
Formal Cell Biology in Biocham

François Fages and Sylvain Soliman

Projet Contraintes, INRIA Rocquencourt,
BP105, 78153 Le Chesnay Cedex, France

http://contraintes.inria.fr

Abstract. Biologists use diagrams to represent interactions between
molecular species, and on the computer, diagrammatic notations are
also employed in interactive maps. These diagrams are fundamentally
of two types: reaction graphs and activation/inhibition graphs. In this
tutorial, we study these graphs with formal methods originating from
programming theory. We consider systems of biochemical reactions with
kinetic expressions, as written in the Systems Biology Markup Lan-
guage (SBML), and interpreted in the Biochemical Abstract Machine
(Biocham) at different levels of abstraction, by either an asynchronous
boolean transition system, a continuous time Markov chain, or a sys-
tem of Ordinary Differential Equations over molecular concentrations.
We show that under general conditions satisfied in practice, the activa-
tion/inhibition graph is independent of the precise kinetic expressions,
and is computable in linear time in the number of reactions. Then we
consider the formalization of the biological properties of systems, as ob-
served in experiments, in temporal logics. We show that these logics are
expressive enough to capture semi-qualitative semi-quantitative prop-
erties of the boolean and differential semantics of reaction models, and
that model-checking techniques can be used to validate a model w.r.t. its
temporal specification, complete it, and search for kinetic parameter val-
ues. We illustrate this modelling method with examples on the MAPK
signalling cascade, and on Kohn’s map of the mammalian cell cycle.

1 Introduction

Biologists use diagrams to represent interactions between molecular species, and
on the computer, diagrammatic notations like the ones introduced in Kohn’s
map [1] are also employed in interactive maps like, for instance, MIM1. This
type of notation encompasses two types of information : interactions (binding,
complexation, protein modification, etc.) and regulations (of an interaction or
of a transcription).

The Systems Biology Markup Language (SBML) [2] uses a syntax of reaction
rules with kinetic expressions to define reaction models in a precise way, and more
and more models are described in such a formalism, like in the biomodels.net
repository. This type of language is well suited to describe interactions (and

1 http://discover.nci.nih.gov/mim/

M. Bernardo, P. Degano, and G. Zavattaro (Eds.): SFM 2008, LNCS 5016, pp. 54–80, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Formal Cell Biology in Biocham 55

in a limited manner their regulations through the notion of modifiers) but not
directly molecule to molecule activations and inhibitions.

On the other hand, formal influence graphs for activation and inhibition have
been introduced in the setting of gene regulatory networks [3] as an abstraction of
complex reaction networks. These graphs completely abstract from the precise in-
teractions, especially at post-transcriptional level, and retain only the activation
and inhibition effects between genes. In these influence graphs, the existence of a
positive circuit (resp. a negative circuit) has been shown to be a necessary condi-
tion for multistationarity (resp. oscillations) in different settings [4,5,6,7,8]. There
are several tools providing different kinds of analyses for either reaction models or
influence graphs. The only formal relationship relating the two seems to be the
extraction of the second one from the Jacobian matrix derived from the first one,
when equipped with precise kinetic expressions and parameter values.

In this tutorial, we first provide a syntax for denoting objects in the cell, such
as molecular compounds and compartments, and for denoting their interaction
and transport. We use the rule-based syntax of the biochemical abstract machine
Biocham [9,10] which is similar to (and compatible with) the Systems Biology
Markup Language (SBML) [2] nowadays supported by a majority of modeling
tools [11,12]. Then we present the different semantics of Biocham models which
correspond to different abstraction levels: namely the differential, stochastic,
discrete and boolean semantics [13,14,15].

Then in section 3 we study the formal relationship between reaction mod-
els and activation/inhibition influence graphs. We show that under the general
condition of strongly increasing monotonicity of the kinetic expressions, and in
absence of both activation and inhibition effects from one molecule to the same
target, the influence graph inferred from the stoichiometric coefficients of the
reactions, called the syntactical influence graph, is equal to the influence graph
defined by the signs of the coefficients of the Jacobian matrix of the differential
semantics, called the differential influence graph. Under these conditions, satis-
fied by mass action law, Michaelis-Menten and Hill kinetics, the influence graph
is thus independent of the kinetic expressions for the reactions, and is computable
in linear time in the number of reactions. We show that this remarkable property
applies to the transcription of Kohn’s map of the mammalian cell cycle control
[1] into an SBML model of approx. 800 reactions [16]. On this example, the syn-
tactical influence graph is computed in less than a second, and our equivalence
theorem shows that this influence graph remains unchanged for any standard
kinetics and any parameter values. The same property of independence from
the kinetic expressions holds for the influence graph inferred from the MAPK
signalling model of Levchenko et al. [17]. This influence graph exhibits positive
as well as negative feedbacks that are hidden in the purely directional cascade
of the reaction graph [18] and were the subject of a misinterpretation in [19].

In section 4 we show how temporal logics, as introduced for circuit and pro-
gram verification, can be used for formalizing the biological properties of a system,
and automatically check their satisfaction in a given model by model-checking
techniques. Furthermore, by turning the temporal language into a specification

56 F. Fages and S. Soliman

language, we show how a temporal specification formalizing the biological data
can be used to search for kinetic parameter values. We illustrate how these tech-
niques may be useful to the modeler with the same example as above.

Finally we conclude on these achievements in Biocham and on their perspec-
tives for future work.

2 Reaction Models

2.1 Syntax

Following SBML [2] and Biocham [9,10] conventions, a model of a biochemical
system is formally a set of reaction rules of the form e for S => S′ where S is
a set of molecules given with their stoichiometric coefficient, called a solution,
S′ is the transformed solution, and e is a kinetic expression involving the con-
centrations of molecules. The reaction rules represent biomolecular interactions
between chemical or biochemical compounds, ranging from small molecules to
proteins and genes.

The syntax of the formal objects involved and their reactions, is given by the
following (simplified) grammar:
object = molecule | molecule :: location
molecule = name | molecule-molecule |molecule~{name,. . . ,name}
reaction = solution => solution | kinetics for solution => solution
solution = _ | object | number*object | solution + solution
The basic object is a molecular compound. Thanks to the :: operator, it can be
given a precise location, which is simply a name denoting a (fixed) compartment,
such as the nucleus, the cytoplasm, the membrane, etc. The binding operator -
is used to represent complexations and other forms of intermolecular bindings.
The alteration operator ~ makes it possible to attach to a compound a set of
modifications, such as the set of phosphorylated sites of a protein. For instance,
A~{p} denotes a phosphorylated form of the compound A, and A~{p}-B denotes
its complexation with B.

Reaction rules transform one formal solution into another one. The following
abbreviations are used: A =[C]=> B for the catalyzed reaction A+C => C+B, and
A <=> B for the reversible reaction equivalent to the two symmetrical reactions
A => B and B => A. The constant _ represents the empty solution. It is used
for instance in protein degradation rules, like A => , and in synthesis rules,
like =[G]=> A for the synthesis of A by the (activated gene) catalyst G. The
other main rule schemas are (de)complexation rules, like A + B => A-B for the
complexation of A and B, (de)phosphorylation rules, like A =[B]=> A~{p} for
the phosphorylation of A catalyzed by the kinase B, and transport rules, like
A::nucleus => A::cytoplasm for the transport of A from the nucleus to the
cytoplasm.

