNo[ Text ]
Street → street[ Text ]
ZipC → zip-code[ Text ]
Country → country[ Text ]
City → city[ Text ]
RelCat → ”friend” | ”family” | ”colleague” | ”acquaintance”

As the program is recursive it cannot be checked by the current version
of our type system prototype. However the presented algorithm for type
inference (Section 4.2.3) allows to derive types for the rules of the program.
As the second rule w-depends on itself the recursion in the program can be
broken by approximating its result type. The approximation can be provided
by the programmer. Let us assume that the programmer expects that all
results of the second rule are of type Foaf defined as Foaf→ foaf[ Text Text ].
Thus Foaf is a specified result type of p2. Using the algorithm from Section
4.2.3, a fixed point of the operator T̂{p1,p2} can be computed. The fixed point
is a set of type names U∞ = T{p1}(∅) ∪ {Foaf} = resType(p1, ∅) ∪ {Foaf} =
{Foaf,Fo}, where type Fo is defined as Fo→ fo[ NameText ].

According to Theorem 3, [[U∞]] includes all the results of p1, p2, pro-
vided that [[resType(p2, U

∞)]] ⊆ [[Foaf]]. To check the latter condition we
obtain resType(p2, U

∞) = {Foaf’}, where type Foaf’ is defined as Foaf’ →
foaf[ NameText ]. As [[Foaf’]] * [[Foaf]], the condition does not hold. This
suggests an error in the program. (We expect that for a correct program
the assumptions of Theorem 3 are satisfied.) A more detailed look at how
U∞ has been obtained shows that Fo = resType(p1, ∅) and Fo is the in-
ferred results type of rule p1 (as 1 does not w-depend on any rule in the
program). This is incompatible with the intention of the programmer, that
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both arguments of fo are of type Text. In this way she finds that p1

is incorrect.
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Semantic Types

7.1 Ontology Classes in Type Definitions

We have defined a type system for Xcerpt which is based on syntactic types
such as types provided by XML schemata. Such a type system is useful for
structure-based querying of XML data which refers to syntax of the data.
It can be used e.g. to check correctness of queries and to find syntactic type
errors. However, XML data may be associated with concepts defined by
ontologies. Thus a type system might be also useful for checking semantic
correctness of queries. For example, an inconsistency such as a requirement
that an XML element represents an individual of a class male and female
could be discovered by a system. A simple way of extending the type system
from previous chapters by means to check some kind of semantic correctness
of Xcerpt queries is to introduce type constants which are names of classes
defined by some ontology. When some operations on types representing
classes are needed an ontology reasoner can be employed, for example, for
computing the intersection of classes.

Example 40. Consider a query rule:

CONSTRUCT

list[ var X, var Y ]

FROM

in[ "book.xml",

book[ title[ var X ],

author[ var Y ],

publisher[ var Y ]

]

END

The file ”book.xml” is of type Book defined as
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Book → book [ Title Author+ Publisher ]
Title → title [ Text ]
Author → author [ Text ]
Publisher → publisher [ Text ]

Assume that the data in the document ”book.xml” is related to some ontology
defining classes Person and Company. Moreover, given a data term repre-
senting the document ”book.xml”, the direct subterm of a term author is an
individual of a class Person and the direct subterm of a term publisher is an
individual of a class Company. When we do type inference for variables in
the query rule, all variables are mapped to the type Text. Thus, there is no
type error in the rule if we are taking into account only the syntax of queried
data. However the query rule does not have much sense if the authors of
books are persons and the publishers are companies (as as the rule requires
that the direct subterms of data terms author [...] and publisher [...] are the
same).

Assume that the Type Definition is extended by two type constants
class:Company and class:Person which correspond, respectively, to the classes
Company and Person. Assume also that the types Author and Publisher
are defined as:

Author → author [ class:Person ]
Publisher → publisher [ class:Company ]

When performing type inference for the variable Y in the rule the system
has to find intersection between types class:Company and class:Person. As
the types represent ontology classes an ontology reasoner is employed which
states that the intersection of the classes Person and Company is empty.
Thus, the rule will not return any results if the queried data is correct wrt.
the ontology. 2

7.2 DigXcerpt: Ontology Queries in Xcerpt

In this chapter we show how structure-based querying of XML data can
be combined with ontology reasoning. We present an extension of an XML
query language Xcerpt which also allows to query an ontology reasoner. The
extension can be seen as a kind of an interface between XML query language
and an ontology reasoner. Thus, the extended language, called DigXcerpt,
can use ontological information to query XML data. For instance, it can
be used to filter XML data returned by a structural query by reasoning
on an ontology to which the data is related. This can be illustrated by
the following example. Assume that an XML database of culinary recipes
is given. Each recipe indicates ingredients (like flour, salt, sugar etc.). We
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ingredient

gluten-freegluten-containing

spaghetti orangesugarsalttomatoflour rice

Figure 7.1: Ingredient ontology graph

assume that the names of the ingredients are defined by a standard ontology,
accessible separately on the Web and providing also some classification. For
example, the ontology may specify disjoint classes of gluten-containing and
gluten-free ingredients (see Figure 7.1). To find a gluten-free recipe we would
query the XML database for recipes, and query the ontology to check if the
ingredients are gluten-free.

To communicate with an ontology reasoner we use DIG interface, so
DigXcerpt can query any ontology reasoner supporting DIG (such as Rac-
erPro1 and and Pellet2). DigXcerpt augments Xcerpt rules with ontology
queries. The extended language is easy to implement on the top of an Xcerpt
implementation and a reasoner with DIG interface, without any need of
modifying them.

Related work. The problem of combination of XML queries with
ontology queries seems to be important for the Semantic Web. There exist
many approaches combining a Description Logic and a language with logical
semantics, like Datalog. For references see e.g. the articles of Eiter et al. and
of Rosati in [7]. In contrast to these approaches, we add ontology queries to
a language whose semantics is operational. Moreover we re-use an existing
ontology reasoning system and a query language implementation, which is
impossible for most of the approaches mentioned above.

An intermediate approach is presented in [6]. Ontology queries which
cannot be solved are accumulated during rule computation. The fixed point
semantics specifies the formulae (built out of delayed queries) with which
the reasoner is eventually queried. This makes possible reasoning by cases.
In contrast, our operational semantics makes the programmer decide when
an ontology query is evaluated. The approach of [6] allows only Boolean on-
tology queries. It is applicable to a certain (negation-free) subset of Xcerpt.
Our approach imposes no restriction on ontology queries and is applicable
to full Xcerpt.

A different approach is that of [48], where XQuery is used both to query
data and to perform (restricted kinds of) reasoning.

The approach described here is based on the paper [30] and its extended
version [31]. Preliminary versions of the current approach were presented in

1http://www.racer-systems.com/
2http://www.mindswap.org/2003/pellet/
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the papers [52] and [29].

7.2.1 Syntax and Semantics

This section presents an extension of Xcerpt, called DigXcerpt, allowing
attaching ontology queries to Xcerpt rules. A DigXcerpt program is a set of
Xcerpt rules and extended rules. The syntax of an extended construct rule
is

CONSTRUCT
head

WHERE
dig [ digResponseQuery, digAskConstruct ]

FROM
body

END

Analogical syntax can be used for extended goal rules (with the keyword
GOAL instead of CONSTRUCT). Sometimes the rule will be denoted as

head ← (digResponseQuery , digAskConstruct), body

(without distinguishing between a construct and goal rule). digAskConstruct
is a construct term intended to produce DIG ask statements which are sent
to the reasoner. digResponseQuery is a query term that is applied to the
response statements returned by the reasoner. As in an Xcerpt rule, head is
a construct term and body is a query to the results of other rules and/or to
external resources.

In what follows we assume existence of a fixed ontology and an ontology
reasoner to which the ontology queries refer. We also assume fixed data
terms δ(ri) associated with external resources occurring in programs. This
is a formal definition of extended query rule.

Definition 24. An extended query rule(shortly, extended rule) is an
expression of the form c← (q, c′), Q, where Q is a query, q is a query term, c′

is a construct term without grouping constructs and c is a construct term not
of the form all c′′ or some k c′′. Let or(Q1, . . . , Qn) be a disjunctive normal
form of Q. The variables occurring in c, c′, q must satisfy the following
conditions:

� every variable of c′ occurs in each Qi, for i = 1, . . . , n,

� every variable of c which does not occur in q occurs in each Qi, for
i = 1, . . . , n.

The construct term c will be sometimes called the head and Q the body of
the extended rule.
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CONSTRUCT
head

FROM
body

END

CONSTRUCT
head

WHERE
dig [ digResponseQuery, digAskConstruct ]

FROM
body

END

input data

rule result

ontology reasoner

input data

rule result

    DIG ask
statements

DIG response
statements

Ψ

ΘQ

Θ

Θ = ΘQ

ΘQ ΘQ

Figure 7.2: Data flow in an Xcerpt rule and in an extended rule. Θ, ΘQ, Ψθ

are sets of substitutions as described below and Ψ =
⋃

θ∈ΘQ
Ψθ.

Now we describe the semantics of an extended construct rule c← (q, c′), Q.
First, we assume that the rule does not contain grouping constructs. Let
ΘQ be the set of non redundant answer substitutions obtained by evaluation
of the body Q of the rule. Each θ ∈ ΘQ is applied to the construct term
c′; this produces a DIG ask statement c′θ to be sent to the reasoner. For
each c′θ the reasoner returns a DIG response statement dθ. To each dθ the
query term qθ is applied, producing a set Ψθ of substitutions. (The domain
of the substitutions are those variables that occur in q and do not occur in
Q.) A set of substitutions Θ = { θ ∪ σ | θ ∈ ΘQ, σ ∈ Ψθ } is constructed.
(Informally: the substitutions bind the rule variables according to the re-
sults of Q and of DIG querying.) Now the set of results of the whole rule is
{ cθ | θ ∈ Θ } (the substitutions from Θ are applied to the head of the rule).
Figure 7.2 presents the data flow in an extended rule.

The semantics above has to be generalized for the case where a construct
term c of an extended rule c← (q, c′), Q contains a grouping construct. This
is expressed by the following definition which extends Definition 8.

Definition 25 (Result of an extended query rule and a set of data terms).
Let p = c ← (q, c′), Q be an extended query rule, Z be a finite set of data
terms, ΘQ = {θ1, . . . , θn} be the set of non redundant answer substitutions
for Q and Z. Let a1, . . . , an be data terms representing DIG ask statements
such that ai = c′θi and let r1, . . . , rn be the corresponding DIG response
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statements. Let q1, . . . , qn be query terms such that qi = qθi. Let Ψi be the
set of non redundant answer substitutions for qi and ri, and Θ = { θi ∪ σ |
θi ∈ ΘQ, σ ∈ Ψi }.

If Θ′ ∈ Θ/'F V (c) then Θ′(c) is a result of an extended rule c← (q, c′), Q.
The set of results of p = c← (q, c′), Q and Z is denoted as res(p, Z).

The semantics of an extended goal rule c← (q, c′), Q is similar to that of
the extended construct rule c← (q, c′), Q. The difference is — as in Xcerpt
— that the goal rule produces only one answer (from the set of answers of
the construct rule).

The new WHERE part in the extended rule allows to ask an ontology ar-
bitrary queries expressible in DIG. One category of such queries are Boolean
queries for which answer true or false (or error) can be obtained. This kind
of queries can be used to filter out some data from the XML document
based on the ontological information. For example, an extended rule can
be used to filter out recipes which are gluten-free. In such case, the rule
would have a query term true[[ ]] as the digResponseQuery, thus it would
filter out those answer substitutions for the variables in the body for which
the corresponding reasoner answer was not true. It seems that a need for
such filtering is relatively common. Hence, to simplify syntax, we assume
that the digResponseQuery in the WHERE part is optional and by default
it is a query term true[[ ]].

The semantics of DigXcerpt programs is defined in terms of the semantics
of single rules in the same way as for Xcerpt. Formally this is done by
Definitions 11,15. The difference is that in the case of DigXcerpt they refer
not only to Definition 8 (semantics of an Xcerpt rule) but also to Definition
25 (semantics of an extended rule). If we want to deal with the features
of Xcerpt not considered in Section 2.1.2, like negation, then the semantics
from [50] applies.

