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Abstract

Temporal logics and model-checking have proved successful to respectively express
biological properties of complex biochemical systems, and automatically verify their
satisfaction in both qualitative and quantitative models. In this article, we go be-
yond model-checking and present a constraint solving algorithm for quantifier-free
first-order temporal logic formulae with constraints over the reals. This algorithm
computes the domain of the real valued variables occurring in a formula that makes
it true in a model. We illustrate this approach for the automatic generation of
temporal logic specification from biological data time series. We provide a set of
biologically relevant patterns of formulae, and apply them on numerical data time
series of models of the cell cycle control and MAPK signal transduction. We show
on these examples that this approach succeeds in inferring automatically semi-
qualititave semi-quantitative information on concentration thresholds, amplitude
of oscillations, stability properties, checkpoints and influences between species.

Key words: model-checking, temporal logic, constraint solving, data time series,
systems biology

1 Introduction

Temporal logics and model-checking algorithms [11] have proved useful to
respectively express biological properties of complex biochemical systems and
automatically verify their satisfaction in both qualitative and quantitative
models, i.e. in boolean [13,8,9], discrete [3,2], stochastic [4,18] and continuous
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models [5,1,8]. This approach relies on a logical paradigm for systems biology
that consists in making the following identifications [14]:

biological model = transition system
biological property = temporal logic formulae

biological validation = model-checking

Having a formal language not only for describing models, i.e. transition sys-
tems by either process calculi [24,7,23,12,21], rules [13,16,6], Petri nets [22,17],
etc..., but also for formalizing the biological properties of the system known
from biological experiments under various conditions, opens a whole avenue
of research for designing automated reasoning tools inspired from circuit and
program verification to help the modeler [15]. However, the formalization of
the biological properties as a specification in temporal logic remains a delicate
task and a bottleneck of this approach.

In this article, we investigate the use of this logical paradigm to analyze numer-
ical data time series, and automatically infer temporal logic specifications of
some pattern from them. There has been work on the inference of correlations
and positive as well as negative influences between species from temporal data,
especially for gene expression data [25,19]. However to our knowledge, the in-
ference of temporal logic formulae with real valued variables from numerical
data time series is new.

From a temporal logic standpoint, our work amounts to generalize model
checking algorithms to constraint solving algorithms, for checking the satis-
fiability (instead of the validity) of temporal logic formulae in a given linear
Kripke structure such as a simulation trace. To our knowledge, this generaliza-
tion is also new. Previous works in this direction apply model-checking tech-
niques to simulation traces [20,5,1] but not temporal logic constraint solvers
computing the solution domain for variables.

In this article, we generalize the trace-based model-checking algorithm de-
scribed in [5] and recalled in the next section, to a constraint solving algo-
rithm for the quantifier-free fragment of LTL with numerical constraints over
the reals. This first-order setting provides the ability to compute those instan-
tiations of a formula that are true in a finite trace, by giving the complete
domain of the real valued variables occurring in the formula for which it is
true. A strong completeness theorem showing that the computed domain of
variables describes exactly the set of solutions is given in Sec. 3, together with
the time complexity of the algorithm.

Then we illustrate the relevance of this approach to the analysis of biological
data time series. We provide a set of biologically relevant patterns of formulae
in Sec. 4, and evaluate them on traces of cell cycle control and of signal trans-
duction in Sec. 5. We show on these examples that this approach succeeds
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in inferring automatically semi-qualititave semi-quantitative information on
concentration thresholds, amplitude of oscillations, stability properties, check-
points and influences between species.

We then conclude on the relevance of this generalization of model-checking to
temporal logic constraint solving for the modelling of biological systems, the
results achieved so far, and their perspectives for future work.

2 Preliminaries on Model-Checking in LTL with Constraints over
the Reals

2.1 LTL with Constraints over the Reals

The Linear Time Logic LTL is a temporal logic [11] that extends propositional
or first-order logic with modal operators for qualifying when a formula is true
in a tree of timed states, called a Kripke structure. The temporal operators
are X (“next”, for at the next time point), F (“finally”, for at some time
point in the future), G (“globally”, for at all time points in the future), U
(“until”), and W (“ weak until”). These operators enjoy some simple duality
properties, ¬Xφ = X¬φ, ¬Fφ = G¬φ, ¬Gφ = F¬φ, ¬(ψ U φ) = (¬φ W ¬ψ),
¬(ψ W φ) = (¬ψ U ¬φ), and we have Fφ = true U φ, Gφ = φ W false.

Formally, a Kripke structure (see for instance [11]) is a couple K = (S,R)
where S is a set of states in which atomic formulas can be evaluated, and
R ⊆ S × S is the transition relation between states, supposed to be total
(i.e. ∀s ∈ S,∃s′ ∈ S s.t. (s, s′) ∈ R). A path in K, starting from state s0 is
an infinite sequence of states π = s0, s1, · · · such that (si, si+1) ∈ R for all
i ≥ 0. We denote by πk the path sk, sk+1, · · · . Table 2.1 recalls the inductive
definition of the truth value of an LTL formula in a state s or on a path π, in
a given Kripke structure K.