Reactions can be given kinetic expressions. For instance,
k*[A]*[B] for A=[B]=>A~{p} specifies a mass action law kinetics with param-
eter k for the reaction. Classical kinetic expressions are the mass action law
kinetics

Formal Cell Biology in Biocham 57

k ∗
n∏

i=1

xi
li

for a reaction with n reactants xi, where li is the stoichiometric coefficient of xi

as a reactant, Michaelis-Menten kinetics

Vm ∗ xs/(Km + xs)

for an enzymatic reaction of the form xs = [xe] => xp, where2 Vm = k ∗ (xe +
xe ∗ xs/Km), and Hill’s kinetics

Vm ∗ xs
n/(Km

n + xs
n)

of which Michaelis-Menten kinetics is a special case with n = 1. Kinetic expres-
sions can be written either explicitly, allowing any kinetics, or using shortcuts like
MA(k) for a Mass Action law with parameter k, or MM(Vm,Km) for a Michaelian
kinetics.

Example 1. The Mitogen-Activated Protein Kinase (MAPK) cascades are a
well-known example of signal transduction, since they appear in many receptor-
mediated signal transduction schemes. They are actively considered in pharma-
ceutical research, for their applications to cancer therapies. The MAPK/ERK
pathway is indeed hyperactivated in 30% of all human cancer tumours [20].

The structure of a MAPK cascade is a sequence of activations of three kinases
in the cytosol. The last kinase, MAPK, when activated, has an effect on different
substrates in the cytosol but also on gene transcription in the nucleus.

Since this cascade has been studied a lot, mathematical models of it appear
in most model repositories, like for instance that of Cellerator [21] or the SBML
repository page [2], both coming from [17]. This cascade was also the first ex-
ample treated by Regev, Silverman and Shapiro [22] in the pi-calculus process
algebra which was an initial source of inspiration for our own work.

Our first running example in this paper is the MAPK model without scaffold
of Levchenko et al. [17], transcribed in Biocham as follows:

declare MEK~parts_of({p1,p2}).
declare MAPK~parts_of({p1,p2}).
parameter(k1, 1).
parameter(k2, 0.4).
(MA(k1), MA(k2)) for RAF + RAFK <=> RAF-RAFK.
parameter(k3, 0.5).
parameter(k4, 0.5).
(MA(k3),MA(k4)) for RAF~{p1} + RAFPH <=> RAF~{p1}-RAFPH.
parameter(k5, 3.3).
parameter(k6, 0.42).
(MA(k5),MA(k6)) for MEK~$P + RAF~{p1} <=> MEK~$P-RAF~{p1}

2 xe∗xs/Km is the concentration of the enzyme-substrate complex, supposed constant
in the Michaelian approximation and xe + xe ∗ xs/Km is thus the total amount of
enzyme.

58 F. Fages and S. Soliman

Fig. 1. Reaction (hyper)graph of the MAPK model of[17]

where p2 not in $P.
parameter(k7, 10).
parameter(k8, 0.8).
(MA(k7),MA(k8)) for MEKPH + MEK~{p1}~$P <=> MEK~{p1}~$P-MEKPH.
parameter(k9, 20).
parameter(k10, 0.7).
(MA(k9),MA(k10)) for MAPK~$P + MEK~{p1,p2} <=> MAPK~$P-MEK~{p1,p2}

where p2 not in $P.
parameter(k11, 5).
parameter(k12, 0.4).
(MA(k11),MA(k12)) for MAPKPH + MAPK~{p1}~$P <=> MAPK~{p1}~$P-MAPKPH.
parameter(k13, 0.1).
MA(k13) for RAF-RAFK => RAFK + RAF~{p1}.
parameter(k14, 0.1).
MA(k14) for RAF~{p1}-RAFPH => RAF + RAFPH.

Formal Cell Biology in Biocham 59

parameter(k15, 0.1).
parameter(k16, 0.1).
MA(k15) for MEK~{p1}-RAF~{p1} => MEK~{p1,p2} + RAF~{p1}.
MA(k16) for MEK-RAF~{p1} => MEK~{p1} + RAF~{p1}.
parameter(k17, 0.1).
parameter(k18, 0.1).
MA(k17) for MEK~{p1}-MEKPH => MEK + MEKPH.
MA(k18) for MEK~{p1,p2}-MEKPH => MEK~{p1} + MEKPH.
parameter(k19, 0.1).
parameter(k20, 0.1).
MA(k19) for MAPK-MEK~{p1,p2} => MAPK~{p1} + MEK~{p1,p2}.
MA(k20) for MAPK~{p1}-MEK~{p1,p2} => MAPK~{p1,p2} + MEK~{p1,p2}.
parameter(k21, 0.1).
parameter(k22, 0.1).
MA(k21) for MAPK~{p1}-MAPKPH => MAPK + MAPKPH.
MA(k22) for MAPK~{p1,p2}-MAPKPH => MAPK~{p1} + MAPKPH.
present(MAPK,0.3).
present(MAPKPH,0.3).
present(MEK,0.2).
present(MEKPH,0.2).
present(RAF,0.4).
present(RAFK,0.1).
present(RAFPH,0.3).

For sake of simplicity, the pattern variables noted $P in the rules have not
been described in the syntax. They represent variables bounded by the declare
statement and that can be constrained in the where statement to represent rule
schemas, i.e. sets of rules defined by a pattern. The last statements define the
initial conditions, i.e. the concentrations of the initially present molecules, the
others being set to 0. Figure 1 depicts the reaction (hyper)graph of this model,
represented by a bipartite graph where molecules are in circles and reactions in
boxes.

Example 2. Our second running example in this paper will be the map of Kohn
[1] for the mammalian cell cycle control. It has been transcribed in Biocham [16]
to serve as a large benchmarking example of approx. 500 species and 800 rules.

2.2 Differential Semantics

A set of reaction rules {ei for Si => S′
i}i=1,...,n over molecular concentration

variables {x1, ..., xm}, can be interpreted under different semantics. The tradi-
tional differential semantics interpret the rules by the following system of Ordi-
nary Differential Equations (ODE):

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej

60 F. Fages and S. Soliman

Fig. 2. Simulation result of the ODEs associated to the MAPK cascade

where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right (resp.
left) member of rule i.

Example 3. Models based on ordinary differential equations (ODE) like the
MAPK cascade of example 1 allow us to reproduce simulation results like the
one pictured out in Figure 2, where the concentration of the visualized com-
pounds is represented on the vertical axis, and time on the horizontal axis. It
is possible to see from such simulations how the cascade evolves in time. It is
possible to change input quantities to check for a significant change in the out-
put of the cascade. Similarly, the sensitivity of the system to the values of the
parameters can be checked by running different simulations with different values
of the parameters, and this process can of course be automated.

2.3 Stochastic Semantics

The most realistic interpretation of biochemical reaction models is provided by
the stochastic semantics. In that semantics, a reaction model is interpreted as a
(continuous time) Markov chain, and the kinetic expressions as transition rates.
This interpretation is correct w.r.t. the Master Chemical Equation if we suppose
that the reactions happen in a well stirred environment (i.e. “instantaneous”
diffusion) with constant pressure, temperature and volume [23].

For a given volume Vk of the location where the compound xk resides, a
concentration Ck for xk is translated into a molecule number Nk = �Ck × Vk ×
NA�, where NA is Avogadro’s number. A state in the stochastic semantics will
be a vector of integers indicating the numbers of molecules for each species.

Formal Cell Biology in Biocham 61

Fig. 3. Stochastic simulation of the MAPK cascade

Formally, given a fixed finite set M of molecule names, let a discrete state be a
vector of positive integers of dimension |M|. The universe S of stochastic transi-
tions is the set of triplets (S, S′, τ) where S and S′ are discrete states and τ ∈ R

+ is
a weight. The stochastic transition semantics domain is the powerset DS = P(S).

Note first that discrete states have the same mathematical structure as solu-
tions in reaction rules, and can both be represented by |M|-dimensional vectors
of positive integers. Note also that in a stochastic transition model s ∈ DS , there
can be more than one transition from one state to another one, labelled with
different real numbers. We define the weight in s of a transition from state Si to
Sj as the sum of the weights τij =

∑
(Si,Sj ,τ)∈s τ .