Example 41. (Boolean ontology query (1)) Consider the XML doc-
ument recipes.xml from Example 2 and the culinary ingredients ontology
from Figure 7.1. We assume that the ontology is loaded into an ontology
reasoner with which we can communicate using DIG. We also assume that
the names of the ingredients used in the XML document are defined by the
ontology. We want to find all the recipes in the XML document which are
not gluten-free. This can be achieved using a rule:

CONSTRUCT

bad-recipes[ all name[ var R ] ]

WHERE

dig[ subsumes[

catom[ attr{ name[ "gluten-containing" ]}],

catom[ attr{ name[ var I ] } ] ] ]

FROM

in[ resource[ "file:recipes.xml" ],

desc recipe[[
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name[ var R ], ingredient[[ name[ var I ] ]] ]] ]

END

The body of the rule (the FROM part) extracts the names of recipes
together with their ingredients and assigns respective substitutions to the
variables R, I. This results in an answer substitution set ΘQ. Based on
ΘQ the digAskConstruct subsumes[...] constructs DIG ask statements ask-
ing whether particular ingredients (values of the variable I) are gluten-
containing. digResponseQuery is omitted in the WHERE part which means
that its default value true[[ ]]is used. The final set Θ of answer substitu-
tions which are applied to the head of the rule contains those substitutions
from ΘQ for which the reasoner answer for the corresponding DIG ask state-
ment was true i.e. the substitutions where the variable I is bound to data
terms representing gluten-containing ingredients: flour and spaghetti. As
these ingredients occur in Recipe2 and Recipe3 the final result of the rule is

bad-recipes[ name[ "Recipe2" ], name[ "Recipe3" ] ] 2

Example 42. (Boolean ontology query (2)) Let us now construct a
query producing a list of gluten-free recipes, instead of those containing
gluten. This may be less obvious, as we have to make sure that none of the
ingredients of a recipe contains gluten. One way to find gluten-free recipes
is by using the rule from Example 41, and extract from recipes.xml all the
recipes not found by that program to contain gluten. Thus the program pro-
ducing a list of gluten-free recipes consists of the rule from the previous
example and the following rule:

CONSTRUCT

good-recipes[ all name[ var R ] ]

FROM

and[

in[ resource[ "file:recipes.xml" ],

desc recipe[[ name[ var R ] ]] ],

not bad-recipes[[ name[ var R ] ]]

]

END

The result of the program is

good-recipes[ name[ "Recipe1"] ] 2

The previous examples illustrate usage of a filter where Boolean queries
are sent to an ontology reasoner. The next one presents a more general
query.

Example 43. (Non boolean ontology query) Consider the ingredients
ontology (Figure 7.1) extended with a class vitamin, its three subclasses:
A,B,C, and a property contained in. The extended ontology contains also
axioms which indicate in which ingredients a particular vitamin is contained.
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The axioms state that the vitamin A is contained in tomato, vitamin B in
tomato, orange, flour and spaghetti, and vitamin C in orange and tomato.
For example, using description logics syntax, one of the axioms can be ex-
pressed as A v ∃contained in.tomato.

The following DigXcerpt rule queries the document recipes.xml and the
ontology to provide a list of vitamins for each recipe in the document. The
WHERE part of the rule contains a construct term descendants[. . . ] produc-
ing ontology queries which ask about vitamins included in a particular ingre-
dient. The reasoner answers are queried by the query term conceptSet[[...]]

from the WHERE part.

CONSTRUCT

vit-recipes[ all recipe[ var R, all var V ] ]

WHERE

dig[

conceptSet [[ synonyms[[ catom[ attr{ name[var V] } ] ]] ]],

descendants[

some[ ratom[ attr{ name["contained_in"] } ],

catom[ attr{ name[var I] } ] ] ] ]

FROM

in[ resource[ "file:recipes.xml" ],

desc recipe[[

name[var R], ingredient[[ name[var I] ]] ]] ]

END

The result of the rule is:
vit-recipes[ recipe[ "Recipe1", "B", "C" ],

recipe[ "Recipe2", "B" ],

recipe[ "Recipe3", "A", "B", "C" ] ] 2

7.2.2 Implementation

This section presents a way DigXcerpt can be implemented on the top of
Xcerpt engine i.e. without any modification of Xcerpt implementation. Eval-
uation of a DigXcerpt program can be organized as a sequence of executions
of Xcerpt programs and ontology queries. This can be implemented in a
rather simple way; an implementation iteratively invokes an Xcerpt system
and an ontology reasoner with a DIG interface.

We begin with discussing implementation of DigXcerpt programs where
there is no recursion over extended rules i.e. no extended rule statically
depends on itself. We call such programs non DIG recursive programs.

Let P = (P,G) be a non DIG recursive DigXcerpt program and e1, . . . , en

be the extended rules from P such that each rule ei does not statically
depend on any rule ei+1, . . . , en. The ordering e1, . . . , en can be obtained by
topological sorting of the dependency graph for the extended rules in P .

The first step is to compile the extended rules of P into pairs of rules.
Each extended rule ei of P of the form c ← (q, c′), Q is translated into a
pair of rules:
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id [all dig[ digAskConstruct, context[ var X1, ..., var Xn ] ] ] ← body

id [ dig [ a1, context[ v11, ...,v1n ] ]

...
          dig [ am, context[ vm1, ...,vmn ] ] ]

id [ r1, context[ v11, ...,v1n ] ]

...
id [ rm, context[ vm1, ...,vmn ] ]

head ← id [ digResponseQuery, context[ var X1, ..., var Xn ] ]

asks[a1,...,am]

O
n

tolog
y rea

so
n

er
responses[r1,...,rm]

DIG response rule

DIG ask goal

Figure 7.3: Evaluation of DIG rules: DIG ask goal produces DIG ask state-
ments which are sent to a reasoner; DIG response rule queries data terms
constructed out of the reasoner’s responses.

� a DIG ask goal dgi:
idi[ all dig[ c′, context[X1, . . . , Xl] ] ← Q,

� and a DIG response rule dri:
c ← idi[ q, context[X1, . . . , Xl] ].

The DIG ask goal is used to produce DIG ask statements to be sent
to the reasoner and the DIG response rule is used to capture the reasoner
responses. X1, . . . , Xl are the variables occurring in the query Q. The term
context [. . .] is used here to pass the values of the variables from the body Q
of the DIG ask goal to the head c of the response rule. The construct all
in the DIG ask goal is added to collect all the results of the query Q .

The purpose of the labels id1, . . . , idn is 1. to associate DIG ask goals
with the corresponding DIG response rules, and 2. to distinguish the data
produced by the rules of P from the data related to the implementation of
extended rules. So it is required that id1, . . . , idn are distinct and that no
idi occurs in P as the label of the head of a non goal rule of P . (Moreover, if
the head of some non goal rule of P is a variable then no idi can occur in the
data to which P is applied.) Figure 7.3 shows how DIG ask and response
rules are evaluated.

Out of the sets of DigXcerpt rules P,G we construct new sets of Xcerpt
rules P ′, G′, which are the sets P,G with each extended rule ei replaced
by the corresponding DIG response rule dri. Let P ′′ = P ′\G′. Then a
sequence of Xcerpt programs P0, . . . ,Pn is constructed, where P0 = (P ′′ ∪
{dg1}, {dg1}) (and P1, . . . ,Pn are described later on). For i = 1, . . . , n we
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proceed as follows. For a set of data terms R, r(R) denotes rules with empty
bodies representing the data terms from R. (We do not distinguish between
XML elements and their representation as data terms.)

� Program Pi−1 is executed by Xcerpt. A data term idi[dig[a1, c1], . . . ,
dig[am, cm] ] is obtained (it is produced by a goal rule dgi), where
a1, . . . , am are DIG ask statements. Out of a1, . . . , am a DIG ask
request is built. (The DIG ask request is an XML document addi-
tionally containing a header with DIG namespace declarations, and
unique identifiers for the elements corresponding to a1, . . . , am.)

� The DIG ask request is sent to the DIG reasoner. The reasoner replies
with a response that (after removing its attributes) is responses[r1,
. . . , rm], where each ri is an answer for ai. A set of Xcerpt facts
Ri = { idi[r1, c1], . . . , idi[rm, cm] } is constructed. (The set contains
the results from the reasoner together with the corresponding context
information, to be queried by the DIG response rule dri. The results
of executing the rule dri in an Xcerpt program containing the rules
{dri}∪ r(Ri), (and no other rules producing data terms with the label
idi) are the same as the results of executing ei in program P according
the the semantics described in the previous section.)

� If 1 ≤ i < n then Pi = (P ′′∪
⋃i

j=1 r(Rj)∪{dgi+1}, {dgi+1}). (Program
Pi contains the reasoner results obtained up to now. They are to be
queried by the DIG response rules dr1, . . . , dri. The goal of Pi is dgi+1

in order to produce the next query to the reasoner.)

If i = n then Pn is an Xcerpt program (P ′′ ∪
⋃n

j=1 r(Rj) ∪G′, G′).

As the last step, Pn is executed by Xcerpt, producing the final results of P.
The results are the same as those described by the DigXcerpt semantics

of Section 7.2.1. (We skip a formal justification of this fact.) As an addi-
tional consequence we obtain that the results do not depend of the ordering
of e1, . . . , en (which may be not unique).

Example 44. Here we illustrate an evaluation of a simple DigXcerpt pro-
gram. Consider a program P consisting of the extended rule from Exam-
ple 41, changed into a goal rule:

GOAL

bad-recipes[ all name[ var R ] ]

WHERE

dig[ subsumes[

catom[ attr{ name["gluten-containing"] } ],

catom[ attr{ name[ var I ] } ] ] ]

FROM

in[ resource[ "file:recipes.xml" ],

desc recipe[[

name[ var R ], ingredient[[ name[ var I ] ]] ]] ]

END
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First, the rule is translated into the corresponding DIG response rule (which
is a goal in this case) and a DIG ask goal:

GOAL

bad-recipes[ all name[ var R ] ]

FROM

#g1[ true[[ ]], context[ var I, var R ] ]

END

GOAL

#g1[ all dig[

subsumes[

catom[ attr{ name["gluten-containing"] } ],

catom[ attr{ name[ var I ] } ] ],

context[ var I, var R ] ] ]

FROM

in[ resource[ "file:recipes.xml" ],

desc recipe[[ name[ var R ],

ingredient[[ name[var I] ]] ]] ]

END

Now a sequence of programs P0,P1 is constructed. The program P0

contains only the DIG ask goal which produces the following data term:

#g1[ dig[ subsumes[ catom[ attr{ name["gluten-containing"] } ],

catom[ attr{ name["sugar"] } ] ],

context[ "sugar", "Recipe1" ] ],

dig[ subsumes[ catom[ attr{ name["gluten-containing"] } ],

catom[ attr{ name["orange"] } ] ],

context[ "orange", "Recipe1" ] ],

dig[ subsumes[ catom[ attr{ name["gluten-containing"] } ],

catom[ attr{ name["flour"] } ] ],

context[ "flour", "Recipe2" ] ],

dig[ subsumes[ catom[ attr{ name["gluten-containing"] } ],

catom[ attr{ name["salt"] } ] ],

context[ "salt", "Recipe2" ] ],

dig[ subsumes[ catom[ attr{ name["gluten-containing"] } ],

catom[ attr{ name["spaghetti"] } ] ],

context[ "spaghetti", "Recipe3" ] ],

dig[ subsumes[ catom[ attr{ name["gluten-containing"] } ],

catom[ attr{ name["tomato"] } ] ],

context[ "tomato", "Recipe3" ] ] ]

The data term contains DIG ask statements asking whether particular
ingredients are gluten-containing. The additional information attached to
each ask statement (its context) is the name of the ingredient queried about
and the corresponding name of the recipe.