A version of LTL with constraints over the reals, called Constraint-LTL, is used
in Biocham [5] to express temporal properties about molecular concentrations.
A similar approach is used in the Darpa BioSpice project [1]. Constraint-LTL
considers first-order atomic formulae with equality, inequality and arithmetic
operators ranging over real values of concentrations and of their derivatives.
For instance F([A]>10) expresses that the concentration of A eventually gets
above the threshold value 10. G([A]+[B]<[C]) expresses that the concentra-
tion of C is always greater than the sum of the concentrations of A and B.
Oscillation properties, abbreviated as oscil(M,K), are defined as a change of
sign of the derivative of M at least K times:
F((d[M]/dt > 0) & F((d[M]/dt < 0) & F((d[M]/dt > 0)...)))

3



s |= α iff α is a propositional formula true in the state s,

s |= ψ iff for all paths π starting from s, π |= ψ,

π |= φ iff s |= φ where s is the first state of π,

π |= Xψ iff π1 |= ψ,

π |= ψ U ψ′ iff there exists k ≥ 0 s.t. πk |= ψ′ and πj |= ψ for all 0 ≤ j < k.

π |= ψ W ψ′ iff either for all k ≥ 0, πk |= ψ.

or there exists k ≥ 0 s.t. πk |= ψ&ψ′ and for all 0 ≤ j < k, πj |= ψ.

π |=!ψ iff π 6|= ψ,

π |= ψ & ψ′ iff π |= ψ and π |= ψ′,

π |= ψ | ψ′ iff π |= ψ or π |= ψ′,

π |= ψ ⇒ ψ′ iff π |= ψ′ or π 6|= ψ,
Table 1
Inductive definition of the truth value of a propositional LTL formula in a state s
or a path π, in a given Kripke structure K.

The abbreviated formula oscil(M,K,V) adds the constraint that the maxi-
mum concentration of M must be above the threshold V in at least K oscil-
lations.

In this context, the Kripke structures in which the LTL formula are interpreted
are linear Kripke structures which represent either an experimental data time
series or a simulation trace, both completed with loops on terminal states. For
instance, in a model described by a system of ordinary differential equations
(ODE), and under the hypothesis that the initial state is completely defined,
numerical integration methods (such as Runge-Kutta or Rosenbrock method
for stiff systems) provide a discrete simulation trace. This trace constitutes a
linear Kripke structure in which Constraint-LTL formulae can be interpreted.
Since constraints refer not only to concentrations, but also to their derivatives,
traces of the form

(< t0, ~x0, d~x0/dt, d
2~x0/dt

2 >,< t1, ~x1, d~x1/dt, d
2~x1/dt

2 >, ...)

are considered, where at each time point ti, the trace associates the concen-
tration values ~xi to the variables, and the values of their first and second
derivatives d~xi/dt and d2~xi/dt

2. This choice of derivatives is justified in sec-
tion 4 as a facility for expressing positive and negative influences between
entities.

It is worth noting that in adaptive step size integration methods of ODE
systems, the step size ti+1 − ti is not constant and is determined through an
estimation of the error made by the discretization.
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2.2 Constraint-LTL Model-Checking Algorithm

Let us assume a finite linear Kripke structure, i.e. a finite chain of states
containing a loop on the last state. For these structures, the standard model-
checking algorithms [11] can be easily adapted to Constraint-LTL as follows:

Algorithm 1 (Constraint-LTL model-checking) [5,1]

(1) label each edge with the atomic sub-formulae of φ that are true at this
point;

(2) add sub-formulae of the form Xφ to the immediate predecessors of points
labeled with φ;

(3) add sub-formulae of the form φ1 U φ2 to the points preceding a point
labeled with φ2 as long as φ1 holds;

(4) add sub-formulae of the form φ1 W φ2 to the last state if it is labeled by
φ1, and to the predecessors of the points labeled by φ1 W φ2 as long as φ1

holds and add sub-formulae of the form φ1 W φ2 to the points preceding
a point labeled with φ1 ∧ φ2 as long as φ1 holds;

(5) return the edges labeled by φ.

In particular, given an ODE model and a temporal property φ to verify within
a finite time horizon, the computation of a finite simulation trace by numeri-
cal integration provides a linear Kripke structure where the terminal state is
completed with a loop. Note that the notion of next state (operator X) refers
to the state of the following time point in a discretized trace, and thus does
not necessarily imply real time neighborhood. The rationale of this algorithm
is that the numerical trace contains enough relevant points, and in particular
those where the derivatives change abruptly, to correctly evaluate temporal
logic formulae. This has been very well verified in practice with various exam-
ples of published mathematical models [5].