Now, an element s ∈ DS of the domain precisely defines a Markov chain where
the probability pij of having a transition from state Si to state Sj is obtained
by normalizing the transition weights into pij = τij∑

k τik
. Then the transition

time can be computed as usual. Stochastic simulation techniques like Gillespie’s
algorithm [24] compute realizations of the processes described by models in the
stochastic domain, where random variables range over the probability and the
time of transition.

In order to relate the stochastic semantics domain to the syntactical domain
of reaction rules, let us consider a reaction rule model {ei for li=>ri}i∈I , and
denote by S →i S′ the fact that rule i fires in state S resulting in state S′,
i.e. if S ≥ li (pointwise) and S′ = S − li + ri. In a given state S, the numbers of
molecules are fixed integer values and the kinetic expression ei evaluates into a
(positive) real valued reaction rate, noted ei(S). We denote by αRS : DR → DS
the function that associates to a reaction model {ei for li=>ri}i∈I the stochastic
transition model {(S, S′, ei(S)) ∈ S | i ∈ I, S →i S′}.

62 F. Fages and S. Soliman

Example 4. In the example 1 of the MAPK cascade, a stochastic simulation of
the model is depicted in Figure 3. As expected in this example, the realizations
of this stochastic process are simply noisy versions of the differential simulation.
However, in models with for instance, very few molecules of some kind, quali-
tatively different behaviors may appear in the stochastic simulation, and thus
justify the recourse to that semantics in such cases. A classical example is the
model of the lambda phage virus [25] in which a small number of molecules,
promotion factors of two genes, can generate an explosive multiplication (lysis)
after a more or less long period of passive wait (lysogeny).

2.4 Asynchronous Discrete Semantics

The discrete semantics of reaction models can be defined as the trivial abstraction
αSD : DS → DD from the domain of stochastic transition models to the domain of
discrete transition systems, that simply forgets the transition probabilities. The
states, represented by integer numbers of molecules, and the transition without
the weights are thus the same as in the stochastic semantics. The discrete seman-
tics is asynchronous and non-deterministic but not probabilistic. It is worth notic-
ing that the discrete semantics corresponds to the classical Petri net semantics of
reaction models [26,27,28,29]. As a consequence, classical Petri net analysis tools
can be used for the analysis of reaction models at this abstraction level. For in-
stance, the elementary mode analysis of metabolic networks [30] has been shown
in [31] to be equivalent to the classical analysis of Petri nets by T-invariants. These
analyses apply to the discrete semantics of reaction models in all generality.

2.5 Asynchronous Boolean Semantics

The boolean semantics is purely qualitative, and provides somehow the most
abstract semantics of reaction models. The rules are interpreted by a (non-
deterministic) asynchronous transition system over boolean states representing
the absence or presence of molecules. It can be applied to large models for which
the kinetic data may be not available such as example 2.

Let a boolean state be a vector of booleans of dimension |M| indicating the
presence of each molecule in the state. The universe B of boolean transitions
is the set of pairs of boolean states which defines the domain DB = P(B) of
boolean transition models as its powerset.

The boolean semantics of a reaction model can be defined from its discrete
transition semantics by the zero/non-zero abstraction from the integers to the
booleans, and its pointwise extension from discrete states to boolean states,
which provides the abstraction function αDB : DD → DB from discrete models
to boolean models.

In Biocham however, the boolean semantics of reaction models is computed
directly from the syntax of rules, by associating to each reaction rule a set of
boolean transition rules that take into account the possible complete consump-
tion or not of the reactants by the reaction [32]. For instance, a reaction rule
like A+B=>C+D is interpreted by four boolean transition rules :

Formal Cell Biology in Biocham 63

1. A ∧ B −→ A ∧ B ∧ C ∧ D
2. A ∧ B −→ ¬A ∧ B ∧ C ∧ D
3. A ∧ B −→ A ∧ ¬B ∧ C ∧ D
4. A ∧ B −→ ¬A ∧ ¬B ∧ C ∧ D

Given a reaction model R, let us denote by SBB the set of boolean transitions
obtained by applying these boolean transition rules to each state. The following
theorem shows that the Biocham boolean semantics of reaction models over-
approximates the boolean semantics obtained from the quantitative semantics.
The non-existence of a behaviour in the Biocham boolean semantics thus entails
its non-existence in the quantitative semantics of the rules whatever the kinetic
expressions are.

Theorem 1 ([13]). For any reaction model R, αDB(αSD(αRS(R))) ⊆ SBB.

It is worth noticing that this property does not hold for the boolean semantics of
reaction models that always assume either incomplete consumption, or complete
consumption, like in Pathway Logic [33] or in boolean Petri nets [29]. In these
formalisms, the correctness of the boolean interpretation w.r.t. a quantitative
interpretation is thus left to the modeler who is in charge of explicitly adding
reaction rules for the different cases of consumption of the reactants.

Example 5. Figure 4 depicts one boolean simulation of the MAPK model of
example 1. In this figure, the horizontal axis represents a logical time axis, where
one reaction rule is fired at each time step. Just like the stochastic semantics,
there are many possible boolean simulations, but unlike the stochastic semantics,
they all have the same probability of realisation.

Fig. 4. Boolean simulation of the MAPK cascade

64 F. Fages and S. Soliman

One single boolean simulation is thus not very informative, and we shall rely
in section 4 on model-checking techniques to query the set of all possible boolean
simulations.

In particular if one behavior is not possible in the boolean semantics, theorem
1 tells us that it is not possible to obtain such a behavior in the stochastic
semantics either, whatever the kinetic expressions are.

2.6 Hierarchy of Semantics

In [13], the different semantics of Biocham, as well as the syntactical model of
reaction rules, are formally related by Galois connections in the framework of
abstract interpretation [34,35,36], with the noticeable exception of the differen-
tial semantics which does not belong to this hierarchy. These results go beyond
the scope of this tutorial, however they establish the formal abstraction relation-
ships between the syntactical, stochastic, discrete and boolean interpretations
of reaction rule sets ordered by inclusion. As a consequence, these abstractions
can be composed and their commutation with further abstractions (such as for
instance the influence graph derived from the reaction model) can be analyzed.
On the other hand, the differential semantics is not compatible with the rule set
inclusion ordering as the addition of kinetic terms may make them disappear in
the differential equations [13].

3 Influence Graphs of Activation and Inhibition

Influence graphs for activation and inhibition have been introduced for the anal-
ysis of gene expression in the setting of gene regulatory networks [3]. Such influ-
ence graphs are in fact an abstraction of complex reaction networks, and can be
applied as such to protein interaction networks. However the distinction between
the influence graph and the reaction (hyper)graph is crucial to the application
of Thomas’s conditions of multistationarity and oscillations [3,6] to protein in-
teraction network, and there has been some confusion between the two kinds of
graphs [19].

Here we consider two definitions of the influence graph associated to a reaction
model, and show their equivalence under general assumptions.

3.1 Definition from the Jacobian Matrix

In the differential semantics of a reaction rule model M = {ei for li=>ri | i ∈
I} we have ẋk = dxk/dt =

∑n
i=1(ri(xk) − li(xk)) ∗ ei. The Jacobian matrix J is

formed of the partial derivatives Jij = ∂ẋi/∂xj .