Out of these data terms a DIG ask request (which is an XML document)
is built. The request contains six DIG ask statements which according to the
DIG syntax are augmented by unique identifiers, here 1, . . . , 6:
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<asks ...>

<subsumes id="1">

<catom name="gluten-containing"/>

<catom name="sugar"/>

</subsumes>

...

<subsumes id="6">

<catom name="gluten-containing"/>

<catom name="tomato"/>

</subsumes>

</asks>

The DIG ask request is sent to the ontology reasoner. Its XML answer
represented by a data term is (the attributes of the element responses are
removed):

responses[ false[ attr{ id["1"] } ], false[ attr{ id["2"] } ],

true [ attr{ id["3"] } ], false[ attr{ id["4"] } ],

true [ attr{ id["5"] } ], false[ attr{ id["6"] } ] ]

Based on the answer the following set R1 of data terms is constructed:

#g1[ false[ attr{ id["1"] } ], context[ "sugar", "Recipe1" ] ]

#g1[ false[ attr{ id["2"] } ], context[ "orange", "Recipe1" ] ]

#g1[ true [ attr{ id["3"] } ], context[ "flour", "Recipe2" ] ]

#g1[ false[ attr{ id["4"] } ], context[ "salt", "Recipe2" ] ]

#g1[ true [ attr{ id["5"] } ], context[ "spaghetti", "Recipe3" ] ]

#g1[ false[ attr{ id["6"] } ], context[ "tomato", "Recipe3" ] ]

The final program P1 to be evaluated by Xcerpt consists of the DIG response
goal and rules r(R1):

GOAL

bad-recipes[ all name[ var R ] ]

FROM

#g1[ true[[ ]], context[ var I, var R ] ]

END

CONSTRUCT

#g1[ false[ attr{ id["1"] } ], context[ "sugar", "Recipe1" ] ]

END

...

CONSTRUCT

#g1[ false[ attr{ id["6"] } ], context[ "tomato", "Recipe3" ] ]

END

The result of P1 is the result of the initial program P:

bad-recipes[ name[ "Recipe2" ], name[ "Recipe3" ] ] 2
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DIG recursive programs. In the presented algorithm we assumed that
P is a non DIG recursive program. DIG recursive programs, without group-
ing constructs can be dealt with as follows. Let P be an arbitrary DigX-
cerpt program and e1, . . . , en be the extended rules from P not necessar-
ily satisfying the previous condition on their mutual dependencies. Let
E = {dg1, . . . , dgn} be the set of DIG ask goals corresponding to e1, . . . , en,
and P ′, G′, P ′′ be as defined earlier. We construct a sequence of Xcerpt pro-
grams P0,P1,P2, . . ., where P 0 = (P ′′ ∪ E,E), P j = (P ′′ ∪ E ∪ r(Rj), E)
for j > 0, and Rj is defined below. (Rj represents the reasoner responses
for the ask statements produced by the program Pj−1.)

Each goal dgi of Pj−1 produces a result idi[dig[a1, c1], . . . , dig[am, cm] ].
As in the previous approach, a DIG ask request is constructed out of the
result. The corresponding response of the reasoner is represented, as pre-
viously, by a set of Xcerpt facts Rj

i = { idi[r1, c1], . . . , idi[rm, cm] }. Now
Rj = Rj

1 ∪ . . . ∪Rj
n. It holds that Rj ⊆ Rj+1 for j = 1, 2, . . ..

The programs P0,P1, . . . are executed (by Xcerpt) until the results of
the program Pk are the same as the results of Pk−1. Finally, a program
Q = (P ′′∪r(Rk)∪G′, G′) is constructed. The results ofQ are the same as the
results of P described by the semantics of DigXcerpt. A formal justification
can be found in Appendix A.3 (Theorem 4).

Notice that for non DIG recursive programs this method may be less
efficient than the previous one, as it sends more ask requests to the reasoner.

Applying this method to a program with grouping constructs may lead
to incorrect results. This is because an evaluation of an Xcerpt program
with such constructs is a sequence of evaluations of its strata (cf. Section
2.1.2), in a particular order. In the non DIG recursive case the stratification
did not pose any problems. The order of extended rules e1, . . . , en coincides
with the order of strata. Thus the results produced by a goal dgi added to a
program Pj , j > i, are the same as the results of dgi in Pi−1. This is not the
case for a program that both is DIG recursive and requires stratification. For
such programs, the method for handling DIG recursive programs, described
above, applies to each stratum separately. The division of a DigXcerpt
program into strata and the way of sequential evaluation of strata is the
same as in Xcerpt (cf. Section 2.1.2). We omit the details of the algorithm
for this case.

The presented algorithm for evaluation of DigXcerpt programs may not
terminate for recursive programs. However this is also the case in standard
Xcerpt. It is up to the programmer to make sure that a recursive program
will terminate.

7.2.3 Discussion

We believe that the examples we presented illustrate practical usability of
the proposed approach. The examples use arbitrary ontology queries, not
only Boolean ones. We put no restriction on usage of DIG. For instance with
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a query term error [[ ]] used as a digResponseQuery a DigXcerpt program
can check for which data the reasoner returns an error. Ability to modify
ontologies could be added to DigXcerpt, by using DigAskConstruct that
sends DIG tell statements to the reasoner.

Our approach abstracts from a way XML data is related to an ontology.
It is left to a programmer. In our examples XML data is associated with
ontology concepts by using common names i.e. XML element names are the
same as class names. However, our approach is not restricted to this way of
associating. For example, the association may be defined through element
attributes.

The semantics of DigXcerpt imposes certain implicit type requirements
on programs. The data terms produced by a digAskConstruct should be
DIG ask statements (represented as data terms). digResponseQuery should
match data terms being DIG response statements. It is better to check such
conditions statically, instead of facing run-time errors. For this purpose the
descriptive type system for Xcerpt from the previous chapters can be used.

DigXcerpt in its current form requires the programmer to use the ver-
bose syntax of DIG ask and response statements. On the other hand, the
tedious details of constructing DIG requests out of DIG ask statements and
extracting DIG response statements out of DIG responses are done auto-
matically. Still, one has to specify a construct term digAskConstruct for
construction of a DIG ask statement, and a query term digResponseQuery
to match DIG response statements. Dealing with details of DIG syntax may
be considered cumbersome and too low level. It may be useful to introduce
simpler and more concise syntax for both digAskConstruct and digRespon-
seQuery. For example, the WHERE part from the rule in Example 43 could
be abbreviated as WHERE V in descendants[ some["contained in", var I]

].
We expect that the approach discussed here can be applied to composing

some other XML query languages (such as XQuery) with ontology querying.
The work on implementing DigXcerpt is in progress. A prototype imple-

mentation of the Xcerpt extension from our previous work [29] is available
on-line3. Implementation of DigXcerpt requires only slight modification of
that prototype.

3http://www.ida.liu.se/digxcerpt/
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Chapter 8

Conclusions

This work provides a type system for the XML query language Xcerpt. The
type system is descriptive; this means that types approximate the semantics
of programs. In our approach types are sets of data terms. For specifying
types we adapted and slightly generalized the formalism of Type Defini-
tions [15].

In general, Type Definitions are not closed under intersection. This is
due to simple treatment of unordered content models in this formalism.
We present a class of intersectable Type Definitions (Section 3.2.2) which
is closed under intersection. It seems that in practice most of Type Def-
initions are intersectable. For instance all definitions without unordered
content models are. We provide an algorithm of computing type intersec-
tion for such definitions, and an algorithm of approximating a type by its
intersectable superset. The latter makes the type system able to deal with
non intersectable content models. We also suggest a generalization of Type
Definitions by introducing types representing ontology classes (Section 7.1).
This should make possible adding semantic types to our approach.

In practice, when the available type information is given in some schema
language then, to apply our type system, the schema has to be transformed
into a Type Definition describing the same type. (Formally, a set defined by
the schema is a set of XML documents, and the Type Definition describes
the corresponding set of data terms). Our prototype performs such trans-
formation for DTDs, and can be extended to deal with XML Schema or
RELAX NG. In some cases a type described using XML Schema or RELAX
NG cannot be defined by a Type Definition (see Section 3.3). Then a Type
Definition describing a superset of the given type can be used.

The type system presented in this thesis makes possible:

� Type inference for a single Xcerpt rule. We show how to compute types
containing all the results of a single Xcerpt rule, provided that the rule
is applied to data of a given type. The algorithm is introduced in an
abstract form of derivation rules (Section 4.2.2). This makes possible
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a formal proof of its correctness (Appendix A.1.1), and deriving a
concrete algorithm (Section 4.2.5). The algorithm is of exponential
complexity. However experiments show that it is sufficiently efficient in
practice. (Section 4.2.5 shows in which cases we can expect problems).
In Section 4.2.6 we propose how to generalize the abstract algorithm
for most of the Xcerpt constructs not formally dealt with in this work.

� Type inference for an Xcerpt program. Section 4.2.3 presents a method
of computing types containing the results of a program, provided that
the program is applied to data of a given type. The method employs
type inference for a single Xcerpt rule. It can be seen as an instance
of the abstract interpretation paradigm. A special feature is that in
computing a fixed point the number of iterations is known in advance.
This makes it possible to avoid an expensive test for a fixed point
(i.e. type inclusion with non proper Type Definitions). We provide a
formal proof of correctness and termination of the method.

In Section 4.2.4 we discuss conditions (on the program and on the
type specification), under which the type inference is exact. Part of
the discussion is formal, and the corresponding proofs are given in
Appendix A.2.

� Type checking for Xcerpt programs i.e. proving correctness of an Xcerpt
program (or a query rule) wrt. a given type specification. Type correct-
ness means that whenever the program (the rule) is applied to data
from a given type (of the database) the result is from a given type
(of expected results). Type correctness can be proved by successful
checking whether the inferred result type is included in the specified
one.

If the type inference is exact then failure of type checking implies type
incorrectness of the program (rule). Otherwise such failure may be
interpreted only as a hint of possible incorrectness. Section 4.4 further
discusses relations between errors in the program and the results of
type inference and type checking.

� Determining dependencies between rules in Xcerpt programs. Under-
standing rule dependencies and finding them effectively is necessary
for efficient evaluation of Xcerpt programs [35]. Previously, static de-
pendency [50] has been used; it is a rather rough approximation of the
actual, dynamic dependency. We show how a more precise approxima-
tion can be effectively obtained by employing type analysis (Section
4.3).

The theoretical part of this work is complemented by a prototype im-
plementation (Chapter 5). The prototype is written in Haskell and is an
extension of the prototype implementation of Xcerpt. The prototype is
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available on-line. Most of the techniques described in this thesis are im-
plemented, a main exception is type inference for recursive programs. We
presented example scenarios demonstrating usefulness of the proposed ap-
proach for indicating errors in Xcerpt programs (Chapter 6). The prototype
has been applied in most of these examples.

We also present an extension of Xcerpt, called DigXcerpt, that allows to
query ontologies in addition to XML data (Section 7.2). Extended programs
communicate with an ontology reasoner using DIG interface. No restrictions
are imposed on Xcerpt and on the DIG ask statements used. In particular,
ontologies can be queried with arbitrary, not only Boolean, queries. We
present a way of implementation of DigXcerpt by employing an existing
Xcerpt implementation and an existing ontology reasoner; they are treated
as “black boxes” (no modifications to the Xcerpt system or the reasoner are
needed). Appendix A.3 provides a soundness proof of the implementation
approach wrt. the semantics of DigXcerpt.

Related work. The type system of XQuery [25] differs substantially from
our approach (see Section 4.5). A main difference is that we add types to
an untyped language, while in XQuery types are an essential part of the
language. In the semantics of XQuery, data values are augmented with type
information, and the results of some constructs depend on the type annota-
tion. Our typing approach is descriptive, types are sets used to approximate
the semantics of programs. The type system of XQuery is prescriptive; types
are expressions, and they are indispensable part of the semantics. Treating
types as sets is a secondary notion – to each type there corresponds a certain
set of data objects (defined by the relation matches [25]). Type correctness
of programs is defined by numerous conditions, related to particular con-
structs of XQuery. The conditions can be checked dynamically or – maybe
not all of them – statically. In contrast, type correctness in our approach
is specified by a single condition that the results of a program are members
of the specified result type (if the input data queried by the program are
within specified types). Another difference is that data terms used in our
approach are more abstract than the XQuery data model. As a consequence,
types in XQuery deal with more details of XML documents than the types
considered in this approach.