3 Temporal Logic Constraint Solving in Quantifier-Free First-Order
LTL over the Reals

3.1 Quantifier-Free First-Order LTL Formulae over the Reals

Here we consider the quantifier-free fragment of first-order LTL formula over
the reals, named QFLTL(R), i.e. Constraint-LTL formula with real valued
variables allowed in the constraints. More precisely, the language of QFLTL(R)
formulae considered in this article is defined by the grammar given in Table
3.1.
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Qfltl =
Atom

| X(Qfltl)
| (Qfltl) U (Qfltl)
| (Qfltl) W (Qfltl)
| (Qfltl) ∧ (Qfltl)
| (Qfltl) ∨ (Qfltl)
| (Qfltl) ⇒ (Qfltl)
| ¬(Qfltl)

Atom =
V alue Op V ariable | V alue Op V alue

Op =
< | > | ≤ | ≥

V alue =

float | [molecule] | d[molecule]/dt | d2[molecule]/dt2 | Time
| V alue+ V alue | V alue− V alue | − V alue | V alue× V alue

| V alue/V alue | V alueV alue

Table 2
Grammar of QFLTL(R) formulae.

Note that negations and implications can be eliminated, by propagating the
negations down to the atomic constraints in the formula. From now on, we
will assume that all QFLTL(R) formulae are in negation free normal form.

3.2 QFLTL(R) Constraint Solving Algorithm

Given a Kripke structure K with real-valued states, and a QFLTL(R) formula
φ(~x) with n real-valued variables, the constraint satisfaction problem, ∃~x ∈ Rn

(φ(~x)), is the problem of determining the valuations ~v of the variables for
which the formula φ is true. In other words, we look for the domain of validity
Dφ ⊂ Rn such that K |=LTL ∀~v ∈ Dφ (φ(~v)).

This domain of validity Dφ of φ can be computed using an algorithm similar
to the model-checking algorithm of section 2.2.

Algorithm 2 (QFLTL(R) constraint solving algorithm) .

(1) label each trace point by the atomic sub-formulae of φ and their domain
of validity as follows :
• for an atomic formula ψ without variables label a time point ti by

(ψ,Dψ(ti) = Rn) if ψ is true at time ti, and (ψ,Dψ(ti) = ∅) otherwise;
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• for an atomic formula [A] ≥ p (that is, of the form value ≥ variable)
label a time point ti by ([A] ≥ p,D[A]≥p(ti)) where D[A]≥p(ti) is the half-
space of Rn defined by p ≤ [A](ti);

• proceed similarly for other atomic formulae containing variables;
(2) label each time point ti by the sub-formula ψ1 ∨ ψ2 and its domain of

validity Dψ1 ∨ ψ2(ti) = Dψ1(ti) ∪ Dψ2(ti);
(3) label each time point ti by the sub-formula ψ1 ∧ ψ2 and its domain of

validity Dψ1 ∧ ψ2(ti) = Dψ1(ti) ∩ Dψ2(ti);
(4) label each time point ti by the sub-formula Xψ and its domain of validity

DXψ(ti) = Dψ(ti+1);
(5) label the last point of the trace tn by the sub-formula ψ1 U ψ2 and its do-

main of validity Dψ1 U ψ2(tn) = Dψ2. Starting from time point tn−1, label
each time point ti by the sub-formula ψ1Uψ2 and its domain of validity :
Dψ1 U ψ2(ti) = Dψ2(ti) ∪ (Dψ1Uψ2(ti+1) ∩ Dψ1(ti));

(6) label the last point of the trace tn by the sub-formula ψ1 W ψ2 and its
domain of validity Dψ1 W ψ2(tn) = Dψ1. Starting from time point tn−1,
label each time point ti by the sub-formula ψ1Wψ2 and its domain of
validity :
Dψ1 W ψ2(ti) = (Dψ1(ti) ∩ Dψ2(ti)) ∪ (Dψ1Wψ2(ti+1) ∩ Dψ1(ti));

(7) return the domain Dφ(ti) for all time points ti where it is not empty.

In particular, given an ODE model and a temporal property φ with variables,
to verify in a finite time horizon, one can compute a finite simulation trace,
giving a linear Kripke structure to which the constaint solving algorithm can
be applied to determine the domain of validity of the variables making φ true.

Recall that an orthotope in Rn is the cartesian product of n intervals over R.
The following propositions show that the solution domain computed by the
algorithm is a finite union of orthotopes, and describes exactly the solution
space for the chosen fragment of constraints over the reals.

Proposition 1 The domains computed by the QFLTL(R) constraint solving
algorithm are finite unions of orthotopes.

Proof. In the base case of atomic formulae, the algorithm computes ortho-
topes, and in the other cases, applies finite intersection and union operations
on the computed domains. As a finite intersection of orthotopes is a finite
union of orthotopes, the domains computed by the algorithm are always finite
unions of orthotopes. 2

Theorem 2 (Strong completeness) The constraint solving algorithm is cor-
rect and complete: a valuation ~v makes a QFLTL(R) formula φ true at time
ti, T, ti |=LTL (φ(~v)), if and only if ~v is in the computed domain of φ at ti,
~v ∈ Dφ(ti).
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Proof. Let us prove inductively on the QFLTL(R) formula structure that for
any time t, any QFLTL formula φ and any instantiation ~v of the variables, if
φ(~v, ti) is true then ~v ∈ Dφ(ti) and if ~v ∈ Dφ(ti) then φ(~v, ti) is true :