Definition 1. The differential influence graph associated to a reaction model is
the graph having for vertices the molecular species, and for edge-set the following
two kinds of edges:

{A activates B | ∂ ˙xB/∂xA > 0 in some point of the space}
∪{A inhibits B | ∂ ˙xB/∂xA < 0 in some point of the space}

Formal Cell Biology in Biocham 65

3.2 Definition from the Stoichiometric Coefficients

Definition 2. The syntactical influence graph associated to a reaction model M
is the graph having for vertices the molecular species, and for edges the following
set:

{A inhibits B | ∃(ei for li => ri) ∈ M ,
li(A) > 0 and ri(B) − li(B) < 0}

∪{A activates B | ∃(ei for li => ri) ∈ M ,
li(A) > 0 and ri(B) − li(B) > 0}

In particular, we have the following influences for elementary reactions of
complexation, modification, synthesis and degradation:

α({A + B => C}) = { A inhibits B, A inhibits A, B inhibits A,
B inhibits B, A activates C, B activates C}

α({A=[C]=>B})={C inhibits A, A inhibits A, A activates B, C activates B}
α({A = [B] => }) = { B inhibits A, A inhibits A}
α({ = [B] => A}) = { B activates A}

The inhibition loops on the reactants are justified by the negative sign in
the Jacobian matrix of the differential semantics of such reactions. Unlike the
differential influence graph, this graph is clearly trivial to compute by browsing
the syntax of the rules:

Proposition 1. The syntactical influence graph of a reaction model of n rules
is computable in O(n) time.

Example 6. Let us consider the MAPK signalling model of [17]. Figure 1 depicts
the reaction graph as a bipartite graph with round boxes for molecules and
rectangular boxes for rules. Figure 5 depicts the syntactical influence graph,
where activation (resp. inhibition) is materialized by plain (resp. dashed) arrows.

This computed graph reveals the negative feedbacks that are somewhat hid-
den in a purely directional signalling cascade of reactions. Furthermore, as no
molecule is at the same time an activator and an inhibitor of a same molecule,
this graph is largely independent of the kinetics of the reactions, as shown by
Theorem 3 of next section. It is indeed identical to the differential influence
graph for any standard kinetic expressions with any (non zero) kinetic parame-
ter values.

These negative feedbacks, a necessary condition for oscillations [3,7,8], have
been formally analyzed in [18] and interpreted as enzyme sequestration in com-
plexes. Furthermore, oscillations in the MAPK cascade model have been shown
in [37].

The influence graph also exhibits positive circuits. These are a necessary con-
dition for multistationarity [3,6] that has been observed in the MAPK model,
and experimentally in Xenopus oocytes [19]. Note that the absence of circuit in
the (directional) reaction graph of MAPK was misinterpreted as a counterex-
ample to Thomas’ rule in [19] because of a confusion between both kinds of
graphs.

66 F. Fages and S. Soliman

Fig. 5. Influence graph inferred from the MAPK reaction model

Example 7. On the map of Kohn, Example 2, the computation of activation and
inhibition influences takes less than one second CPU time (on a PC 1,7GHz) for the
complete model, showing the efficiency of the syntactical inference algorithm. The
influence graph is composed of 1231 activation edges and 1089 inhibition edges.

Furthermore in this large example no molecule is both an activator and an
inhibitor of the same target molecule. Theorem 3 thus entails that the computed
influence graph is equal to the differential graph that would be obtained in any
kinetic model of Kohn’s map for any standard kinetic expressions and for any
(non zero) parameter values.

Since there is a lot of kinetic data missing for such a big model, the possibility
to nevertheless obtain the exact influence graph without having to estimate
parameters or even to choose precise kinetic expressions is quite remarkable,
and justifies the use of purely qualitative models for the analysis of feedback
circuits.

Formal Cell Biology in Biocham 67

3.3 Over-approximation Theorem

Comparing the differential influence graph and the syntactical influence graph
requires that the information in the kinetic expressions and in the reactions
be compatible. This motivates the following definition where the first property
forbids the presence of purely kinetic inhibitors not represented in the reaction,
and the second property enforces that the variables appearing in the kinetic
expressions do appear as reactants or enzymes in the reaction.

Definition 3. In a reaction rule e for l=>r, we say that a kinetic expression
e is increasing iff for all molecules xk we have

1. ∂e/∂xk ≥ 0 in all points of the space,
2. l(xk) > 0 whenever ∂e/∂xk > 0 in some point of the space.

A reaction model has an increasing kinetics iff all its reaction rules have an
increasing kinetics.

One can easily check that:

Proposition 2. Mass action law kinetics for any reaction, as well as Michaelis
Menten and Hill kinetics for enzymatic reactions, are increasing.

On the other hand, negative Hill kinetics of the form k1/(k2+yn) are not increas-
ing. They represent an inhibition by a molecule y not belonging to the reactants,
and thus not reflected in the syntax of the reaction.

Theorem 2. For any reaction model with an increasing kinetics, the differential
influence graph is a subgraph of the syntactical influence graph.

Proof. If (A activates B) belongs to the differential influence graph then
∂Ḃ/∂A > 0. Hence there exists a term in the differential equation for B, of
the form (ri(B) − li(B)) ∗ ei with ∂ei/∂A of the same sign as ri(B) − li(B).

Let us suppose that ri(B) − li(B) > 0 then ∂ei/∂A > 0 and since ei is
increasing we get that li(A) > 0 and thus that (A activates B) in the syntactical
graph. If on the contrary ri(B) − li(B) < 0 then ∂ei/∂A < 0, which is not
possible for an increasing kinetics.

If (A inhibits B) is in the differential graph then ∂Ḃ/∂A < 0. Hence there
exists a term in the differential semantics, of the form (ri(B) − li(B)) ∗ ei with
∂ei/∂A of sign opposite to that of ri(B) − li(B).

Let us suppose that ri(B)− li(B) > 0 then ∂ei/∂A < 0, which is not possible
for an increasing kinetics. If on the contrary ri(B) − li(B) < 0 then ∂ei/∂A > 0
and since ei is increasing we get that li(A) > 0 and thus that (A activates B) is
in the syntactical influence graph.

Corollary 1. For any reaction model with an increasing kinetics, the differential
influence graph restricted to the phase space w.r.t. some initial conditions, is a
subgraph of the syntactical influence graph.

68 F. Fages and S. Soliman

Proof. Restricting the points of the phase space to those points that are acces-
sible from some initial states, restricts the number of edges in the differential
influence graphs which thus remains a subgraph of the syntactical influence
graph.

It is worth noticing that even in the simple case of mass action law kinetics,
the differential influence graph may be different from the syntactical influence
graph. For instance let x be the following model :

k1 ∗ A for A => B
k2 ∗ A for = [A] => A

In the syntactical influence graph, A activates B, A activates A and A inhibits
A, however Ȧ = (k2 − k1) ∗ A, hence ∂Ȧ/∂A can be made always positive or
always negative or always null, resulting in the absence of respectively, A inhibits
A, A activates A or both, in the differential influence graph.

3.4 Equivalence Theorem

Definition 4. In a reaction rule e for l=>r, a kinetic expression e is strongly
increasing iff for all molecules xk we have

1. ∂e/∂xk ≥ 0 in all points of the space,
2. l(xk) > 0 iff there exists a point in the space s.t. ∂e/∂xk > 0

A reaction model has a strongly increasing kinetics iff all its reaction rules have
a strongly increasing kinetics.

Note that strongly increasing implies increasing.

Proposition 3. Mass action law kinetics for any reaction, as well as Michaelis
Menten and Hill kinetics for enzymatic reactions, are strongly increasing.