XDuce [37] is an XML processing language, in which types play impor-
tant role. Types in XDuce are (expressions denoting) sets. This is different
from XQuery, and similar to our approach. As in this work, a data ob-
ject in XDuce may be a member of many types. XDuce is statically typed,
the typechecking is performed at compile time. XDuce is based on pattern
matching, like Xcerpt, not on path expressions, like XQuery. The pattern
matching mechanism is less sophisticated than that of Xcerpt. For example,
there are no unordered patterns in XDuce. An interesting feature is that
patterns are closely related to type expressions. A specific property of pat-
tern matching is that for any input value it results in exactly one variable

143



i
i

“phd” — 2008/1/21 — 0:58 — page 144 — #154 i
i

i
i

i
i

binding. The type system of XDuce can be classified as prescriptive, as its
semantics is defined only for well-typed programs.

Although XDuce formalism for type specification is similar to Type Defi-
nitions there are some differences. Elements of types are sequences of terms,
in contrast to our approach and similarly to XQuery. Thus the formalism
allows to assign type names to sets of sequences of data terms expressible
by regular expressions, while Type Definitions allow to assign type names
to sets of data terms of one kind, ordered or unordered, and with the same
label. In contrast to Type Definitions, XDuce and its type formalism do
not deal with unordered trees. Another difference is that XDuce, similarly
to XQuery, does not impose efficiency related restrictions on the formalism
for specifying types. Thus restrictions like those in our proper Type Def-
initions or in XML Schema (Element Declarations Consistent and Unique
Particle Attribution) are absent here. As a result, the class of sets defined
by the XDuce formalism is closed under union and complement. Inefficiency
issues related to this choice are accepted in return for a clean and powerful
language design.

Substantial theoretical work on types for XML transformations has been
done from decidability and complexity point of view (see e.g. [43] and the
references therein). In that work, XML query and transformation languages
are usually abstracted as unranked tree transducers. Also, mainly exact
typing algorithms are considered.

Future work. An obvious subject of future work is completion of the pro-
totype by implementing its missing features. Another topic is generalization
of the presented approach to full Xcerpt. Adding most of the missing Xcerpt
constructs is discussed in Section 4.2.6. However extending the system for
data terms representing graphs has not been addressed in this work.

Another subject of future work is improvement of the presented algo-
rithms. It is possible that in some cases accuracy should be better traded
for efficiency, and the most general type Top should be used instead of com-
puting a more precise approximation.

The treatment of unordered content models in the formalism of Type
Definitions is rather simple. It would be useful to improve it, in order to
make the formalism closed under intersection, and to obtain better approxi-
mation of sets of data terms with unordered arguments. Possible suggestions
may be found in [46, 60].

An interesting issue has been purposefully left out of the scope of this
work. Namely, data terms or XML documents can be used to represent
non-tree data structures, for instance RDF graphs. Actually, in full Xcerpt
data terms may include a kind of pointers; such terms are treated as repre-
sentation of graphs. Such representation of data structures as data terms is
not unique. A given graph can be represented by various data terms, which
differ substantially. This imposes an equivalence relation: data terms repre-
senting the same data structure are equivalent. Type systems, like the one
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CHAPTER 8. CONCLUSIONS

presented here, do not respect this equivalence. A type may include a data
term d but not include a data term d′ which is equivalent to d. A subject
of future work is construction of type systems which consider not only data
terms but also the data structures they represent.
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Appendix A

Proofs

A.1 Type System Correctness

The section presents proofs of Theorem 1, Theorem 2, Proposition 2, and
Theorem 3, essential for the correctness of the type system.

A.1.1 Type Inference for Rules

Here we prove Theorem 1 which is similar to Theorem 20 of [12]. Its proof
is also similar and to prove Theorem 1 we use lemmata and propositions
from [12]. However, the set of rules to which the lemmata and propositions
refer, is slightly different in this thesis than in [12].

One difference is in the rule (Targeted Query Term), which instead of
the condition δ(r) ∈ [[T ]] has a condition type(r) = T . The rule (Pattern)
for query terms is augmented with conditions related to newly introduced
type Top. The conditions for rule (Pattern) for construct terms are cor-
rected. Additionally we provide another typing rule for construct terms,
namely (Var Approx), which was absent in [12]. The last difference con-
cerns the rule (Query Rule) which now has an additional condition saying
that substitutions(Γ) 6= ∅ for each Γ ∈ Ψ.

Moreover, introduction of a type Top in this thesis allows to generalize
Lemma 27 of [12] (by removing the requirement that Γ(X) 6= Top). As the
mentioned modifications require only small and simple changes in lemmata,
propositions and proofs recalled from [12], we do not describe them here.
However we introduce Proposition 7 which is a new version of Proposition
23 of [12]. The new version of the proposition is necessary due to the fact
that we have introduced in this thesis the notion of an answer for a query
and a set of data terms.

First, we need to recall an auxiliary definition of Γθ (defined earlier in
[12]).
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A.1. TYPE SYSTEM CORRECTNESS

Definition 26. Given a Type Definition D and a substitution θ assigning
data terms to variables, the mapping Γθ is defined as:

Γθ(X) = T1 ∩ . . . ∩ Tn,

where X ∈ dom(θ) and T1, . . . , Tn are type names of D such that {T1, . . . , Tn} =
{T | Xθ ∈ [[T ]]D}.

By definition θ ∈ substitutions(Γθ).
This is a new version of Proposition 23 of [12]:

Proposition 7. Let D be a Type Definition, U a set of type names and Q
a query such that for each targeted query term in(r, q) in Q there is a type
name T = type(r) defined in D. Let Z be a set of data terms such that
Z ⊆ [[U ]]D. If θ is an answer for Q and Z then D ` Q : U . Γθ.

Proof. By induction on the query Q.

� Let Q be a query term. If U = ∅, the proposition is not applicable as
there is no answer for a query term and no data term. So U 6= ∅. θ is
an answer for Q and d ∈ Z, such that d ∈ [[Ti]] for some Ti ∈ U . By
Lemma 22 of [12], D ` Q : Ti .Γθ. By rule (Query Term), we obtain
D ` Q : U . Γθ.

� If Q is a targeted query term in(r, q), θ is an answer for q and δ(r). Let
T = type(r). Then δ(r) ∈ [[T ]]. By Lemma 22 of [12], D ` q : T . Γθ.
By rule (Targeted Query Term), we obtain D ` Q : U . Γθ.

� Let Q be of the form and(Q1, . . . , Qp). By Definition 4, for each i ∈
{1, . . . , p}, θ is an answer for Qi and Z. By the inductive assumption,
we obtain, for each i ∈ {1, . . . , p}, D ` Qi : U . Γθ. Thus, by rule
(And Query), we have D ` Q : U . Γθ.

� Let Q be of the form or(Q1, . . . , Qp). By Definition 4, for some i ∈
{1, . . . , p}, θ is an answer Qi and Z. By the inductive assumption,
we obtain D ` Qi : U . Γθ. Thus, by rule (Or Query), we have
D ` Q : U . Γθ.

Theorem 1. Let D be a Type Definition and p be a query rule, where for
each targeted query term in(r, q) in p there is a type name T = type(r)
defined in D. Let U be a set of type names and Z a set of data terms such
that Z ⊆ [[U ]].

If a result for p and Z exists then there exist s and D′ such that D′ ⊇ D
and D′ ` p : U . s.

If D ` p : U . s and d is a result for p and Z, then d ∈ [[s]].
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Proof. Let p = c ← Q. Assume that there exists a result for (c ← Q) and
Z. Let Θ be the set of all answers for Q and Z. By Definition 8, Θ 6= ∅.
Let θ ∈ Θ. By Proposition 7, D ` Q : U . Γθ. Thus, by Lemma 26 of [12],
there is a set Ψ of variable type mappings that Ψ is complete for Q and U .

Let {Ψ1, . . . , Ψn} = Ψ/ ∗∼F V (c)
. By induction from Lemma 27 of [12],

we obtain that there exist Dn ⊇ · · · ⊇ D1 ⊇ D and s1, . . . , sn such that
Di ` c : Ψi . si (and by Lemma 28 of [12], Dn ` c : Ψi . si) for each
i ∈ {1, . . . , n}. By Lemma 29 of [12], Ψ is also complete for Q and U wrt.
Dn. By rule (Query Rule), we obtain Dn ` (c← Q) : U . s1 | · · · | sn.

Now assume that there exists s and D such that D ` c← Q : U . s. Let
d′ be a result for (c← Q) and Z. Let Θ be the set of all answers for Q and
Z and let θ ∈ Θ. By Proposition 7, D ` Q : U .Γθ. Since Ψ used in the rule
(Query Rule) is complete for Q and U wrt. D, there exists Γ ∈ Ψ such
that Γθ v Γ. Since θ ∈ substitutions(Γθ), we obtain θ ∈ substitutions(Ψ).
Thus Θ ⊆ substitutions(Ψ).

We have d′ = Θ′(c) for some Θ′ ∈ Θ/'F V (c) . By Lemma 30 of [12], there
exists Ψ′ ∈ Ψ/ ∗∼F V (c)

such that Θ′ ⊆ substitutions(Ψ′). Since D ` (c ←
Q) : U . s1 | · · · | sn, then for some i ∈ {1, . . . , n}, we have Ψi = Ψ′ and
D ` c : Ψi . si. By Proposition 31 of [12], d = Θ′(c) ∈ [[si]] ⊆ [[s1 | · · · | sn]].

A.1.2 Type Inference for Programs

Here we provide proofs for Theorems 2, 3 and Proposition 2. The proofs in
this section use properties of resType expressed by Lemmata 1, 2. We omit
their formal proofs.

Lemma 1. Let p be a query rule and U,U ′ be sets of type names from a
Type Definition D. Let the type of each external resource occurring in p be
defined by D. Provided that

� there are no grouping constructs in p,

� if the head of p contains a construct term l{c1, . . . , cn} then c1, . . . , cn

are rooted construct terms,

� all multiplicity lists occurring in D are intersectable,

if [[U ]] ⊆ [[U ′]] then [[resType(p, U)]] ⊆ [[resType(p, U ′)]].

If D from the lemma above contains non intersectable multiplicity lists,
computation of resType(p, U) may require finding intersectable multi-
plicity lists approximating non intersectable ones (see the typing rule (Var
Approx)). For this an algorithm for computing a multiplicity list approx-
imating a union of multiplicity lists is employed. This operation does not
retain monotonicity and as a consequence resType is not monotonic for this
case.
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In rule (Pattern) for construct terms, approximating s1 · · · sn by a mul-
tiplicity list is not monotonic in general. The condition on c1, . . . , cn above
implies that a permutation of s1 · · · sn is a multiplicity list, and s1 · · · sn is
approximated by this permutation. Also, resType may be not monotonic
wrt. its second argument if p contains grouping constructs.

Lemma 2. Let p, p′ be a pair of rules, U,U ′′ be sets of type names and U ′ =
resType(p′, U ′′). If p �w p′ then [[resType(p, U ∪ U ′)]] = [[resType(p, U)]].

Corollary 1 (Monotonicity of TP ). Let P be a set of rules and U,U ′ be
sets of type names from a Type Definition D. Let the type of each external
resource occurring in rules from P be defined by D. Assume that

� there are no grouping constructs in the rules of P ,

� if the head of a rule from P contains a construct term l{c1, . . . , cn}
then c1, . . . , cn are rooted construct terms with distinct labels,

� all multiplicity lists occurring in D are intersectable.

Let D′ be the obtained Type Definition specifying the type names in the sets
TP (U), TP (U ′). Then

� all the multiplicity lists in D′ are intersectable,

� [[U ]]D ⊆ [[U ′]]D implies [[TP (U)]]D′ ⊆ [[TP (U ′)]]D′ .

