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Abstract

Answering conjunctive queries (CQs) has been recognized as
a key task for the usage of Description Logics (DLs) in a
number of applications, and has thus been studied by many
authors. In this paper, we present an algorithm for this prob-
lem in the DL ALCH which works in exponential time.
It improves over previous algorithms which require double
exponential time and is worst-case optimal, as already sat-
isfiability testing inALC is EXPTIME-complete. Further-
more, it shows that inverse roles cause an exponential jump
in complexity; as recently shown, the problem is 2EXPTIME-
complete forALCI. The algorithm is based on a technique
that compiles knowledge bases into sets of trees of depth 1. It
is in CONP under data complexity (i.e., if the taxonomy part
and the query are fixed), thus worst-case optimal. An exten-
sion fromALCH to DLs with further constructs is possible.

Introduction
In recent years, Description Logics (DLs) have received in-
creasing importance as formalisms to represent richer do-
main models in various contexts, including the Semantic
Web, data and information integration, peer-to-peer data
management, and ontology-based data access. For example,
some of the standard Web ontologies from the OWL family
are based on DLs (Heflin & Hendler 2001).

The wider use of DLs also requires to provide more rea-
soning services beyond traditional satisfiability, subsump-
tion and instance checking. In particular, answering con-
junctive queries (CQs) over knowledge bases has been
recognized as a key task in this respect and studied in
many papers, including (Hustadtet al. 2005; Glimmet al.
2007a,2007b; Lutz 2007; Calvaneseet al.1998; 2006; 2007;
Krötzschet al.2007; Ortizet al.2008; Rosati 2007).

As the problem subsumes testing satisfiability of a knowl-
edge base, well-known results on the complexity of the lat-
ter imply that it is at least EXPTIME-hard for any DL in-
cluding ALC, which is the very core of many DLs like
SHIQ, SRIQ andDLR. As recently shown in (Lutz
2007), answering CQs is 2EXPTIME-hard for all DLs con-
taining ALCI; thus, for the aforementioned DLs, corre-
sponding upper bounds from (Calvaneseet al. 1998; 2007;
Hustadtet al.2005; Glimmet al.2007a) are tight.
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Various methods have been used in this context, ranging
from adapted tableaux procedures (Levy & Rousset 1998;
Ortiz et al. 2008) over query incorporation into the knowl-
edge base (Calvaneseet al. 1998; Tessaris 2001; Glimmet
al. 2007a,2007b) and resolution techniques (Hustadtet al.
2005) to automata-based algorithms (Calvaneseet al.2007).

However, up to now, the complexity of answering CQs in
ALC was not precisely known, and it was in particular not
clear how much the complexity increases compared to sat-
isfiability testing. We answer this question here. Our main
contribution is an algorithm for answering CQs overALCH
knowledge bases in exponential time, which shows that the
problem is not more expensive than satisfiability testing.
The algorithm is worst case optimal and improves over pre-
vious ones that require double exponential time, confirming
Lutz’s finding (2007; 2008) that CQ answering inALC is
feasible in exponential time.

Our algorithm is based onknots, borrowed from (Simkus
et al.2007), which are schematic trees of depth≤1 that oc-
cur in the forest-shaped models of a knowledge base, and
has the following features:

• It is CONP under data complexity, i.e., for a fixed TBox
and query, it can be nondeterministically run in polynomial
time. This is also worst-case optimal, as the data complexity
of CQ answering is known to beCONP-complete for a wide
range of DLs includingALC; see e.g. (Ortizet al.2008).

• It provides a modularknowledge compilationof the TBox
and the query, such that further queries can reuse the TBox
compilation. In particular, queries of bounded size can be
incorporated into the compilation in polynomial time (w.r.t.
the size of the latter), which is specially useful when many
queries have to be answered over the same knowledge base.

• It works for non-ground query answering. After the com-
pilation, query answering can be reduced to evaluating a dat-
alog program over a set of facts. This may make the algo-
rithm more amenable for efficient implementation in prac-
tice than automata- or tableaux-based algorithms.

While we focus here onALCH, the method is extendible
to richer DLs includingSH, and shows that answering large
classes of CQs in such logics is not more expensive than sat-
isfiability testing. The knot technique opens an interesting
perspective that might be fruitfully exploited for other pur-
poses as well.



Preliminaries
In this section, we introduceALCH knowledge bases and
define their conjunctive query answering problem.
Syntax. We assume countably infinite setsC, R andI of
concept names, roles names, andindividuals respectively.
C contains⊤ and⊥. ALCH concepts(or concepts) are
inductively defined as follows: (a) every concept nameA ∈
C is a concept, and (b) ifC, D are concepts andR ∈ R is a
role, thenC ⊓ D, C ⊔ D, ¬C, ∀R.C, ∃R.C are concepts.