• The atomic QFLTL formulae considered here are of the form V alue Op V ariable
or V alue Op V alue where V alue is an evaluable arithmetic expression and
Op an inequality operator. For all these atomic formulae the algorithm re-
turns the exact validity domain. For instance, formula ([A] ≤ p)(ti) is true if
and only if p is greater or equal to [A](ti) and the validity domain returned
is the half-space defined by p ≥ [A](ti);

• φ1 ∧ φ2 . By algorithm construction Dφ1∧φ2(ti) = Dφ1(ti) ∩ Dφ2(ti) hence :
~v ∈ Dφ1∧φ2(ti) ⇔ ~v ∈ Dφ1(ti) and ~v ∈ Dφ2(ti) ⇔ φ1(~v, ti) ∧
φ2(~v, ti) ⇔ (φ1 ∧ φ2)(~v, ti);

• φ1 ∨ φ2 . By algorithm construction Dφ1∨φ2(ti) = Dφ1(ti) ∪ Dφ2(ti) hence :
~v ∈ Dφ1∨φ2(ti) ⇔ ~v ∈ Dφ1(ti) or ~v ∈ Dφ2(ti) ⇔ φ1(~v, ti) ∨ φ2(~v, ti) ⇔
(φ1 ∨ φ2)(~v, ti);

• X(φ). By algorithm construction DX(φ)(ti) = Dφ(ti+1) hence :
~v ∈ DX(φ)(ti) ⇔ ~v ∈ Dφ(ti+1) ⇔ X(φ)(~v, ti);

• φ1 U φ2. By algorithm construction :
Dφ1Uφ2(ti) = Dφ2(ti) ∪ (Dφ1Uφ2(ti+1) ∩ Dφ1(ti)) hence : ~v ∈ D(φ1Uφ2)(ti) ⇔
φ2 ∨ (φ1 ∧ X(φ1(Uφ2))(~v, ti). Or formula (φ1Uφ2) can be rewritten as
(φ1Uφ2) = φ2 ∨ (φ1 ∧X(φ1(Uφ2));

• φ1 W φ2. By algorithm construction :
Dφ1 W φ2(ti) = (Dφ1(ti) ∩ Dφ2(ti)) ∪ (Dφ1 W φ2(ti+1) ∩ Dφ1(ti)) hence : ~v ∈
D(φ1Uφ2)(ti) ⇔ (φ1 ∧ φ2) ∨ (φ2 ∧X(φ1Wφ2))(~v, ti). Or formula (φ1 W φ2)
can be rewritten as (φ1 W φ2) = (φ1 ∧ φ2) ∨ (φ1 ∧X(φ1 W φ2)).

2

The size of a QFLTL formula is the number of symbols in the formula. Let
us define the size of a finite union of orthotopes D, as the least integer k such
that D =

⋃k
i=1Ri where the Ri’s are orthotopes.

Theorem 3 (complexity of the solution domain) The validity domain of
a QFLTL formula of size f containing v variables on a trace of length n is a
union of orthotopes of size less than (nf)2v.

Proof. Let us consider the number of possible bounds appearing in the domain
of validity Dφ of a formula φ for a single variable x.

First, we examine the number of possible bounds generated by the atomic
formulae. Each occurrence of variable x in φ is in a constraint of the form
V alue(ti) Op V ariable. Such a constraint can eventually be evaluated on each
time point of the trace thus creating at most n different bounds for x. The
maximum number of bounds for variable x is then n times the number of
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occurrences of x in φ which is less than n× f . Note that this size complexity
is reached for instance in the formula F ([A] = u∨[A]+1 = u∨· · ·∨[A]+f = u).

Now, by rewriting temporal operators U and W as :
φ1 U φ2(ti) =

∨
j≥i(φ2(tj) ∧

∧
i≤k<j φ1(tk)) and

φ1 W φ2(ti) =
∧
j≥i(φ1(tj)∨

∨
i≤k<j φ2(tk)) we remark that all QFLTL formulae

can be rewritten with ∨ and ∧ without changing their set of solutions. If
Bv(φ) is the set of possible bounds for variable x in φ, and if φ1 and φ2 are
subformulae of φ, we have Bv(φ1 ∨ φ2) ⊂ Bv(φ) and Bv(φ1 ∧ φ2) ⊂ Bv(φ). It
is thus clear that intersections and unions of orthotopes do not generate new
bounds.

As an orthotope is a cartesian product of intervals, it is defined by two bounds
for each variable. With less than n×f bounds per variable, one can thus form
less than (nf)2v orthotopes. Therefore, the solution domain computed by the
algorithm is a union of orthotopes (Prop. 1) of size less than (nf)2v. 2

Corollary 4 The time complexity of algorithm 2 is in O((nf)2v).