Proof. For each construct term l{c1, . . . , cn} in P the labels of c1, . . . , cn

are distinct. Thus whenever rule (Pattern) for construct terms is applied,
s1, . . . , sn are type variables with distinct labels, and the obtained multi-
plicity list s1 · · · sn is intersectable. The last conclusion follows from Lemma
1.

Lemma 3. Let P, P ′ be sets of rules such that P ′ ⊆ P . Let U = T i
P (∅) for

some i > 0 and Z be a set of data terms. Assume that TP is monotonic. If
Z ⊆ [[U ]] then Rj

P ′(Z) ⊆ [[T j
P (U)]] for each j = 0, 1, . . ..

Proof. By Theorem 1, for each rule p ∈ P ′, res(p, Z) ⊆ [[resType(p, U)]] ⊆
[[
⋃

p∈P resType(p, U)]] = [[TP (U)]]. This implies that
⋃

p∈P ′ res(p, Z) ⊆
[[TP (U)]]. Also Z ⊆ [[U ]] ⊆ [[TP (U)]], by Corollary 1. Thus RP ′(Z) = Z ∪⋃

p∈P ′ res(p, Z) ⊆ [[TP (U)]]. Hence Rj
P ′(Z) ⊆ [[T j

P (U)]], by induction on
j.

Proposition 8. Let P = (P ′, G) be an Xcerpt program, P1, . . . , Pn, G be
a stratification of P and P = P ′\G. Let Z0 = ∅ and, for j = 1, . . . , n, let
Zj = R

lj
Pj

(Zj−1) for such lj > 0 that R
lj
Pj

(Zj−1) = R
lj+1
Pj

(Zj−1). Assume
that TP is monotonic. Then, for j = 1, . . . , n,

Zj ⊆ [[T kj

P (∅)]] where kj =
j∑

m=1

lm.
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Proof. By induction on j. For j = 0 the conclusion trivially holds. As-
sume Zj−1 ⊆ [[T kj−1

P (∅)]]. By Lemma 3, R
lj
Pj

(Zj−1) ⊆ [[T lj
P ( T

kj−1
P (∅) )]] =

[[T lj+kj−1
P (∅) )]] = [[T kj

P (∅) )]]. So Zj ⊆ [[T kj

P (∅)]].

Theorem 2. Let P = (P ′, G) be an Xcerpt program and P = P ′\G. Assume
that TP is monotonic. If d is a result of a rule p in P ′ then there exists i > 0
such that

d ∈ [[resType(p, T i
P (∅))]] ⊆ [[TP ′(T i

P (∅))]].

If [[T j+1
P (∅)]] = [[T j

P (∅)]] for some j > 0 then the above holds for i = j.

Proof. Let P1, . . . , Pn, G be a stratification of P. Let Z0 = ∅ and for j =
1, . . . , n, Zj = R

lj
Pj

(Zj−1) for such lj > 0 that R
lj
Pj

(Zj−1) = R
lj+1
Pj

(Zj−1).
By Proposition 8, Zn ⊆ [[T kn

P (∅)]], where kn =
∑n

m=1 lm. Let i = kn. By
Definition 15 and Theorem 1, d ∈ res(p, Zn) ⊆ [[resType(p, T kn

P (∅))]].
By Definition 21, [[resType(p, U)]] ⊆ [[TP ′(U)]] for any U . Thus the first

conclusion of the Theorem holds.
If [[T j+1

P (∅)]] = [[T j
P (∅)]] then [[T i

P (∅)]] ⊆ [[T j
P (∅)]] for any i ≥ 0. Thus

d ∈ [[resType(p, T i
P (∅))]] ⊆ [[resType(p, T j

P (∅))]] and the conclusion holds
with i replaced by j.

Proposition 2. Let P be a set of rules and n > 0. If [[Tn−1
P (∅)]] 6= [[Tn

P (∅)]]
then there exist p1, . . . , pn ∈ P such that pn �w · · · �w p1.

Proof. For n = 1 the proposition holds trivially, as ∅ 6= [[TP (∅)]] implies
that P is nonempty. So assume that n > 1. Let U i = T i

P (∅). We have
TP (U) =

⋃
p∈P resType(p, U) by the definition of TP , and

resType(p, U i) = resType
(

p,
⋃

p′ ∈ P
p �w p′

resType(p′, U i−1)
)

(A.1)

for i > 0, by Lemma 2. From [[Un−1]] 6= [[Un]] it follows that TP (Un−2) 6=
TP (Un−1) and then resType(pn, Un−2) 6= resType(pn, Un−1) for some pn ∈
P .

By (A.1), if resType(p, U i−1) 6= resType(p, U i) then there exists a rule
p′ ∈ P such that p �w p′ and if i > 1 then resType(p′, U i−2) 6= resType(p′,
U i−1). From this by induction we obtain that if resType(pn, Un−2) 6=
resType(pn, Un−1) then there exist p1, . . . , pn ∈ P such that pn �w · · · �w

p1.

Theorem 3. Let P = (P ′, G) be an Xcerpt program, P = P ′\G, and P0 ⊆ P
such that P \ P0 is not w-recursive. Assume that TP is monotonic. Let W

be a set of type names, and let T̂P (U) = TP\P0(U)∪W for any set U of type
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names. Let U∞ = T̂ k
P (∅) be a fixed point of T̂P (i.e. [[T̂P (U∞)]] = [[U∞]]). If

[[resType(p, U∞)]] ⊆ [[W ]] for each p ∈ P0 then

d ∈ [[resType(p, U∞)]] ⊆ [[U∞]] for any result d of a rule p ∈ P ,
d ∈ [[resType(p, U∞)]] ⊆ [[TP ′(U∞)]] for any result d of a rule p ∈ P ′,
[[TP (U∞)]] ⊆ [[U∞]] and [[T j

P (∅)]] ⊆ [[U∞]] for any j > 0.

Moreover, U∞ in the last three lines may be replaced by T j
P (U∞), for any

j > 0.

Proof. Notice that [[TP\P0(U∞)]] ⊆ [[U∞]], as [[TP\P0(U∞)]] ∪ [[W ]] ⊆ [[U∞]].
Notice also that [[resType(p, U∞)]] ⊆ [[U∞]] for p ∈ P0. Hence [[TP (U∞)]] ⊆
[[U∞]], as TP (U) = TP\P0(U)∪

⋃
p∈P0

[[resType(p, U)]]. From monotonicity of
TP we obtain by induction that [[U∞]] ⊇ [[TP (U∞)]] ⊇ [[T 2

P (U∞)]] ⊇ · · ·, and
that [[T i

P (U∞)]] ⊇ [[T i
P (∅)]] for i ≥ 0. Hence [[T i

P (∅)]] ⊆ [[U∞]] for each i ≥ 0.
Thus, by Theorem 2 any result of a rule p of P ′ is in [[resType(p, U∞)]]. The
latter is a subset of [[TP ′(U∞)]] and a subset of [[U∞]] if p ∈ P .

A.2 Exactness of Inferred Type

Proposition 3. Let D be a Type Definition without nullable type names,
and whose content models do not contain useless type names. Let q be a
query term, T a type name from D, and Θ = { θ |D ` q : T . Γ, θ ∈
substitutionsD(Γ) }. If q does not contain ; then each θ ∈ Θ is an answer
for q and some d ∈ [[T ]]D.

Proof. Notice, that for any type name T occurring in D, [[T ]]D 6= ∅ (as D
does not contain nullable type names). Assume that D ` q : T . Γ and
θ ∈ substitutions(Γ). We will show that θ is an answer for q and some
d ∈ [[T ]]. By induction on the derivation tree of D ` q : T . Γ.

� If q is a basic constant then an arbitrary substitution θ is an answer
substitution for q and an arbitrary data term d.

� If q is a variable X, then given D ` q : T . Γ by the rule (Var)
[[Γ(X)]] ⊆ [[T ]]. As θ ∈ substitutionsD(Γ) we obtain Xθ ∈ [[Γ(X)]].
Hence Xθ ∈ [[T ]]. Thus, θ is an answer for X and d = Xθ.

� Let q be of the form l[q1, · · · , qn] and the rule for T in D be of the
form T → l[r]. Given D ` q : T . Γ , by the query term typing rule
(Pattern), D ` qi : Ti . Γ for i = 1, . . . , n and T1 · · ·Tn ∈ L(r).

As [[Ti]] 6= ∅, by induction hypothesis there exist data terms di ∈ [[Ti]]
(i = 1, . . . , n) such that θ is an answer for each qi and di. By Definition
3, θ is an answer for q and l[ d1, . . . , dn ] ∈ [[T ]].
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� Let q be of the form l{q1, · · · , qn} and the rule for T in D be of the
form T → l[r]. Given D ` q : T . Γ , by the query term typing rule
(Pattern), D ` qi : Ti.Γ for i = 1, . . . , n and T1 · · ·Tn ∈ perm(L(r)).
As [[Ti]] 6= ∅, by induction hypothesis there exist data terms di ∈
[[Ti]] (i = 1, . . . , n) such that θ is an answer for each qi and di. Let
t1, . . . , tn be a permutation of d1, · · · , dn such that l[t1, . . . , tm] ∈ [[T ]].
By Definition 3, θ is an answer for q and l[t1, . . . , tn] ∈ [[T ]].

� Let q be of the form l[[q1, · · · , qn]] and the rule for T in D be of the
form T → l[r]. Given D ` q : T . Γ , by the query term typing rule
(Pattern), D ` qi : Ti .Γ for i = 1, . . . , n and T1 · · ·Tn ∈ L(s), where
s is r with every type name U replaced by U |ε. As [[Ti]] 6= ∅, by induc-
tion hypothesis there exist data terms di ∈ [[Ti]] (i = 1, . . . , n) such that
θ is an answer for each qi and di. Let t1, . . . , tm be a sequence of data
terms containing subsequence d1, · · · , dn such that l[t1, . . . , tm] ∈ [[T ]].
By Definition 3, θ is an answer for q and l[ t1, . . . , tm ] ∈ [[T ]].

� Let q be of the form l{{q1, · · · , qn}} and the rule for T in D be of the
form T → l[r]. Given D ` q : T . Γ , by the query term typing rule
(Pattern), D ` qi : Ti.Γ for i = 1, . . . , n and T1 · · ·Tn ∈ perm(L(s)),
where s is r with every type name U replaced by U |ε. As [[Ti]] 6= ∅, by
an induction hypothesis there exist data terms di ∈ [[Ti]] (i = 1, . . . , n)
such that θ is an answer for each qi and di. Let t1, . . . , tm be a sequence
of data terms containing subsequence being a permutation of d1, · · · , dn

such that l[t1, . . . , tm] ∈ [[T ]]. By Definition 3, θ is an answer for q and
l[ t1, . . . , tm ] ∈ [[T ]].

� Let q be of the form l{q1, · · · , qn} and the rule for T in D be of the
form T → l{r}. Given D ` q : T . Γ , by the query term typing rule
(Pattern), D ` qi : Ti.Γ for i = 1, . . . , n and T1 · · ·Tn ∈ perm(L(r)).
As [[Ti]] 6= ∅, by induction hypothesis there exist data terms di ∈ [[Ti]]
(i = 1, . . . , n) such that θ is an answer for each qi and di. By Definition
3, θ is an answer for q and l{d1, . . . , dn} ∈ [[T ]].

� Let q be of the form l{{q1, · · · , qn}} and the rule for T in D be of the
form T → l{r}. Given D ` q : T . Γ , by the query term typing
rule (Pattern), D ` qi : Ti . Γ for i = 1, . . . , n and T1 · · ·Tn ∈
perm(L(s)), where s is r with every type name U replaced by U |ε.
As [[Ti]] 6= ∅, by induction hypothesis there exist data terms di ∈ [[Ti]]
(i = 1, . . . , n) such that θ is an answer for each qi and di. Let t1, . . . , tm
be a sequence of data terms containing subsequence d1, · · · , dn such
that l{t1, . . . , tm} ∈ [[T ]]. By Definition 3, θ is an answer for q and
l{ t1, . . . , tm } ∈ [[T ]].