Let C, D be concepts,R, S be roles,a, b be individu-
als, andA be a concept name. An expressionC⊑D is a
general concept inclusion axiom (GCI), an expressionR⊑S
is a role inclusion axiom (RI), and expressionsa:A and
〈a, b〉:R areassertions. An ALCH knowledge base(KB)
is a tupleK=〈T ,A〉, where theTBoxT is a finite set of
GCIs and RIs; and theABox A is a finite nonempty set
of assertions. W.l.o.g. we assume that all concept and role
names occurring inA, as well as⊤ and⊥, occur inT . Let
C(K), R(K) andI(K) respectively denote the sets of con-
cept names, roles, and individuals occurring inK.

Semantics. An interpretationI = (∆I , ·I) for a KB K
consists of adomain∆I and avaluation function·I that
maps each individualc∈ I(K) to an elementcI ∈∆I , every
concept nameC ∈C(K) to a subsetCI of ∆I , and every
role R∈R(K) to a subsetRI of ∆I×∆I . The function·I

is extended to all concepts in such a way that it satisfies:

⊤I = ∆I , ⊥I = ∅, (¬C)I = ∆I\CI ,
(C ⊓ D)I = CI ∩ DI , (C ⊔ D)I = CI ∪ DI ,
(∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI},
(∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}.

An interpretationI is amodelof K = 〈T ,A〉, if (i) for each
GCI C ⊑ D in T , CI ⊆ DI ; (ii) for each RIR ⊑ S in T ,
RI ⊆ SI ; (iii) for each assertiona:A in A, aI ∈ AI ; and
(iv) for each assertion〈a, b〉:R in A, 〈aI , bI〉 ∈ RI .

Conjunctive Query Answering. Let V be a countably in-
finite set of variables. Aconjunctive query(CQ, orquery)
over a KBK is a finite set of atoms of the formA(x) or
R(x, y), whereA∈C(K), R∈R(K) and x, y ∈V.1 By
V(q) we denote the variables occurring in the atoms ofq.
A queryq is associated with a unique (possibly empty) tuple
~x=〈x1, . . . , xn〉 of answervariables fromV(q)

A match forq in an interpretationI for K is a mappingθ
fromV(q) to∆I such that (i)θ(x) ∈ AI for eachA(x) ∈ q,
and (ii) 〈θ(x), θ(y)〉 ∈ RI for eachR(x, y) ∈ q. A tuple
〈c1, . . . , cn〉 of individuals fromI(K) is an answer ofq over
I, if 〈c1

I , . . . , cn
I〉 = 〈θ(x1), . . . , θ(xn)〉 for some match

θ for q in I; ans(q, I) denotes all answers ofq overI. The
answerof q overK, denotedans(q,K), is the set of all tuples
~c such that~c ∈ ans(q, I) for every modelI of K.

Normal Knowledge Bases
We focus in this paper on normalized KBs and a restricted
class of their models, which correspond to the minimal Her-

1Note that no individuals occur inq. This is no limitation, as
for any constanta we can use a new concept nameCa, replacea
in q by a new variabley, and addCa(y) to q anda : Ca toA.

brand models of the theory obtained by the usual translation
of ALCH into first-order logic and skolemization.

Definition 1. A KB K is normal, if all its GCIs are of the
form (D) A0⊓. . .⊓An⊑B0⊔. . .⊔Bm, (E) A0 ⊑ ∃R.B0, or
(U) A0⊑∀R.B0, where eachAi, Bj ∈ C, andn, m > 0.

For a normal KBK, its Herbrand universeUK is the set
of all termsinductively defined as follows: (i) eachc∈ I(K)
is a term, and (ii) ift is a term andα is a GCI of type (E)
occurring inK, thenfα(t) is a term. LetBK be the set of
all expressionsC(s) andR(s, t) with C ∈C(K), R∈R(K),
ands, t∈UK, which we callatoms.

An Herbrand interpretationof K is any setI ⊆BK; it
represents the interpretationI with ∆I = UK, CI = {d |
C(d)∈I}, RI = {〈c, d〉 | R(c, d)∈I} and cI = c for each
c∈ I(K). Such anI is anS-Herbrand modelof K, if it is a
model ofK, and for eachα = A ⊑ ∃R.B in K, A(t)∈I im-
pliesR(t, fα(t))∈I andB(fα(t))∈I. Moreover,I is amin-
imal S-Herbrandmodel ofK, if no J⊂I is an S-Herbrand
model ofK. We denote byM(K) the set of all minimal
S-Herbrand models ofK.
Using well-known structural transformations, every KBK
can be transformed in linear time into a normal KBK′ in a
way that preserves query answers. Moreover, one can show
via standard first-order logic that, to answer a query overK,
it is sufficient to consider its minimal S-Herbrand models.

Theorem 1. For anyALCH KB K and a CQq, we can ob-
tain in linear time a normalALCH KB K′ s.t.ans(q,K) =
ans(q,K′). Moreover,ans(q,K′) =

⋂
I∈M(K′) ans(q, I).

In the following, unless stated otherwise, by ‘interpretation’
we mean Herbrand interpretation, and by ‘(minimal) model’
we mean (minimal) S-Herbrand model.