Proof. For the case of Mass action law, the kinetics are of the form:

ei = ki ∗
m∏

l=1

x
li(xl)
l

with ki > 0 and li(xl) ≥ 0. We thus have ∂ei/∂xk = 0 if li(xk) = 0 and
∂ei/∂xk = ki ∗ li(xk) ∗ x

li(xk)−1
k

∏
l �=k x

li(xl)
l otherwise, which clearly satisfies (1)

and (2).
In the case of Hill kinetics (of which Michaelis Menten is a subcase), we have:

ei =
Vm ∗ xn

s

Kn
m + xn

s

for the reaction xs + xe => xp + xe and where Vm = k2 ∗ xtot
e = k2 ∗ (xe +

k1 ∗ xe ∗ xs/(k−1 + k2)) from the steady state approximation. It is obvious that
∂ei/∂xk = 0 for all xk other than xs and xe since they do not appear in ei and
one can easily check that with all the constants n, k1, k−1, k2 strictly positive,
both ∂ei/∂xe and ∂ei/∂xs are greater than 0 at some point in the space.

Formal Cell Biology in Biocham 69

Lemma 1. Let M be a reaction model with a strongly increasing kinetics,
Of (A activates B) is an edge in the syntactical influence graph, and not (A

inhibits B), then (A activates B) belongs to the differential influence graph.
If (A inhibits B) is an edge in the syntactical influence graph, and not (A

activates B), then (A inhibits B) belongs to the differential influence graph.

Proof. Since ∂Ḃ/∂A =
∑n

i=1(ri(B) − li(B)) ∗ ∂ei/∂A and all ei are increasing
we get that ∂Ḃ/∂A =

∑
{i≤n|li(A)>0}(ri(B) − li(B)) ∗ ∂ei/∂A.

Now if (A activates B) is in the syntactical influence graph, but not (A inhibits
B), then all rules such that li(A) > 0 verify ri(B) − li(B) ≥ 0 and there is at
least one rule for which the inequality is strict. We thus get that ∂Ḃ/∂A is a
sum of positive numbers, amongst which one is such that ri(B) − li(B) > 0 and
li(A) > 0 which, since M is strongly increasing, implies that there exists a point
in the space for which ∂ei/∂A > 0. Hence ∂Ḃ/∂A > 0 at that point, and (A
activates B) is thus in the differential influence graph.

For inhibition the same reasoning applies with the opposite sign for the ri(B)−
li(B) and thus for the finale partial derivative.

This lemma establishes the following equivalence result:

Theorem 3. In a reaction model with a strongly increasing kinetics and where
no molecule is at the same time an activator and an inhibitor of the same target
molecule, the differential and syntactical influence graphs coincide.

This theorem shows that for standard kinetic expressions, the syntactical influ-
ences coincide with the differential influences based on the signs of the coeffi-
cients in the Jacobian matrix, when no molecule is at the same time an activator
and an inhibitor of the same molecule. The theorem thus provides a linear time
algorithm for computing the differential influences in these cases, simply by
computing the syntactical influences. It shows also that the differential influence
graph is independent of the kinetic expressions.

Corollary 2. The differential influence graph of a reaction model of n rules
with a strongly increasing kinetics is computable in time O(n) if no molecule is
at the same time an activator and an inhibitor.

Corollary 3. The differential influence graph of a reaction model is independent
of the kinetic expressions as long as they are strongly increasing, if no molecule
is at the same time an activator and an inhibitor.

4 Biological Properties Formalized in Temporal Logic

Temporal logics and model-checking algorithms [38] have proved useful to re-
spectively express biological properties of complex biochemical systems and au-
tomatically verify their satisfaction in both qualitative and quantitative models,
i.e. in boolean [33,32,16], discrete [39,40], stochastic [41,42] and continuous mod-
els [14,43,32]. This approach relies on a logical paradigm for systems biology that
consists in making the following identifications [44]:

70 F. Fages and S. Soliman

biological model = transition system
biological property = temporal logic formulae

biological validation = model-checking

Having a formal language not only for describing models, i.e. transition systems
by either process calculi [22,45,46,47,48], rules [33,10,9], Petri nets [26,29], etc...,
but also for formalizing the biological properties of the system known from bio-
logical experiments under various conditions, opens a whole avenue of research
for designing automated reasoning tools inspired from circuit and program ver-
ification to help the modeler [15].

The temporal logics CTL (Computation Tree Logic), LTL (Linear Time Logic)
and PLTL (Probabilistic LTL) with numerical constraints are used in the three
semantics of reaction models, respectively, in the boolean semantics, the differ-
ential semantics and the stochastic semantics.

4.1 Temporal Logics CTL∗, CTL, LTL and PLTL

The Computation Tree Logic CTL∗ [38] is an extension of classical logic that
allows reasoning about an infinite tree of state transitions. It uses operators
about branches (non-deterministic choices) and time (state transitions). Two
path quantifiers A and E are thus introduced to handle non-determinism: Aφ
meaning that φ is true on all branches, and Eφ that it is true on at least one
branch. The time operators are F, G, X, U and W ; Xφ meaning φ is true at
the next transition, Gφ that φ is always true, Fφ that φ is eventually true,
φ U ψ meaning φ is always true until ψ becomes true, and φ W ψ meaning φ is
always true until ψ might become true. In this logic, Fφ is equivalent to true U φ,
φ W ψ to (φ U ψ)|Gφ. We have the following duality properties: !(E(φ)) = A(!φ),
!(F (φ)) = G(!φ), !(φ U ψ) = (!ψ W !φ) where ! denotes negation.

Formally, a Kripke structure (see for instance [38]) is a couple K = (S, R) where
S is a set of states in which atomic formulas can be evaluated, and R ⊆ S × S is
the transition relation between states, supposed to be total (i.e. ∀s ∈ S, ∃s′ ∈
S s.t. (s, s′) ∈ R). A path in K, starting from state s0 is an infinite sequence of
states π = s0, s1, · · · such that (si, si+1) ∈ R for all i ≥ 0. We denote by πk the
path sk, sk+1, · · ·. Table 4.1 recalls the inductive definition of the truth value of
an LTL formula in a state s or on a path π, in a given Kripke structure K.

The computation Tree Logic CTL is the fragment of CTL∗ where each tem-
poral operator must be preceded by a path operator, and each path operator
has to be immediately followed by a temporal operator.

The Linear Time Logic LTL is the fragment of CTL∗ without path quantifiers,
and where a formula is true in a Kripke structure if it is true on all paths.

The Probabilistic Computation Tree Logic PCTL quantifies the different
paths by replacing the E and A modalities of CTL by probabilities.

4.2 Qualitative Biological Properties in CTL

As shown in [32], CTL is sufficiently expressive for formalizing qualitative bio-
logical properties, such as :

Formal Cell Biology in Biocham 71

Table 1. Inductive definition of the truth value of a propositional CTL∗ formula in a
state s or a path π, in a given Kripke structure K

s |= α iff α is a propositional formula true in state s,
s |= Eψ iff there exists a path π starting from s s.t. π |= ψ,
s |= Aψ iff for all paths π starting from s, π |= ψ,
π |= φ iff s |= φ where s is the first state of π,
π |= Xψ iff π1 |= ψ,
π |= ψ U ψ′ iff there exists k ≥ 0 s.t. πk |= ψ′ and πj |= ψ for all 0 ≤ j < k.
π |= ψ W ψ′ iff either for all k ≥ 0, πk |= ψ.

or there exists k ≥ 0 s.t. πk |= ψ&ψ′ and for all 0 ≤ j < k, πj |= ψ.
π |=!ψ iff π �|= ψ,
π |= ψ & ψ′ iff π |= ψ and π |= ψ′,
π |= ψ | ψ′ iff π |= ψ or π |= ψ′,
π |= ψ ⇒ ψ′ iff π |= ψ′ or π �|= ψ,

– reachability where reachable(P) stands for EF (P);
– steady states where steady(P) stands for EG(P);
– stable states where stable(P) stands for AG(P);
– checkpoints where checkpoint(Q,P) stands for !E(!Q U P);
– oscillations where oscil(P) stands for AG(EF !P ∧ EF P).
– and loop(P,Q) stands for AG((P ⇒ EF Q) ∧ (Q ⇒ EF P)).