� Let q be of the form desc q′. Given D ` q : T .Γ a premise of the rule
(Descendant) or of the rule (Descendant Rec) must hold.
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First, assume that the premise of (Descendant) holds i.e. D ` q′ :
T . Γ. As [[T ]] 6= ∅, by induction hypothesis there exist a data term
d ∈ [[T ]] such that θ is an answer for q′ and d. By Definition 3, θ is an
answer for q and d.

Now, assume that the premise of (Descendant Rec) holds, i.e. D `
desc q : T ′ . Γ, for T ′ ∈ types(r), where r is the content model of T .
As [[T ′]] 6= ∅, by induction hypothesis there exists a data term d ∈ [[T ′]]
such that θ is an answer for q and d. As T ′ is not a useless type name,
T ′ ∈ types(r) and [[T ]] 6= ∅ there exists a data term d′ ∈ [[T ]] such that
d is a subterm of d′. By the Definition 3, θ is an answer for q and d′.

Proposition 4. Let D be a Type Definition without nullable type names,
and whose content models do not contain useless type names. Let U be a
set of type names from D, Q be a query and Θ = { θ |D ` Q : U . Γ, θ ∈
substitutionsD(Γ) }. Let T1, . . . , Tn be type names in D such that type(ri) =
Ti for each targeted query term in(ri, qi) in Q (i = 1, . . . , n). If Q does not
contain ; and multiple occurrences of the same resource (as an argument
of a construct in(. . .)) under the scope of a construct and(. . .) then for each
θ ∈ Θ there exist

� data terms d1, . . . , dn of types T1, . . . , Tn, respectively,

� a set Z ⊆ [[U ]]D of data terms

such that θ is an answer for Q′ and Z, where Q′ is Q with each targeted
query term in(ri, qi) replaced by a targeted query term in(r′i, qi), such that
δ(r′i) = di.

Proof. We assume that D ` Q : U . Γ and θ ∈ substitutionsD(Γ). Let
T1, . . . , Tn be type names such that type(ri) = Ti for each targeted query
term in(ri, qi) in Q. By induction on the query Q:

� Let Q be a query term. As there are no targeted query terms in Q,
Q′ = Q. By query typing rule (Query Term), D ` Q′ : U . Γ implies
D ` Q′ : T . Γ for some T ∈ U . Thus, by Proposition 3, there exists
a data term d ∈ [[T ]] such that θ is an answer substitution for Q′

and d. Hence, there exists Z = {d} ⊆ [[U ]] such that θ is an answer
substitution for Q′ and Z.

For any query term Q, D ` Q : ∅ . Γ does not hold, as the rule
(Query Term) requires U to be not empty. Thus the proposition is
not applicable for an empty set of type names U and a query Q which
is a query term.

� Let Q be a targeted query term in(ri, qi). By the query typing rule
(Targeted Query Term), D ` Q : U . Γ implies D ` qi : Ti . Γ
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for Ti = type(ri). As D ` qi : Ti . Γ, by Proposition 3, there exists
di ∈ [[Ti]] such that θ is an answer for qi and di. Let Q′ be in(r′i, qi),
where δ(r′i) = di.

Let Z ⊆ [[U ]] be a set of data terms. By Definition 4, θ is an answer
for Q′ and Z.

� Let Q be of the form or(Q1, . . . , Qn). By the typing rule (Or Query)
D ` Q : U . Γ implies D ` Qj : U . Γ for some j (1 ≤ j ≤ n). By
induction hypothesis there exist

– data terms d1, . . . , dn of types T1, . . . , Tn, respectively,

– a set of data terms Z ⊆ [[U ]]D

such that θ is an answer for some Q′
j and Z, where Q′

j is Qj with
each targeted query term in(rp, qp) replaced by a targeted query term
in(r′p, qp), such that δ(r′p) = dp. Let Q′ = or(Q1, . . . , Q

′
j , . . . , Qn). By

Definition 4, θ is an answer for Q′ and Z.

� Let Q be of the form and(Q1, . . . , Qn). By the typing rule (And
Query) D ` Q : U . Γ implies D ` Qj : U . Γ for j = 1, . . . , n. Thus
for each θ ∈ Θ, θ ∈ { θ |D ` Qj : U . Γ, θ ∈ substitutionsD(Γ) } for
j = 1, . . . , n. By induction hypothesis there exist

– data terms d1, . . . , dn of types T1, . . . , Tn, respectively,

– sets of data terms Z1, . . . , Zn

such that for j = 1, . . . , n, Zj ⊆ [[U ]]D and θ is an answer for Q′
j

and Zj , where each Q′
j is Qj with each targeted query term in(rp, qp)

replaced by a targeted query term in(r′p, qp), such that δ(r′p) = dp.
Let Q′ = and(Q′

1, . . . , Q
′
n). By Definition 4, θ is an answer for Q′ and

Z = Z1 ∪ . . . ∪ Zn.

A.3 Soundness of DigXcerpt Implementation

The section presents a proof of Theorem 4 which expresses soundness of the
implementation algorithm for DigXcerpt described in Section 7.2.2. First
we introduce a notation used in this section.

Let d be a data term of the form id[dig[a1, c1], . . . , dig[am, cm] ], where id
is one of the unique labels introduced by translation of a DigXcerpt program
into an Xcerpt program. The data term d contains DIG ask statements
a1, . . . , am. The corresponding set of reasoner responses, denoted as RR(d),
is { id[r1, c1], . . . , id[rm, cm] }, where r1, . . . , rn are the reasoner responses
(DIG response statements) for a1, . . . , an, respectively. The data terms of
the form id[ri, ci] are called DIG response terms. For a set of data terms Z,
RR(Z) =

⋃
d∈Z RR(d).
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For a set of rules P , res(P,Z) is defined as
⋃

p∈P res(p, Z) and RP (Z)
is defined as in Definition 10: RP (Z) = Z ∪ res(P,Z). The set Rk

P (∅) such
that Rk

P (∅) = Rk+1
P (∅) (for some k ≥ 0) will be denoted as R∞

P (∅).
For a set of rules P , a (length m) computation of P is a sequence:

Z0, p1, Z1, . . . ,Zm−1, pm,Zm, where Z0 = ∅, Zj = Zj−1 ∪ res(pj , Zj−1) and
pj ∈ P , for j = 1, . . . ,m. Notice that the sets Z0, . . . , Zm are finite, and that
Zj ⊆ Rj

P (∅) for j = 0, 1, . . ., provided that there are no grouping constructs
in the rules from P . (The latter is due to res(p, Z) ⊆ RP (Z) ⊆ RP (Z ′) for
any p ∈ P and Z ⊆ Z ′, by Lemma 5.) Sometimes the computation will be
abbreviated as Z0, P1, Z1, . . . , Zm′−1, Pm′ , Zm′ , where each Pi ⊆ P is a set
of rules not pairwise dependent (thus the order of execution of rules from
Pi is irrelevant) and Z0 = ∅, Zi = res(Pi, Zi−1), for i = 1, . . . ,m′.

Given a computation ∅, . . . , Z, the set Z is called the result of the com-
putation. A computation ∅, . . . , Z of P is called final if Z = R∞

P (∅). Thus
an existence of a final computation of P guarantees that there is no infinite
loop in P and that R∞

P (∅) exists. Also existence of R∞
P (∅) guarantees that

a final computation of P exists.
We will use the fact that res(p, ·) is monotone for any rule p without

grouping constructs:

Lemma 4. Let p be a DigXcerpt rule and Z,Z ′ be sets of data terms such
that Z ⊆ Z ′. If there is no grouping constructs in p then res(p, Z) ⊆
res(p, Z ′).

As its consequence we obtain:

Lemma 5. Let P be a set of query rules without grouping constructs and
let Z,Z ′ be sets of data terms. If Z ⊆ Z ′ then RP (Z) ⊆ RP (Z ′), Rj

P (Z) ⊆
Rj

P (Z ′), and Rj
P (Z) ⊆ Rk

P (Z) for 0 ≤ j ≤ k.

Proposition 9. Let P be a set of query rules without grouping constructs
and ∅, . . . , Z, be a computation of P . If res(p, Z) ⊆ Z for each p ∈ P then
Z = R∞

P (∅).

Proof. As res(p, Z) ⊆ Z for each p ∈ P ,
⋃

p∈P res(p, Z) ⊆ Z. Thus
RP (Z) = Z ∪

⋃
p∈P res(p, Z) ⊆ Z. Hence by monotonicity of Ri

P (Lemma
5), Ri+1

P (Z) ⊆ Ri
P (Z) for i ≥ 0 and Rl

P (Z) ⊆ Z for any l ≥ 0. As Z is
finite, R∞

P (∅) exists. Thus R∞
P (∅) ⊆ Z and by Lemma 5, Z ⊆ R∞

P (∅). Hence
Z = R∞

P (∅).

In what follows we will use the following Lemmata; rather obvious proofs
of the first four of them we skip.

Lemma 6. Let Z be a set of data terms, e be an extended DigXcerpt rule
and dg, dr be the corresponding DIG ask goal and DIG response rules. Then
res(e, Z) = res(dr,RR(res(dg, Z))).
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Lemma 7. Let dg be a DIG goal rule without grouping constructs in di-
gAskConstruct and Z,Z ′ be sets of data terms. If Z ⊆ Z ′ then RR(res(dg, Z))
⊆ RR(res(dg, Z ′)).

Lemma 8. Let P = (P,G) be a DigXcerpt program and P ′ = (P ′, G′) be P
with each extended rule ei replaced by the corresponding DIG response rule
dri. Let E = {dg1, . . . , dgn} be the set of DIG ask goals corresponding to
e1, . . . , en and Z be a set of data terms. Then res(dri, RR(res(E,Z))) =
res(dri, RR(res(dgi, Z))).

Lemma 9. Let P = (P,G) be a DigXcerpt program and P ′ = (P ′, G′) be
P with each extended rule ei replaced by the corresponding DIG response
rule dri. Let E = {dg1, . . . , dgn} be the set of DIG ask goals corresponding
to e1, . . . , en and Z,Z ′ be sets of data terms. Let R = RR(res(E,Z))) and
p ∈ P . Then res(p, Z ′∪R) = res(p, Z ′) and res(E,Z ′∪R) = res(E,Z ′). For
Z ′′ being a set of data terms without DIG response terms res(dri, Z

′′∪R) =
res(dri, R).

Lemma 10. Let P = (P,G) be a DigXcerpt program without grouping con-
structs. Let P ′ = (P ′, G′) be P with each extended rule ei replaced by the cor-
responding DIG response rule dri. Let E = {dg1, . . . , dgn} be the set of DIG
ask goals corresponding to e1, . . . , en and P ′′ be P ′\G′. Let P0, . . . ,Pk+1 be
a sequence of Xcerpt programs such that for j = 0, . . . , k + 1,

� Pj = (P j ∪E,E), P j = P ′′ ∪ r(Rj), R0 = ∅, if j ≤ k then there exists
a final computation for P j, and Rj = RR(res(Pj−1)) if j > 0,

� Rk+1 = Rk.

Let S = ∅, p1, Z1, p2, Z2, . . . , pm, Zm be a computation of P\G. There exists
a computation S′ = ∅, q1,W1, q2,W2, . . . , qm′ ,Wm′ of P k such that Zm ⊆
Wm′ .

Proof. Proof by induction on m. For m = 0, S = S′ = ∅, thus Zm = Wm′ =
∅.

Induction step. Let S = S−, pm, Zm be a length m computation of P\G,
where S− = ∅, . . . , Zm−1 is a computation of length m−1. By the inductive
assumption, there exists a computation S′− = ∅, . . . ,Wl of P k, such that
Zm−1 ⊆Wl ⊆ R∞

P k(∅).
Let pm be an Xcerpt rule p. Then S′ = S′−, p,Wm′ . By Lemma 4, as

Zm−1 ⊆Wl, Zm = Zm−1 ∪ res(p, Zm−1) ⊆Wl ∪ res(p, Wl) = Wm′ .
Let pm be an extended rule e and dr and dg be a DIG response rule and
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DIG ask goal, respectively, corresponding to e.

res(e, Zm−1)
= res(dr,RR(res(dg, Zm−1))) by Lemma 6,
⊆ res(dr,RR(res(dg, R∞

P k(∅)))) by Lemmata 4, 7, as Zm−1 ⊆ R∞
P k(∅),

⊆ res(dr,RR(res(E,R∞
P k(∅)))) by Lemma 4

and the definition of res(E,Z),
= res(dr,Rk+1) by the definition of Rk+1,
= res(dr,Rk) as Rk+1 = Rk,
⊆ res(dr,Wl ∪Rk) by Lemma 4.