Proof. Simply remark that in the worst case for the analysis of the domain
size, each operation of the algorithm increases the size of the domain, and that
the time complexity of each operation is bounded by the size of the domains.
Hence the time complexity of the algorithm is in O((nf)2v)). 2

As for the tightness of these bounds, note that the following formula
F ([A1] = X1 ∨ [A1] + 1 = X1 ∨ ... ∨ [A1] + f = X1) ∧ ...
∧ F ([Av] = Xv ∨ [Av] + 1 = Xv ∨ ... ∨ [Av] + f = Xv)
has a solution domain of size (nf)v on a trace of n values for the [Ai]’s such
that the values [Ai] + k are all different for 1 ≤ i ≤ v and 0 ≤ k ≤ f .

4 Biologically Relevant Patterns of QFLTL(R) Formulae

Temporal logic is sufficiently expressive to formalize a wide range of biolog-
ical properties known from experiments under various conditions [8,5]. The
constraint solving algorithm given for QFLTL(R) formulae makes it possible
to analyze concentration traces and obtain semi-quantitative information for-
malized as QFLTL(R) formulae. In particular, a quantitative counterpart of
the purely qualitative properties in propositional CTL studied in [8] can be
expressed as follows, where variables are written using lowercase letters:

Reachability : F([A]>=p), for expressing what threshold p does species A
attain in the trace;

Checkpoints : not (([A]<p1)U([B]>p2)), for expressing on which thresholds
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p1 and p2 is it false that [A] is lower than p1 until [B] is above p2, i.e. for
which p1 and p2 [A] >= p1 is compulsory for having [B]>p2.

Stability : G([A]=<p1 & [A]>=p2), for formalizing the range of values taken
by [A]; This range can be looked for in some context given by a condition
like in G(Time>10 -> ([A]<p1 & [A]>p2)).

Oscillation : F((d([A])/dt>0 & [A]>v1) & (F((d([A])/dt<0 & [A]<v2)))),
for the amplitude (v1−v2) attained in at least one oscillation. An oscillation
is defined as the change of sign of the derivative. This formula can be ex-
tended for more oscillations and is abbreviated by oscil(M,K,p). It states
that M must have amplitude p in at least K oscillations. By applying the
algorithm for each value of K, beginning with 1, we can find the number of
oscillations in the trace and minimal amplitude p attained by K oscillations
for any K.

Influence : G(d[A]/dt>p1 -> d2[B]/dt2>=0), for expressing above which
threshold does the derivative of A have an influence on B. The influence is
positive if a high value of d[A]/dt entails a positive second derivative of
[B]. It is worth noticing that, as multiple species might influence B, this
formula only indicates a correlation between the value of the derivative of
A and the second derivative of B and gives no proof of direct influence.

5 Application to the Inference of Temporal Properties from Bio-
logical Time Series

5.1 Cell Cycle Data

In this section we present the application of the constraint solving algorithm
2.2 to the budding yeast cell cycle data. For the purpose of evaluation of
the method, we do not use experimental data but simulation data obtained
from the model of [10]. The application of the method to experimental data
is discussed in section 5.3. Concentration traces are obtained by simulating
the cell cycle control model in Biocham. Then, we try to recover relevant
properties of the model by automatically analyzing the traces.

The reaction rules of the model are the following:

(1) _=>Cyclin.
(2) Cyclin+Cdc2~{p1} => Cdc2-Cyclin~{p1,p2}
(3) Cdc2-Cyclin~{p1,p2} => Cdc2-Cyclin~{p1}
(4) Cdc2-Cyclin~{p1,p2} =[Cdc2-Cyclin~{p1}]=> Cdc2-Cyclin~{p1}
(5) Cdc2-Cyclin~{p1} => Cyclin~{p1}+Cdc2
(6) Cyclin~{p1} =>_
(7) Cdc2 => Cdc2~{p1}
(8) Cdc2~{p1} => Cdc2
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Notations ~{p1} and ~{p1,p2} denote phosphorylated forms of a molecule.
Figure 1 displays the obtained simulation traces for four species of this model.

0

0.1

0.2

0.3

0.4

0.5

 0  20  40  60  80  100

Cdc2-Cyclin~{p1}
Cdc2-Cyclin~{p1,p2}

Cdc2
Cyclin~{p1}

Fig. 1. Budding yeast cell cycle simulation trace over 100 time units made of 94
time points.

Such traces are remarkably informative, however to automate reasoning on
them, we propose to rely on QFLTL(R) queries. For instance, a reachability
query provides the maximum concentration attained by an entity:

biocham: trace_analyze(F([Cdc2-Cyclin~{p1}]>=v)).
[[v=<0.194]]

The result returned is a list of domains represented by lists of constraints
on the variables, here a single domain is returned with a single constraint
on v. In formulae like F([Cdc2-Cyclin~{p1}]>=v) where the variable only
appears in inequalities of the form V alue ≥ V ariable or V alue > V ariable,
the most relevant point of the domain is the highest value of v in the do-
main, i.e. its boundary. Its value is here 0.194, the maximum concentration
of Cdc2-Cyclin~{p1} in the trace. Table 3 gives the maximum reachable val-
ues for the four species displayed in Figure 1.