Without strong fairness assumption, it is worth noting that the last two ab-
breviations are actually necessary but not sufficient conditions for oscillations.
The correct formula for oscillations is indeed a CTL∗ formula that cannot be
expressed in CTL: EG(F !P ∧ F P).

In Biocham, these abbreviations can be used inside CTL formulae. For
instance, the formula reachable(steady(P)) expresses that the steady state de-
noted by formula P is reachable, or the formula AG(!P -> checkpoint(Q,P)) ex-
presses that Q is a checkpoint for P not only in the initial state but in all
reachable states.

Such boolean CTL specification can also be used to complete or revise a
model with machine learning algorithms. In [14], a model revision algorithm is
described with the ability to not only add rules to, but also remove rules from a
model in order to satisfy a CTL specification.

Example 8. In our running example of the MAPK cascade, one can use Biocham
to enumerate, for instance, all simple reachability, stability, checkpoints and os-
cillation properties that are true in the model. This generates 112 CTL properties
that can be taken as a specification. Then the model can be automatically re-
duced by deleting rules that do not change the satisfaction of the specification.
In this model, 20 rules are left and 10 rules are deleted, essentially reverse re-
action rules that do not change the specification of the cascade at this boolean
abstraction level.

72 F. Fages and S. Soliman

biocham: reduce_model.
1: deleting RAF-RAFK=>RAF+RAFK
2: deleting RAFPH-RAF~{p1}=>RAFPH+RAF~{p1}
3: deleting MEK-RAF~{p1}=>MEK+RAF~{p1}
4: deleting MEKPH-MEK~{p1}=>MEKPH+MEK~{p1}
5: deleting MAPK-MEK~{p1,p2}=>MAPK+MEK~{p1,p2}
6: deleting MAPKPH-MAPK~{p1}=>MAPKPH+MAPK~{p1}
7: deleting MEK~{p1}-RAF~{p1}=>MEK~{p1}+RAF~{p1}
8: deleting MEKPH-MEK~{p1,p2}=>MEKPH+MEK~{p1,p2}
9: deleting MAPK~{p1}-MEK~{p1,p2}=>MAPK~{p1}+MEK~{p1,p2}
10: deleting MAPKPH-MAPK~{p1,p2}=>MAPKPH+MAPK~{p1,p2}

Furthermore, temporal specifications can be used to correct a model auto-
matically, with the model revision algorithm described in [14] for adding and
removing rules in order to satisfy the temporal formulas. For instance, in the
original model, if we delete one useful rule, the rule, or another model revision,
can be automatically found to satisfy the specification:

biocham: delete_rules(RAF~{p1}+RAFPH=>RAF~{p1}-RAFPH).
RAFPH+RAF~{p1}=>RAFPH-RAF~{p1}
biocham: check_all.
The specification is not satisfied.
This formula is the first not verified: Ai(oscil(RAF))
biocham: learn_one_addition(elementary_interaction_rules).
Rules tested: 2027
Possible rules to add: 1
RAFPH+RAF~{p1}=>RAFPH-RAF~{p1}

In this example, the deleted rule is recovered from the temporal specification
and no other choice is possible for the given pattern of elementary rules to search
for. Note that this pattern generates 2027 rules to check, and that this number
can be drastically reduced by integrating in the pattern type information such
as protein function kinase or phosphatase to restrict the search [49,13].

Example 9. In example 2 of Kohn’s map with 800 reaction rules over 500 molec-
ular compounds, simple CTL properties have been model-checked in Biocham
in a few seconds [16] using the symbolic model-checker NuSMV [50]. This shows
the efficiency of model-checking techniques for querying all possible behaviors of
a reaction model under the boolean semantics. Omissions in Kohn’s map, such
as for instance the absence of synthesis for cyclin B, can be immediately detected
by the absence of possibility to get oscillations for cyclin B, unlike cyclin A for
instance.

4.3 Quantitative Biological Properties Formalized in LTL with
Constraints over the Reals

LTL with Constraints Over the Reals. A version of LTL with constraints
over the reals, called Constraint-LTL, is used in Biocham [14] to express tem-
poral properties about molecular concentrations. A similar approach is used in

Formal Cell Biology in Biocham 73

the DARPA BioSpice project [43]. Constraint-LTL considers first-order atomic
formulae with equality, inequality and arithmetic operators ranging over real
values of concentrations and of their derivatives. For instance F([A]>10) ex-
presses that the concentration of A eventually gets above the threshold value 10.
G([A]+[B]<[C]) expresses that the concentration of C is always greater than
the sum of the concentrations of A and B. Oscillation properties, abbreviated
as oscil(M,K), are defined as a change of sign of the derivative of M at least K
times: F((d[M]/dt > 0) & F((d[M]/dt < 0) & F((d[M]/dt > 0)...)))The
abbreviated formula oscil(M,K,V) adds the constraint that the maximum con-
centration of M must be above the threshold V in at least K oscillations.

In this context, the Kripke structures in which the LTL formula are interpreted
are linear Kripke structures which represent either an experimental data time
series or a simulation trace, both completed with loops on terminal states. For
instance, in a model described by a system of ordinary differential equations
(ODE), and under the hypothesis that the initial state is completely defined,
numerical integration methods (such as Runge-Kutta or Rosenbrock method for
stiff systems) provide a discrete simulation trace. This trace constitutes a linear
Kripke structure in which Constraint-LTL formulae can be interpreted. Since
constraints refer not only to concentrations, but also to their derivatives, traces
of the form

(< t0, x0, dx0/dt, d2x0/dt2 >, < t1, x1, dx1/dt, d2x1/dt2 >, ...)

are considered, where at each time point ti, the trace associates the concentration
values xi to the variables, and the values of their first and second derivatives
dxi/dt and d2xi/dt2.

It is worth noting that in adaptive step size integration methods of ODE
systems, the step size ti+1 − ti is not constant and is determined through an
estimation of the error made by the discretization.

Constraint-LTL Model-Checking Algorithm. Let us assume a finite linear
Kripke structure, i.e. a finite chain of states containing a loop on the last state.
For these structures, the standard model-checking algorithms [38] can be easily
adapted to Constraint-LTL as follows:

Algorithm 1 (Constraint-LTL model-checking). [14,43]

1. label each edge with the atomic sub-formulae of φ that are true at this point;
2. add sub-formulae of the form Xφ to the immediate predecessors of points

labeled with φ;
3. add sub-formulae of the form φ1 U φ2 to the points preceding a point labeled

with φ2 as long as φ1 holds;
4. add sub-formulae of the form φ1 W φ2 to the last state if it is labeled by φ1,

and to the predecessors of the points labeled by φ1 W φ2 as long as φ1 holds
and add sub-formulae of the form φ1 W φ2 to the points preceding a point
labeled with φ1 ∧ φ2 as long as φ1 holds;

5. return the edges labeled by φ.

74 F. Fages and S. Soliman

In particular, given an ODE model and a temporal property φ to verify within
a finite time horizon, the computation of a finite simulation trace by numerical
integration provides a linear Kripke structure where the terminal state is com-
pleted with a loop. Note that the notion of next state (operator X) refers to the
state of the following time point in a discretized trace, and thus does not neces-
sarily imply real time neighborhood. The rationale of this algorithm is that the
numerical trace contains enough relevant points, and in particular those where
the derivatives change abruptly, to correctly evaluate temporal logic formulae.
This has been very well verified in practice with various examples of published
mathematical models [14].

In [51], the model checking algorithm for constraint LTL is generalized to a
constraint LTL solving algorithm with the capability to compute domains of
real valued variables (such as thresholds) for which a constraint LTL formula is
true. This is used for the analysis of numerical data time series in temporal logic
and the automatic generation of a temporal specification of some pattern from
biological experiment data time series.