We construct S′ = S′−, r(Rk),Wl ∪Rk, dr, Wm′ , where Wm′ = Wl ∪Rk ∪
res(dr,Rk ∪Wl).

The result of S is Zm = Zm−1 ∪ res(e, Zm−1). As Zm−1 ⊆ Wl and
res(e, Zm−1) ⊆ res(dr,Wl ∪ Rk), we have Zm ⊆ Wl ∪ res(dr,Wl ∪ Rk) ⊆
Wl ∪Rk ∪ res(dr,Wl ∪Rk) = Wm′ .

Corollary 2. R∞
P\G(∅) ⊆ R∞

P k(∅)\Rk.

Proof. Let S be a computation such that Zm = R∞
P\G(∅). By Lemma 10,

we have Zm ⊆ Wm′ ⊆ R∞
P k(∅). Thus R∞

P\G(∅) ⊆ R∞
P k(∅). As the labels

from Rk are unique identifiers R∞
P\G(∅) = R∞

P\G(∅)\Rk. Hence R∞
P\G(∅) ⊆

R∞
P k(∅)\Rk.

Lemma 11. Let P = (P,G) be a DigXcerpt program without grouping con-
structs and let P ′ = (P ′, G′) be P with each extended rule ei replaced by the
corresponding DIG response rule dri. Let E = {dg1, . . . , dgn} be the set of
DIG ask goals corresponding to e1, . . . , en and P ′′ be P ′\G′. Let P0, . . . ,Pk

(k ≥ 0), be a sequence of Xcerpt programs such that for j = 0, . . . , k,

� Pj = (P j ∪E,E), P j = P ′′ ∪ r(Rj), R0 = ∅, if j < k then there exists
a final computation for P j, and Rj = RR(res(Pj−1)) if j > 0.

Let S = ∅, r(Rj), Rj , p1,W1, . . . , pm,Wm be a computation of P j. There
exists a computation S′ = ∅, . . . , Zm′ of P\G such that Wm\Rk ⊆ Zm′ .

Proof. Proof by induction on j.
j = 0.
Let S = ∅, p1,W1, . . . , pm,Wm be a computation of P 0. As none of

W0, . . . ,Wm contain DIG response terms, by Lemma 9, if pi (i = 1, . . . ,m) is
a DIG response rule then Wi−1 = Wi. Thus, by removing DIG response rules
from S we obtain a computation S′′ = ∅, . . . ,Wm of P 0 and of P\G with
the same result as S. Thus S′ = S′′ and Wm = Zm′ . Hence Wm\Rk ⊆ Zm′ .

j > 0.
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Let Sj−1 = ∅, r(Rj−1), Rj−1, p1,W
′
1, . . . , ps,W

′
s be a computation of

P j−1 such that W ′
s = R∞

P j−1(∅). By the inductive assumption there ex-
ists a computation S′j−1 = ∅, . . . , Z ′

s′ of P\G such that W ′
s\Rk ⊆ Z ′

s′ .
Proof by induction on the length m of S. We construct a computation

S′ = ∅, . . . , Zm′ such that Wm\Rk ⊆ Zm′ and R∞
P j−1(∅)\Rk ⊆ Zm′ . For

m = 0, S′ = Sj−1.
By the inductive assumption there exists a computation S′− = ∅, . . . , Zm′′

of P\G such that Wm−1\Rk ⊆ Zm′′ and R∞
P j−1(∅)\Rk ⊆ Zm′′ .

Let pm be not a DIG response rule. Then Wm = Wm−1∪res(pm,Wm−1) =
Wm−1 ∪ res(pm,Wm−1\Rk). Now S′ = S′−, pm, Zm′ , where Zm′ = Zm′′ ∪
res(pm, Zm′′). As Wm−1\Rk ⊆ Zm′′ , by Lemma 4, Wm\Rk ⊆ Zm′ .

Let pm be a DIG response rule dr and e be the corresponding extended
rule from P\G. Then Wm = Wm−1 ∪ res(dr,Wm−1). S′ = S′−, e, Zm′ where
Zm′ = Zm′′ ∪ res(e, Zm′′).

res(dr,Wm−1)
= res(dr,Rj) by Lemma 9,
= res(dr,RR(res(E,R∞

P j−1(∅)))) by the definition of Rj ,
= res(dr,RR(res(dg, R∞

P j−1(∅)))) by Lemma 8,
= res(dr,RR(res(dg, R∞

P j−1(∅)\Rk))) by Lemma 9,
⊆ res(dr,RR(res(dg, Zm′′))) by Lemmata 4, 7,

as R∞
P j−1(∅)\Rk ⊆ Zm′′ ,

= res(e, Zm′′) by Lemma 6.

Thus, by the inductive assumption, Wm\Rk ⊆ Zm′ .

Corollary 3. R∞
P\G(∅) ⊇ R∞

P k(∅)\Rk.

Proof. Let S be a computation such that Wm = R∞
P k(∅). As Wm\Rk ⊆

Zm′ ⊆ R∞
P\G(∅), R∞

P k(∅)\Rk ⊆ R∞
P\G(∅).

Lemma 12. Let P = (P,G) be a DigXcerpt program without grouping con-
structs such that there exists a final computation for P\G. Let P ′ = (P ′, G′)
be P with each extended rule ei replaced by the corresponding DIG response
rule dri. Let E = {dg1, . . . , dgn} be the set of DIG ask goals corresponding
to e1, . . . , en and P ′′ be P ′\G′. Then

1. there exists a sequence of Xcerpt programs P0,P1, . . ., such that, for
j ≥ 0, Pj = (P j ∪ E,E), P j = P ′′ ∪ r(Rj), R0 = ∅, Rj =
RR(res(Pj−1)) if j > 0, and there exists a final computation for P j,

2. Ri ⊆ Ri+1 for i ≥ 0,

3. there exists k ≥ 0 such that Rk = Rk+1.

Proof. Let S = ∅ . . . , W be a final computation of P\G.
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1. Notice that, for any m > 0, a sequence P0,P1, . . . ,Pm of programs
exists iff there exist final computations for programs P0,P1, . . . ,Pm−1.
Proof by contradiction. Assume that there is no final computation for
some P j and take the first P j for which there is no final computation.
Thus, there exist final computations for the sets P 0, P 1, . . . , P j−1.
As there is no final computation for P j we can construct an infinite
computation ∅, . . . ,W ′

t , . . . ,W
′
t+1, . . . such that W ′

t ⊂ W ′
t+1 ⊂ . . ..

However, by Lemma 11, for any computation S′ = ∅, . . . ,W ′ of P j ,
W ′\Rj ⊆W . As W is finite we get a contradiction.

2. By induction: ∅ = R0 ⊆ R1. If Rj ⊆ Rj+1 then P j ⊆ P j+1, hence
res(Pj) ⊆ res(Pj+1) and Rj+1 ⊆ Rj+2.

3. Proof by contradiction. Assume that Rk 6= Rk+1 for any
k ≥ 0. Thus RR(res(Pk−1)) 6= RR(res(Pk)) for any k ≥ 1
and then res(Pk−1) 6= res(Pk). By the definition of res(Pk),
res(E,R∞

P k−1(∅)) 6= res(E,R∞
P k(∅)). By Lemma 9, res(E,R∞

P k−1(∅)) =
res(E,R∞

P k−1(∅)\Rk) and res(E,R∞
P k(∅)) = res(E,R∞

P k(∅)\Rk). Thus
R∞

P k−1(∅)\Rk 6= R∞
P k(∅)\Rk.

As Rk−1 ⊆ Rk, P k−1 ⊆ P k and then R∞
P k−1(∅) ⊆ R∞

P k(∅) (from
Lemma 5 and the definitions of RP and of res(P,Z), by induction).
Hence R∞

P k−1(∅)\Rk ⊆ R∞
P k(∅)\Rk and, as R∞

P k−1\Rk 6= R∞
P k(∅)\Rk,

we have R∞
P k−1(∅)\Rk ⊂ R∞

P k(∅)\Rk. However, by Lemma 11,
R∞

P k(∅)\Rk ⊆ W for any k ≥ 1. So W is infinite. Contradiction.
Hence there exists k such that Rk = Rk+1.

Theorem 4. Let P = (P,G) be a DigXcerpt program without grouping
constructs and such that there exists R∞

P\G(∅). Let P ′ = (P ′, G′) be P
with each extended rule ei replaced by the corresponding DIG response rule
dri. Let E = {dg1, . . . , dgn} be the set of DIG ask goals corresponding to
e1, . . . , en and P ′′ be P ′\G′. Then there exists k ≥ 0, a sequence of Xcerpt
programs P0, . . . ,Pk+1, and a sequence of sets R0, . . . , Rk+1 such that

� for j = 0, . . . , k + 1: Pj = (P j ∪ E,E), P j = P ′′ ∪ r(Rj), R0 = ∅,
there exists R∞

P j (∅), and Rj = RR(res(Pj−1)) if j > 0,

� Rk = Rk+1.

Let Q = (P k ∪G′, G′). Then R∞
P\G(∅) = R∞

P k(∅)\Rk and res(P) = res(Q).

Proof. As there exists R∞
P\G(∅) there exists a final computation for P\G. By

Lemma 12, there exist a sequence P 0, . . . , P k and a sequence R0, . . . , Rk+1

such that Rk = Rk+1.
By Lemma 12, there exist final computations for P 0, . . . , P k. By Corol-

lary 2, R∞
P\G(∅) ⊆ R∞

P k(∅)\Rk. By Corollary 3, R∞
P\G(∅) ⊇ R∞

P k(∅)\Rk.
Hence R∞

P\G(∅) = R∞
P k(∅)\Rk.
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Let Z = R∞
P k(∅)\Rk = R∞

P\G(∅). As Rk ⊆ R∞
P k(∅), R∞

P k(∅) = Z ∪Rk.
Let A = {eg1, . . . , egf} ⊆ G be the set of those goals of G which are

extended rules and let B = G\A. Let A′ = {dr1, . . . , drf} be the set of
DIG response rules (goals) corresponding to the rules from A and A′′ =
{dg′1, . . . , dg′f} be the set of DIG ask goals corresponding to the rules from
A. We have G = A ∪B and G′ = A′ ∪B.

res(Q)
= res(G′, R∞

P k(∅)) by the definition of res(Q),
= res(A′ ∪B,Z ∪Rk) as R∞

P k(∅) = Z ∪Rk

and G′ = A′ ∪B,
= res(A′, Z ∪Rk) ∪ res(B,Z ∪Rk) by the definition of res(P,Z),
= res(A′, Rk) ∪ res(B,Z) by Lemma 9,
= res(A′, Rk+1) ∪ res(B,Z) as Rk+1 = Rk,
= res(A′, RR(res(Pk))) ∪ res(B,Z) by the definition of Rk+1,
= res(A′, RR(res(E,Z ∪Rk))) ∪ res(B,Z) by the definition of res(Pk),
= res(A′, RR(res(E,Z))) ∪ res(B,Z) by Lemma 9,

=
⋃f

i=1 res(dri, RR(res(dg′i, Z))) ∪ res(B,Z) by the definition of res(P,Z)
and Lemma 8,

=
⋃

e∈A res(e, Z) ∪ res(B,Z) by Lemma 6,
= res(A,Z) ∪ res(B,Z) by the definition of res(P,Z),
= res(A ∪B,Z) by the definition of res(P,Z),
= res(G, Z) as G = A ∪B,
= res(P) by the definition of res(P).
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Appendix B

Typechecker Results

This chapter presents printouts from the typechecker prototype. The print-
outs are results of typing the program examples from Chapter 6. The way
how the obtained results should be interpreted is explained in Chapter 5.