For stability, let us find the range of values taken by [Cdc2] :

biocham: trace_analyze(G([Cdc2]=<v1 & [Cdc2]>=v2)).
[[v1>=0.500, v2=<0.338]]

The domain is defined by the conjunction of the two constraints v1 >= 0.500

and v2 =< 0.338. These values are the maximum and minimum values at-
tained by [Cdc2]. The results for the other species are given in Table 3.
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Reachability Stability Amplitude of at least n oscillations

Species n = 1 n = 2

Cdc2 0.500 (0.338,0.500) 0.141 0.138

Cdc2-Cyclin~{p1,p2} 0.311 (0.000,0.311) 0.306 0.306

Cdc2-Cyclin~{p1} 0.194 (0.000,0.194) 0.192 0.192

Cyclin~{p1} 0.159 (0.000,0.159) 0.155 0.154
Table 3
Results for reachability (maximum value), stability (bottom and top values) and
amplitude of at least n oscillations.

An oscillation query may compute several interval domains:

biocham: trace_analyze(oscil(Cdc2,1)).
[[v2>=0.338, v1=<0.479], [v2>=0.341, v1=<0.479]]

The result is the union of two boxes. In such domains, the most relevant point
is not obvious. Here we look for the maximum amplitude v1 − v2. The max-
imum is obtained in the domain with v1 − v2 = 0.479 − 0.338 = 0.141. This
result states that at least one oscillation of Cdc2 has an amplitude greater
or equal to 0.141. The number of oscillations is then incremented until ob-
taining an empty validity domain. It is obtained for Cdc2 with the query
oscil(Cdc2,3), stating that there are only two oscillations of Cdc2 in the
trace.

The results for the other species are given in Table 3. Obtaining the amplitude
of the oscillations is useful to distinguish between mixed amplitudes oscilla-
tions in the trace. For instance, in noisy data the amplitude can be used to
count the number of oscillations regardless of small noise induced oscillations.

Whether Cdc2-Cyclin~{p1,p2} acts as a checkpoint for Cdc2-Cyclin~{p1}
can be investigated with the following formula:

not([Cdc2-Cyclin~{p1,p2}]<v1 U [Cdc2-Cyclin~{p1}]>v2)

The resulting domain is a union of ten boxes. Interpreting it requires examining
each box to find interesting points of the domain. Checkpoint queries are
thus more delicate and perhaps not well suited for automatic analysis. In the
example, the values v1 = 0.311 and v2 = 0.014 are in the domain, stating that
Cdc2-Cyclin~{p1,p2} is not always less than 0.311 until Cdc2-Cyclin~{p1}
exceeds 0.014. In other words Cdc2-Cyclin~{p1,p2} goes beyond 0.311 before
Cdc2-Cyclin~{p1} exceeds 0.014 pointing out that Cdc2-Cyclin~{p1,p2} is
indeed a checkpoint.

Now, the influence of a molecule A on a molecule B is looked for with formula
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Species Cdc2 Cdc2-Cyclin~{p1,p2}

Cdc2 0.00 0.11

Cdc2~{p1} 0.01 0.12

Cyclin 0.00 0.34

Cdc2-Cyclin~{p1,p2} 0.00 0.02

Cdc2-Cyclin~{p1} 0.90 0.00

Cyclin~{p1} 0.50 0.09
Table 4
Positive influence scores of all species on Cdc2 and Cdc2-Cyclin~{p1,p2}. Molecules
appearing in rows (resp. columns) act as molecule A (resp. B) in formulae
G(d[A]/dt > v1 ⇒ d2[B]/dt2 > 0) and G(d[A]/dt < v2 ⇒ d2[B]/dt2 < 0) used
to compute these scores.

G(d[A]/dt>p1 -> d2[B]/dt2>0). The idea behind this formula is that if a
species B appears only in a reaction rule of the form A → B with a mass
action law kinetic, the following QFLTL(R) formulae are true : G(d[A]/dt >
0 ⇒ d2[B]/dt2 > 0) and G(d[A]/dt < 0 ⇒ d2[B]/dt2 < 0).

In a typical system each species concentration is the result of the combined
effect of several other species. QFLTL(R) formula search determines above
which threshold the above formulae are true, i.e. validity domains of variables
v1 and v2 in formulae G(d[A]/dt > v1 ⇒ d2[B]/dt2 > 0) and G(d[A]/dt <
v2 ⇒ d2[B]/dt2 < 0).

By comparing these domains to the range of values of d[A]/dt, a score s ∈
[0, 1] is obtained indicating the influence of the derivative of [A] over the
second derivative of [B]. More precisely, if the domain of validity is v1 ≥ 0
it means that the formula is true for any positive value of d[A]/dt resulting

in a score 1. If the domain of validity is v1 >= max(d[A]/dt)
2

it means that the
formula is true for half of the positive values of d[A]/dt resulting in a score
0.5. Table 4 gives influences scores computed by this method for species Cdc2
and Cdc2-Cyclin~{p1,p2}.

According to the reaction rules, the only species having a positive influence on
[Cdc2] is [Cdc2-Cyclin~{p1}] (reaction (5)). The influence scores returned
correctly reflect this. The score obtained by Cyclin~{p1} is due to its close-
ness with [Cdc2-Cyclin~{p1,p2}] as it can be seen in the trace. These two
species both have a concentration rise coinciding with [Cdc2] own concen-
tration rise. Nevertheless, influence scores defined above enable to distinguish
[Cdc2-Cyclin~{p1}] over [Cyclin~{p1}] as molecule having a positive in-
fluence on Cdc2.