Search of Kinetic Parameter Values from Constraint-LTL Properties.
One can use constraint LTL model-checking to design a generate and test algo-
rithm for finding parameter values such that a given LTL specification is satisfied.

A set of parameters, together with intervals of possible values and a precision
parameter, are input to an enumeration algorithm. All value combinations are
then scanned with a step size corresponding to the given precision, until the
specification is satisfied.

Example 10. In the example 1 of the MAPK model, this parameter search algo-
rithm can be used, for instance, to increase the overshoot for the complexation
RAF-RAFK observed in the simulation of figure 2 as follows:

biocham: add_ltl(F([RAF-RAFK]>0.05)).
biocham: check_ltl.
F([RAF-RAFK]>0.05) is false.
biocham: search_parameters([k1], [(0,10)], 40, 20).
First values found that make F([RAF-RAFK]>0.05) true:
parameter(k1,1.75).
Search time: 2.96 s

The resulting simulation with the new value found for the complexation param-
eter k1=1.75 is depicted in figure 6.

This search procedure actually replicates and automates part of what the mod-
eler currently does by hand: trying different parameter values, between bounds
that are thought reasonable, or computed by other methods such as bifurca-
tion diagrams, in order to obtain behaviors in accordance with the experimental
knowledge. Biocham provides a way to explore much faster this parameter space,
once the effort for formalizing the expected behavior in LTL is done. The main
novel feature of this method is its capability to express and combine in LTL both

Formal Cell Biology in Biocham 75

Fig. 6. Simulation result of the MAP cascade with new parameter value inferred for
increasing the overshoot on RAF-RAFK

qualitative and quantitative constraints on the expected behavior of the model.
In [52] it is used for exploring the conditions of entrainment in period of the cell
cycle by the circadian cycle in a coupled model of these cycles.

The computational complexity of the parameter values scanning grows lin-
early in the number of combinations of parameter values to try, that is in O(dn)
where n is the number of parameter values to find and d the number of val-
ues to try for each parameter. The difficulty to use other search algorithms
better than generate-and-test (such as local search or simulated annealing for
instance) comes from the criterion of satisfaction of LTL formulae which is nat-
urally boolean and for which it is not obvious to define a multi-valued measure
of satisfaction.

4.4 Probabilistic Model-Checking

For the stochastic semantics, it is natural to consider the PCTL logic [53] which
basically replaces the path operators of CTL, E and A, by the operator P��p. This
operator represents a constraint �	p on the probability that the formula under
P��p is true. For instance, A(ψ U ψ′) becomes P≥1(ψ U ψ′), i.e. the probability
that ψ U ψ′ is realized is 1. The atomic formulae considered here are first-order
formulae with arithmetic constraints, ranging on integers representing numbers
of molecules.

However, he existing probabilistic model-checking tools, like that of PRISM
[54], do not handle well highly non-deterministic examples, nor those where
variables have a large domain as it is the case in BIOCHAM models’ stochastic

76 F. Fages and S. Soliman

semantics.. This led us to actually consider the PLTL fragment of PCTL formu-
lae in which the P��p operator can only appear once as head of the formula, and
to use a Monte-Carlo method as done in the APMC system [55]. To evaluate the
probability of realization of the underlying LTL formula, BIOCHAM samples
a certain number of stochastic simulations using standard algorithms like that
of Gillespie [24] or of Gibson [56]. The outer probability is then estimated by
counting. It is worth noting that this method provides a real estimate of real-
ization of the LTL formula, whereas PCTL expresses the boolean satisfaction of
a probability constraint (�	p) over the formula.

In principle, the Monte-Carlo algorithm can thus be used for model-checking
and kinetic parameter learning along the same lines as in the differential seman-
tics and constraint-LTL. However, both the stochastic simulation process and
the model-checking process are computationally more expensive than in the dif-
ferential semantics by several orders of magnitude. For this reason, such search
algorithms are currently not practical with the stochastic semantics.

5 Conclusion

Systems biology can benefit from formal methods originating from programming
theory in many ways. By formalizing the different semantics of a reaction model,
we have shown that, to a large extent, the influence graph of a reaction model is
independent of the kinetic parameters and kinetic expressions, and that it can be
computed in linear time simply from the syntax of the reactions. This happens for
strongly increasing kinetics such as classical mass action law, Michaelis-Menten
and Hill kinetics, when no molecule is at the same time an activator and an
inhibitor of a same target molecule. The inference of the syntactical influence
graph from a reaction model has been implemented in Biocham, and applied to
various models. On a transcription of Kohn’s map into approx. 800 reaction rules,
this implementation shows that no molecule is at the same time an activator
and an inhibitor of a same molecule, and therefore, our equivalence theorem
states that the differential influence graph would be the same for any standard
kinetics with any parameter values. On the MAPK signalling cascade that does
not contain any feedback reaction, the implementation does reveal both positive
and negative feedback circuits in the influence graph, which has been a source
of confusion for the correct application of Thomas’ rules. Furthermore, in this
example again, no molecule is at the same time an activator and an inhibitor
of another molecule, showing the independence of the influence graph from the
kinetics.

By formalizing the biological properties observed in experiments, in temporal
logic, we have illustrated the expressivity of these logics in this context, and we
have shown that classical as well as new model-checking techniques can be ap-
plied for validating reaction models w.r.t. temporal specifications. The beauty of
this approach is that it deals not only with the boolean semantics but also with
the differential semantics (and stochastic semantics) of reaction models. Fur-
thermore, such semi-qualitative semi-quantitative temporal specifications can be

Formal Cell Biology in Biocham 77

also used for searching parameter values, in a complementary fashion to classical
mathematical methods such as bifurcation diagrams. The improvement of this
method by the definition of a measure of satisfaction of a temporal formula with
constraints, and a gradient descent analog, are currently under investigation.

Acknowledgements. The material presented in this tutorial has been devel-
oped with colleagues since 2001. We are especially grateful to Laurence Calzone,
Nathalie Chabrier-Rivier, Aurélien Rizk, and all those who have contributed to
the development of Biocham at one stage or another. The first author thanks his
successive students of the University of Paris for their reactions to his lectures on
this topic. This work benefited from support of the ARC CPBIO (02-04) and ARC
MOCA (05-07) http://contraintes.inria.fr/cpbio and moca, INRA Agrobi In-
sight (07-09) http://contraintes.inria.fr/∼heitzler/INSIGHT/Home.html,
European Union FP6 Strep projects APrIL2 (04-07) http://www.aprill.org/,
TEMPO (06-09) http://www.chrono-tempo.org, and network of excellence
REWERSE (04-08) http://www.rewerse.net.