CDstore.1

==================================================================

Rule 1: pop-entries

------------------------------------------------------------------

TITLE->Artist, ARTIST->Artist

TITLE->Title, ARTIST->Artist

==================================================================

==================================================================

Type Definition:

------------------------------------------------------------------

pop-entries -> pop-entries[ entry+ ]

entry -> entry[ Artist (Artist|Title)+ ]

Cds -> bib[ Cd* ]

Cd -> cd[ Title Artist+ Category? ]

Title -> title[ Text ]

Artist -> artist[ Text ]

Category -> "pop" | "rock" | "classic"

==================================================================

CDstore.2

==================================================================

Rule 1: pop-entries

Type checking: Unsuccessful (results not of type Entries possible)

------------------------------------------------------------------

TITLE->Artist, ARTIST->Artist
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TITLE->Title, ARTIST->Artist

==================================================================

==================================================================

Type Definition:

------------------------------------------------------------------

pop-entries -> pop-entries[ entry+ ]

entry -> entry[ Artist (Artist|Title)+ ]

Cds -> bib[ Cd* ]

Cd -> cd[ Title Artist+ Category? ]

Title -> title[ Text ]

Artist -> artist[ Text ]

Category -> "pop" | "rock" | "classic"

Entries -> pop-entries[ Entry ]

Entry -> entry[ Artist Title+ ]

==================================================================

Bibliography.1

==================================================================

Rule 1: 0

------------------------------------------------------------------

0

==================================================================

==================================================================

Type Definition:

------------------------------------------------------------------

TextBook -> book[ Cover Body ]

Cover -> cover[ Title Author* Publisher? ]

Body -> body[ Abstract? Chapter* ]

Title -> title[ InlineContent ]

Author -> author[ Text ]

Publisher -> publisher[ Text ]

Abstract -> abstract[ Text ]

Chapter -> chapter[ Title Section* ]

InlineContent -> inline[ Text|Bf|Em ]

Section -> section[ Title (Paragraph|Table|List)* ]

Em -> em[ InlineContent ]

Bf -> bf[ InlineContent ]

Paragraph -> p[ InlineContent* ]

Table -> table[ TableRow+ ]

List -> list[ ListItem ]

TableRow -> tr[ TableCell* ]

ListItem -> item[ InlineContent* ]

TableCell -> td[ InlineContent* ]

Bibliography -> bib[ (Book|Article|InProceedings)* ]

Book -> book{ Publisher? Editors Authors Title1 }

Article -> article{ Journal? Authors Title1 }

InProceedings -> inproc{ Book Authors Title1 }
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Title1 -> title[ Text ]

Authors -> authors[ Person* ]

Editors -> editors[ Person* ]

Journal -> journal{ Editors Title1 }

Person -> person[ FirstName LastName ]

FirstName -> first[ Text ]

LastName -> last[ Text ]

==================================================================

Bibliography.2

==================================================================

Rule 1: book

Type checking: Failed (no results of type TextBook)

------------------------------------------------------------------

* -> Top

==================================================================

==================================================================

Type Definition:

------------------------------------------------------------------

book -> book[ cover body ]

body -> body[ table ]

table -> table[ tr+ ]

tr -> tr[ td td_1 ]

td_1 -> td[ em+ ]

em -> em[ Top Top ]

td -> td[ Top ]

cover -> cover[ title ]

title -> title[ Text_1 ]

Text_1 -> "List_of_Books"

==================================================================

Bibliography.3

==================================================================

Rule 1: book

Type checking: Unsuccessful (results not of type TextBook possible)

------------------------------------------------------------------

TITLE->Text, NAME->Publisher

TITLE->Text, NAME->Text

TITLE->Text, NAME->Editors

TITLE->Text, NAME->Person

TITLE->Text, NAME->FirstName

TITLE->Text, NAME->LastName

TITLE->Text, NAME->Authors

==================================================================

==================================================================
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Type Definition:

------------------------------------------------------------------

book -> book[ cover body ]

body -> body[ chapter ]

chapter -> chapter[ title_1 section ]

section -> section[ table ]

table -> table[ (tr|tr_1|tr_2|tr_3|tr_4|tr_5|tr_6)+ ]

tr_6 -> tr[ td td_13 ]

td_13 -> td[ inline_13 ]

inline_13 -> inline[ Authors ]

tr_5 -> tr[ td td_11 ]

td_11 -> td[ inline_11 ]

inline_11 -> inline[ LastName ]

tr_4 -> tr[ td td_9 ]

td_9 -> td[ inline_9 ]

inline_9 -> inline[ FirstName ]

tr_3 -> tr[ td td_7 ]

td_7 -> td[ inline_7 ]

inline_7 -> inline[ Person ]

tr_2 -> tr[ td td_5 ]

td_5 -> td[ inline_5 ]

inline_5 -> inline[ Editors ]

tr_1 -> tr[ td td ]

tr -> tr[ td td_1 ]

td_1 -> td[ inline_1 ]

inline_1 -> inline[ Publisher ]

td -> td[ inline ]

inline -> inline[ Text ]

title_1 -> title[ Text_2 ]

Text_2 -> "List_of_Books_and_Authors"

cover -> cover[ title ]

title -> title[ Text_1 ]

Text_1 -> "Books"

TextBook -> book[ Cover Body ]

Body -> body[ Abstract? Chapter* ]

Chapter -> chapter[ Title Section* ]

InlineContent -> inline[ Text|Bf|Em ]

Section -> section[ Title? (Paragraph|Table|List)* ]

Em -> em[ InlineContent ]

Bf -> bf[ InlineContent ]

Paragraph -> p[ InlineContent* ]

Table -> table[ TableRow+ ]

List -> list[ ListItem ]

TableRow -> tr[ TableCell* ]

ListItem -> item[ InlineContent* ]

TableCell -> td[ InlineContent* ]

TextBook_1 -> book[ Cover Body_1 ]

Cover -> cover[ Title Author* Publisher? ]

Body_1 -> body[ Abstract? Chapter_1* ]
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Author -> author[ Text ]

Publisher -> publisher[ Text ]

Abstract -> abstract[ Text ]

Chapter_1 -> chapter[ Title Section_1* ]

InlineContent_1 -> inline[ Text|Bf_1|Em_1 ]

Section_1 -> section[ Title? (Paragraph_1|Table_1|List_1)* ]

Em_1 -> em[ InlineContent_1 ]

Bf_1 -> bf[ InlineContent_1 ]

Paragraph_1 -> p[ InlineContent_1* ]

Table_1 -> table[ TableRow_1+ ]

List_1 -> list[ ListItem_1 ]

TableRow_1 -> tr[ TableCell_1* ]

ListItem_1 -> item[ InlineContent_1* ]

TableCell_1 -> td[ InlineContent_1* ]

Bibliography -> bib[ (Book|Article|InProceedings)* ]

Book -> book{ Title Authors Editors Publisher? }

Article -> article{ Title Authors Journal? }

InProceedings -> inproc{ Title Authors Book }

Title -> title[ Text ]

Authors -> authors[ Person* ]

Editors -> editors[ Person* ]

Journal -> journal{ Title Editors }

Person -> person[ FirstName LastName ]

FirstName -> first[ Text ]

LastName -> last[ Text ]

==================================================================

Bibliography.4

==================================================================

Rule 1: book

Type checking: OK

------------------------------------------------------------------

TITLE->Text, NAME->Text

==================================================================

==================================================================

Type Definition:

------------------------------------------------------------------

book -> book[ cover body ]

body -> body[ chapter ]

chapter -> chapter[ title_1 section ]

section -> section[ table ]

table -> table[ tr+ ]

tr -> tr[ td td ]

td -> td[ inline ]

inline -> inline[ Text ]

title_1 -> title[ Text_2 ]

Text_2 -> "List_of_Books_and_Authors"

167



i
i

“phd” — 2008/1/21 — 0:58 — page 168 — #178 i
i

i
i

i
i

cover -> cover[ title ]

title -> title[ Text_1 ]

Text_1 -> "Books"

TextBook -> book[ Cover Body ]

Body -> body[ Abstract? Chapter* ]

Chapter -> chapter[ Title Section* ]

InlineContent -> inline[ Text|Bf|Em ]

Section -> section[ Title? (Paragraph|Table|List)* ]

Em -> em[ InlineContent ]

Bf -> bf[ InlineContent ]

Paragraph -> p[ InlineContent* ]

Table -> table[ TableRow+ ]

List -> list[ ListItem ]

TableRow -> tr[ TableCell* ]

ListItem -> item[ InlineContent* ]

TableCell -> td[ InlineContent* ]

TextBook_1 -> book[ Cover Body_1 ]

Cover -> cover[ Title Author* Publisher? ]

Body_1 -> body[ Abstract? Chapter_1* ]

Author -> author[ Text ]

Publisher -> publisher[ Text ]

Abstract -> abstract[ Text ]

Chapter_1 -> chapter[ Title Section_1* ]

InlineContent_1 -> inline[ Text|Bf_1|Em_1 ]

Section_1 -> section[ Title? (Paragraph_1|Table_1|List_1)* ]

Em_1 -> em[ InlineContent_1 ]

Bf_1 -> bf[ InlineContent_1 ]

Paragraph_1 -> p[ InlineContent_1* ]

Table_1 -> table[ TableRow_1+ ]

List_1 -> list[ ListItem_1 ]

TableRow_1 -> tr[ TableCell_1* ]

ListItem_1 -> item[ InlineContent_1* ]

TableCell_1 -> td[ InlineContent_1* ]

Bibliography -> bib[ (Book|Article|InProceedings)* ]

Book -> book{ Title Authors Editors Publisher? }

Article -> article{ Title Authors Journal? }

InProceedings -> inproc{ Title Authors Book }

Title -> title[ Text ]

Authors -> authors[ Person* ]

Editors -> editors[ Person* ]

Journal -> journal{ Title Editors }

Person -> person[ FirstName LastName ]

FirstName -> first[ Text ]

LastName -> last[ Text ]

==================================================================

Bookstore

==================================================================
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Rule 1: html

------------------------------------------------------------------

Title->Text, PriceA->Text, PriceB->Text

==================================================================

Rule 2: wml

------------------------------------------------------------------

Title->Text, PriceA->Text, PriceB->Text

==================================================================

Rule 3: books-with-prices

------------------------------------------------------------------

T->Text, Pa->Text, Pb->Text

==================================================================

==================================================================

Type Definition:

------------------------------------------------------------------

wml -> wml[ card+ ]

card -> card[ Text_5 Text Text_6 Text Text_7 Text ]

Text_7 -> "Price B:"

Text_6 -> "Price A:"

Text_5 -> "Title:"

html -> html[ head body ]

body -> body[ table ]

table -> table[ tr tr_1+ ]

tr_1 -> tr[ td_3 td_3 td_3 ]

td_3 -> td[ Text ]

tr -> tr[ td td_1 td_2 ]

td_2 -> td[ Text_4 ]

Text_4 -> "Price at B"

td_1 -> td[ Text_3 ]

Text_3 -> "Price at A"

td -> td[ Text_2 ]

Text_2 -> "Title"

head -> head[ title_1 ]

title_1 -> title[ Text_1 ]

Text_1 -> "Price Overview"

books-with-prices -> books-with-prices[ book-with-prices+ ]

book-with-prices -> book-with-prices[ title price-a price-b ]

price-b -> price-b[ Text ]

price-a -> price-a[ Text ]

Bib -> bib[ Book* ]

Book -> book[ Book_attr title (Authors|Editor) Publisher Price ]

Book_attr -> attr{ Book_year }

Book_year -> year[ Text ]

title -> title[ Text ]

Authors -> authors[ Author* ]

Author -> author[ Last First ]
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Editor -> editor[ Last First Affil ]

Last -> last[ Text ]

First -> first[ Text ]

Affil -> affiliation[ Text ]

Publisher -> publisher[ Text ]

Price -> price[ Text ]

Reviews -> reviews[ Entry* ]

Entry -> entry[ title Price Review ]

Review -> review[ Text ]

==================================================================
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