According to the reaction rules, the two species having a positive influence on
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Cdc2-Cyclin~{p1,p2} are [Cyclin] and[Cdc2~{p1}] (reaction (2)). Notice
that as more species influence Cdc2-Cyclin~{p1,p2} than Cdc2, it is harder to
find correlations between single species and Cdc2-Cyclin~{p1,p2}. Therefore
overall influence scores are smaller in this case. In spite of this, the two species
having the highest scores are the correct ones.

5.2 MAPK Signal Transduction Data

The MAPK signal transduction data model is used in the same way as the cell
cycle model to evaluate the analysis method. Reaction rules used to simulate
concentration traces, displayed in Figure 2 are given below. All reactions rules
have mass action law kinetics.
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RAF
MEK

MAPK
RAF~{p1}
MEK~{p1}

MEK~{p1,p2}
MAPK~{p1}
MAPK~{p1,p2}

Fig. 2. MAPK model simulation trace over 20 time units made of 50 time points.

(1) RAF + RAFK <=> RAF-RAFK
(2) RAF~{p1} + RAFPH <=> RAF~{p1}-RAFPH
(3) MEK~$P + RAF~{p1} <=> MEK~$P-RAF~{p1}

where p2 not in $P
(4) MEKPH + MEK~{p1}~$P <=> MEK~{p1}~$P-MEKPH
(5) MAPK~$P + MEK~{p1,p2} <=> MAPK~$P-MEK~{p1,p2}

where p2 not in $P
(6) MAPKPH + MAPK~{p1}~$P <=> MAPK~{p1}~$P-MAPKPH
(7) RAF-RAFK => RAFK + RAF~{p1}
(8) RAF~{p1}-RAFPH => RAF + RAFPH
(9) MEK~{p1}-RAF~{p1} => MEK~{p1,p2} + RAF~{p1}
(10) MEK-RAF~{p1} => MEK~{p1} + RAF~{p1}
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Reachability Stability Amplitude of at least n oscillations

Species n = 1

RAFK 1 (0.765,1.000) 0.001

RAF 1 (0.309,1.000) -

MEK 1 (0,519,1.000) -

MAPK} 1 (0.891,1.000) -

RAF~{p1}} 0.311 (0.000,0.311) -

MEK~{p1} 0.178 (0.000,0.178) -

MEK~{p1,p2} 0.060 (0.000,0.060) -

MAPK~{p1} 0.052 (0.000,0.052) -

MAPK~{p1,p2} 0.003 (0.000,0.003) -
Table 5
Results for Reachability (maximum value) and Stability (bottom and top values)

(11) MEK~{p1}-MEKPH => MEK + MEKPH
(12) MEK~{p1,p2}-MEKPH => MEK~{p1} + MEKPH
(13) MAPK-MEK~{p1,p2} => MAPK~{p1} + MEK~{p1,p2}
(14) MAPK~{p1}-MEK~{p1,p2} => MAPK~{p1,p2} + MEK~{p1,p2}
(15) MAPK~{p1}-MAPKPH => MAPK + MAPKPH
(16) MAPK~{p1,p2}-MAPKPH => MAPK~{p1} + MAPKPH

Reachability, stability and oscillations queries results are given in Table 5.
There are no oscillations of the species except a very small one for RAFK.

This model is made of a cascade of phosphorylation reactions. According to
the reaction rules, RAFK acts as a kinase on RAF (reactions 1 and 7), RAF acts
as a kinase on MEK (reactions 3, 9 and 10) and MEK acts as a kinase on MAPK

(reactions 5,13 and 14).

We looked for positive influence of any species an all phosphorylated forms
of RAF, MEK and MAPK. The highest score for RAF~{p1} is 0.96 and is at-
tained by species [RAF-RAFK] while [RAFK] ’s score is 0. This is consistent
with the way phosphorylation reactions are written in the model, that is a
complexation reaction and then a decomplexation-phosphorylation rule. High-
est influence score for the phosphorylated form of MEK is correctly obtained
for [MEK-RAF~{p1}], while in the case of [MAPK~{p1}] the correct complex
[MAPK-MEK~{p1,p2}] only gets the second highest score, and the situation is
even more confused for [MAPK~{p1,p2}].

Notice that lots of other species have relatively high influence score, which is
no surprising given the similar shape of all curves in the trace. Nevertheless
retaining only species having the highest scores as having positive influence,
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gives an overall good indication of the direct influences between species.