References

1. Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and
DNA repair systems. Molecular Biology of the Cell 10, 2703–2734 (1999)

2. Hucka, M., et al.: The systems biology markup language (SBML): A medium for
representation and exchange of biochemical network models. Bioinformatics 19,
524–531 (2003)

3. Thomas, R., Gathoye, A.M., Lambert, L.: A complex control circuit: regulation
of immunity in temperate bacteriophages. European Journal of Biochemistry 71,
211–227 (1976)

4. Kaufman, M., Soulé, C., Thomas, R.: A new necessary condition on interaction
graphs for multistationarity. Journal of Theoretical Biology 248, 675–685 (2007)

5. Soulé, C.: Mathematical approaches to differentiation and gene regulation. C.R.
Biologies 329, 13–20 (2006)

6. Soulé, C.: Graphic requirements for multistationarity. ComplexUs 1, 123–133
(2003)

7. Snoussi, E.: Necessary conditions for multistationarity and stable periodicity. J.
Biol. Syst. 6, 3–9 (1998)

8. Gouzé, J.L.: Positive and negative circuits in dynamical systems. J. Biol. Syst. 6,
11–15 (1998)

9. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: An environment for modeling bio-
logical systems and formalizing experimental knowledge. BioInformatics 22, 1805–
1807 (2006)

10. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction
networks in the biochemical abstract machine BIOCHAM. Journal of Biological
Physics and Chemistry 4, 64–73 (2004)

11. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.:
Rules for modeling signal-transduction systems. Science STKE 344, 6 (2006)

12. Soliman, S., Fages, F.: CMBSlib: a library for comparing formalisms and models of
biological systems. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI),
vol. 3082, pp. 231–235. Springer, Heidelberg (2005)

78 F. Fages and S. Soliman

13. Fages, F., Soliman, S.: Abstract interpretation and types for systems biology. In:
Theoretical Computer Science (to appear, 2008)

14. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochem-
ical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.)
Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp.
68–94. Springer, Heidelberg (2006)

15. Fages, F.: From syntax to semantics in systems biology - towards automated reason-
ing tools. Transactions on Computational Systems Biology IV 3939, 68–70 (2006)

16. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling
and querying biochemical interaction networks. Theoretical Computer Science 325,
25–44 (2004)

17. Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins biphasically affect
the levels of mitogen-activated protein kinase signaling and reduce its threshold
properties. PNAS 97, 5818–5823 (2000)

18. Ventura, A.C., Sepulchre, J.A., Merajver, S.D.: A hidden feedback in signaling
cascades is revealed. In: PLoS Computational Biology (to appear, 2008)

19. Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability
arising from multisite phosphorylation in protein kinase cascades. Journal of Cell
Biology 164, 353–359 (2005)

20. Kolch, W., Kotwaliwale, A., Vass, K., Janosch, P.: The role of raf kinases in malig-
nant transformation. In: Expert Reviews in Molecular Medicine, vol. 25, Cambridge
University Press, Cambridge (2002)

21. Shapiro, B.E., Levchenko, A., Meyerowitz, E.M., Wold, B.J., Mjolsness, E.D.:
Cellerator: extending a computer algebra system to include biochemical arrows
for signal transduction simulations. Bioinformatics 19, 677–678 (2003)

22. Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of bio-
chemical processes using the pi-calculus process algebra. In: Proceedings of the
sixth Pacific Symposium of Biocomputing, pp. 459–470 (2001)

23. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81, 2340–2361 (1977)

24. Gillespie, D.T.: General method for numerically simulating stochastic time evolu-
tion of coupled chemical-reactions. Journal of Computational Physics 22, 403–434
(1976)

25. Gibson, M.A., Bruck, J.: A probabilistic model of a prokaryotic gene and its reg-
ulation. In: Bolouri, H., Bower, J. (eds.) Computational Methods in Molecular
Biology: From Genotype to Phenotype, MIT press, Cambridge (2000)

26. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in
metabolic pathways. In: Hunter, L., Searls, D.B., Shavlik, J.W. (eds.) Proceedings
of the 1st International Conference on Intelligent Systems for Molecular Biology
(ISMB, pp. 328–336. AAAI Press, Menlo Park (1993)

27. Sackmann, A., Heiner, M., Koch, I.: Application of petri net based analysis tech-
niques to signal transduction pathways. BMC Bioinformatics 7 (2006)

28. Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformat-
ics (2007)

29. Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and
analysing biochemical pathways using petri nets. In: Calder, M., Gilmore, S. (eds.)
CMSB 2007. LNCS (LNBI), vol. 4695, Springer, Heidelberg (2007)

30. Schuster, S., Pfeiffer, T., Moldenhauer, F., et al.: Exploring the pathway structure
of metabolism: decomposition into subnetworks and application to mycoplasma
pneumoniae. Bioinformatics 18, 51–61 (2002)

Formal Cell Biology in Biocham 79

31. Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based
on petri net theory. Silico Biology 3 (2003)

32. Chabrier, N., Fages, F.: Symbolic model cheking of biochemical networks. In: Pri-
ami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg
(2003)

33. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.:
Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the
seventh Pacific Symposium on Biocomputing, pp. 400–412 (2002)

34. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977:
Proceedings of the 6th ACM Symposium on Principles of Programming Languages,
Los Angeles, pp. 238–252. ACM Press, New York (1977)

35. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoretical Computer Science 277, 47–103 (2002)

36. Cousot, P.: Types as abstract interpretation. In: POP 1997: Proceedings of the
24th ACM Symposium on Principles of Programming Languages, pp. 316–331.
ACM Press, New York (1997)

37. Qiao, L., Nachbar, R.B., Kevrekidis, I.G., Shvartsman, S.Y.: Bistability and oscilla-
tions in the huang-ferrell model of mapk signaling. PLoS Computational Biology 3,
1819–1826 (2007)

38. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

39. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: A fruitful application of formal
methods to biological regulatory networks: Extending thomas’ asynchronous logical
approach with temporal logic. Journal of Theoretical Biology 229, 339–347 (2004)

40. Batt, G., Bergamini, D., de Jong, H., Garavel, H., Mateescu, R.: Model checking
genetic regulatory networks using gna and cadp. In: Graf, S., Mounier, L. (eds.)
SPIN 2004. LNCS, vol. 2989, Springer, Heidelberg (2004)

41. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling path-
ways using the continuous time markow chains. In: Priami, C., Plotkin, G. (eds.)
Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp.
44–67. Springer, Heidelberg (2006)

42. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Proba-
bilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB
2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)

43. Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model check-
ing for biochemical processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)

44. Fages, F.: Temporal logic constraints in the biochemical abstract machine biocham
(invited talk). In: Hill, P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, Springer, Hei-
delberg (2006)

45. Cardelli, L.: Brane calculi - interactions of biological membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer,
Heidelberg (2005)

46. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients:
An abstraction for biological compartments. Theoretical Computer Science 325,
141–167 (2004)

47. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Sci-
ence 325, 69–110 (2004)

48. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus.
Transactions on Computational Systems Biology Special issue of BioConcur (to
appear, 2004)

80 F. Fages and S. Soliman

49. Fages, F., Soliman, S.: Type inference in systems biology. In: Priami, C. (ed.)
CMSB 2006. LNCS (LNBI), vol. 4210, Springer, Heidelberg (2006)

50. Cimatti, A., Clarke, E., Enrico Giunchiglia, F.G., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Hei-
delberg (2002)

51. Fages, F., Rizk, A.: On the analysis of numerical data time series in temporal logic.
In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 48–63.
Springer, Heidelberg (2007)

52. Fages, F., Soliman, S.: Model revision from temporal logic properties in systems
biology. In: Probabilistic Inductive Logic Programming. LNCS, vol. 4911, pp. 287–
304. Springer, Heidelberg (2008)

53. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6, 512–535 (1994)

54. Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 2.0: A tool for probabilis-
tic model checking. In: st International Conference on Quantitative Evaluation of
Systems (QEST 2004), pp. 322–323. IEEE Computer Society, Los Alamitos (2004)

55. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004)

56. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems
with many species and many channels. Journal of Physical Chemistry 104, 1876–
1889 (2000)

	Introduction
	Reaction Models
	Syntax
	Differential Semantics
	Stochastic Semantics
	Asynchronous Discrete Semantics
	Asynchronous Boolean Semantics
	Hierarchy of Semantics

	Influence Graphs of Activation and Inhibition
	Definition from the Jacobian Matrix
	Definition from the Stoichiometric Coefficients
	Over-approximation Theorem
	Equivalence Theorem

	Biological Properties Formalized in Temporal Logic
	Temporal Logics CTL*, CTL, LTL and PLTL
	Qualitative Biological Properties in CTL
	Quantitative Biological Properties Formalized in LTL with Constraints over the Reals
	Probabilistic Model-Checking

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