Species RAF~{p1} MEK~{p1} MEK~{p1,p2} MAPK~{p1} MAPK~{p1,p2}

[RAFK] 0.00 0.11 0.46 0.77 0.50

[RAF] 0.00 0.00 0.00 0.20 0.02

[MEK] 0.26 0.00 0.00 0.00 0.00

[MAPK] 0.50 0.47 0.11 0.00 0.00

[MAPKPH] 0.50 0.49 0.20 0.01 0.00

[MEKPH] 0.48 0.06 0.00 0.00 0.00

[RAFPH] 0.14 0.00 0.00 0.00 0.00

[RAF-RAFK] 0.96 0.50 0.50 0.00 0.50

[RAFPH-RAF~{p1}] 0.00 0.22 0.47 0.42 0.50

[MEK-RAF~{p1}] 0.50 0.79 0.66 0.42 0.50

[MEK~{p1}-RAF~{p1}] 0.00 0.00 0.27 0.41 0.48

[MEKPH-MEK~{p1}] 0.00 0.00 0.34 0.45 0.49

[MEKPH-MEK~{p1,p2}] 0.00 0.00 0.00 0.60 0.34

[MAPK-MEK~{p1,p2}] 0.00 0.00 0.00 0.62 0.37

[MAPK~{p1}-MEK~{p1,p2}] 0.00 0.00 0.00 0.00 0.09

[MAPKPH-MAPK~{p1}] 0.00 0.00 0.00 0.00 0.19

[MAPKPH-MAPK~{p1,p2}] 0.00 0.00 0.00 0.00 0.00
Table 6
Positive influence scores of all species on phosphorylated forms of RAF, MEK and
MAPK.

5.3 Experimental Data

Experimental data for measuring the evolution over time of gene expression
levels or of protein concentrations, typically involve between 6 and 50 time
points taken at regular intervals. Furthermore, experimental data are noisy,
and it is not one trace but several ones that have to be analyzed in order
to extract their significant features. The strategy here is thus to analyze the
traces separately and retain the intersection set of their properties, or the most
frequent ones only.

In order to evaluate the constraint solving algorithm on similar experimental-
like concentration traces, we extracted eleven equally spaced time points from
the cell cycle simulation trace. An example trace is displayed in Figure 3.
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Fig. 3. Curve of concentrations every 10 units of time extracted from the cell cycle
simulation trace.

Reachability Stability Amplitude of at least n oscillations

Species n = 1 n = 2

Cdc2 0.500 (0.341,0.500) 0.125 0.089

Cdc2-Cyclin~{p1,p2} 0.311 (0.000,0.311) 0.279 0.222

Cdc2-Cyclin~{p1} 0.194 (0.000,0.194) 0.192 0.012

Cyclin~{p1} 0.100 (0.000,0.100) 0.095 0.018
Table 7
Results for reachability, stability and oscillation queries in experimental-like data.

Species Cdc2 Cdc2-Cyclin~{p1,p2}

Cdc2 0.59 0.00

Cdc2~{p1} 0.59 0.00

Cyclin 0.00 0.73

Cdc2-Cyclin~{p1,p2} 0.00 0.59

Cdc2-Cyclin~{p1} 0.49 0.00

Cyclin~{p1} 0.48 0.00
Table 8
Positive influence scores of all species on Cdc2 and Cdc2-Cyclin~{p1,p2}.

We applied on this trace the same queries than on the original simulated one,
results are given in Tables 7 and 8. Oscillations properties are still obtained
but with smaller amplitudes, because the peaks are missed in the sampling.
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For instance, Cdc2-Cyclin~{p1} has one oscillation of size 0.192 but two os-
cillations of size only greater than 0.012. This is a limit inherent to a low
number of time points as the first peak of Cdc2-Cyclin~{p1} almost disap-
peared in this trace. Having a small number of time points also tends to give
high self positive influence scores but considering only highest scores except
self influence still correctly determines the influence between species.

6 Conclusion

Considering the difficulty to specify in temporal logic the biological proper-
ties of a system known from experiments, we have proposed an algorithm for
computing the temporal logic formulae with constraints that are true in a
given numerical data time series. To this end, the propositional Constraint-
LTL model-checking algorithm described in [5] has been generalized to a con-
straint solving algorithm in the quantifier free fragment of first-order LTL with
numerical constraints over the reals. A strong completeness theorem stating
that the orthotopes of real valued variables computed for a formula in this
fragment describe exactly the solution space, has been shown, together with
the time complexity in O((nf)2v) where on n is the number of time points in
the series, f is the size of the formula and v is the number of variables.

For the purpose of evaluating the method, we worked with data time series
generated from models by simulation, and considered one experimental-like
time series extracted from the simulation trace with a few time points taken
at regular intervals of time. Currently, we are applying this method to the
analysis of experimental temporal data of FSH signaling proteins for design-
ing a model of FSH signal transduction together with its temporal specifica-
tion, and proceed similarly with cell cycle and circadian cycle data for cancer
chronotherapies in the framework of the EU project Tempo 1 . It should be
clear however that the presented method may be relevant to the modelling of
dynamical systems in other domains.

One obvious generalization of this work would be to consider larger frag-
ments of constraints over the reals, trading the strong completeness theorem
for a weak completeness theorem stating that the computed domains over-
approximate the solution set, instead of being equal. Another generalization
under investigation is the abandonment of the restriction to linear Kripke
structures.

1 http://www.chrono-tempo.org/
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