Example 1. As running example, we consider the nor-
mal KBs K1=〈A, T1〉 and K2=〈A, T2〉, whereA={a:D},
T1={α0, α1, α2, α3, α4}, T2={α′

0, α1, α2, α3, α4} and:
α0 = D ⊑ A ⊔ B α1 = B ⊑ ∃P.A α3 = A ⊑ ∃Q.⊤
α′

0 = D ⊑ B α2 = B ⊑ ∃P.C α4 = C ⊑ ∃P.D

We also consider the following CQ:
q1(x, x′)={B(x), P (x, y), A(y), P (x′, y), Q(y, z)}.

Note thatans(q1,K1) = ∅ andans(q1,K2) = {〈a, a〉}.

Knots
In this section, we exploit the model-theoretic propertiesof
normal KBs to provide a method for finitely representing
their possibly infinite minimal models. Of particular impor-
tance is theforest-shaped model property, on the basis of
which, each minimal model of a normal KB can be viewed
as a graph and a set of trees rooted at nodes of the graph. In
what follows, letK = 〈T ,A〉 be an arbitrary normal KB.

Proposition 1. An interpretation ofK is forest-shaped, if its
binary atoms are of the formR(a, b) or R(t, f(t)) for a term
t and individualsa, b. EachI∈M(K) is forest-shaped.

The key intuition underlying the finite representation is that
minimal models ofK can be composed out of trees of depth
≤ 1 that we callknots. For convenience of presentation, we
write t∈̂I if a set of atomsI contains an atom with the term
t as argument, and denote byU(I) the set of all termst∈̂I.



Definition 2. (Knots) A knot with root (term)t is a set of
atomsK such that each atom inK is of the formA(t),
R(t, f(t)), or A(f(t)) whereA, R, andf are arbitrary. Let
succ(K) denote the set of terms of the formf(t)∈̂K.

A knot with root termt can be viewed as a labeled tree of
depth at most 1, where the nodes and edges are labeled with
concept names and roles respectively. In the following we
only consider the knotsK where each concept name and
role occurring inK also occurs inK (t need not be from
UK). For a termt, letBt denote the set of all atoms that can
be built from concept names and roles ofK usingt and terms
of the formf(t) as arguments. Note that for a forest-shaped
interpretationI for K andt∈̂I, the setI ∩Bt is a knot.

We introduce min-consistentknots, which are self-
contained model building blocks for minimal models ofK.

Definition 3. Given a knotK with root t, we sayK is con-
sistent(w.r.t.K), if the following are satisfied:

(a)⊤(u)∈K and⊥(u)6∈K for all u∈{t}∪{f(t)|f(t)∈UK};
(b) if A ⊑ ∀R.B ∈T , A(t) ∈ K andR(t, f(t)) ∈ K, then
B(f(t)) ∈ K;
(c) if α = A ⊑ ∃R.B, α∈T and A(t) ∈ K, then
R(t, fα(t)) ∈ K andB(fα(t)) ∈ K;
(d) if A0 ⊓ . . . ⊓ An ⊑ B0 ⊔ . . . ⊔ Bm ∈ T , s ∈ succ(K)
and{A0(s), . . . , An(s)} ⊆ K, thenBi(s)∈K for someBi;
(e) if R⊑S ∈T andR(t, f(t))∈K, thenS(t, f(t))∈K.

K is min-consistentif eachK ′⊂K obtained fromK by re-
moving atoms where ans∈ succ(K) occurs is inconsistent.

Intuitively, given a termt and a set of concepts it satisfies, a
min-consistent knot with roott encodes a possible combina-
tion of immediate successors fort in a model ofK.

Example 2. To simplify the notation, for1≤i≤4, we write
fi instead offαi

, and we omit the atom⊤(u) for each
u. The knotsKa={C(t), P (t, f4(t)), A(f4(t)), D(f4(t))},
Kb={C(t), P (t, f4(t)), B(f4(t)), D(f4(t))} are both min-
consistent w.r.t.K1; and onlyKb is min-consistent w.r.t.K2.

After the necessary notions for dealing with the tree-part of
forest-shaped interpretations, we deal with the graph part.

Definition 4. The KBKg is obtained fromK by deleting all
axioms of type (E). EachG∈M(Kg) is amin-graphof K.

Example 3. G1={D(a), B(a)} andG2={D(a), A(a)} are
the min-graphs ofK1, whileG1 is the only min-graph ofK2.

The next theorem characterizes the minimal models ofK.

Theorem 2. Let I be an interpretation forK, and letIg be
the set of all atoms inI of the formA(a), R(a, b) for any
individualsa, b. ThenI∈M(K) iff I is forest-shaped,Ig is
a min-graph ofK, and for each termt∈̂I, the knotI ∩ Bt is
min-consistent w.r.t.K.

The characterization above allows to view minimal mod-
els as being constructed of knots, each of which is min-
consistent, and to provide a finite representation of these
models. Roughly, the representation relies on the observa-
tion that although infinitely many knots might occur in some
minimal model of a KB, only finitely many of them are non-
isomorphic modulo the root term.

K0 = { }

K1 = {A(x), D(x), Q(x, f3(x)) }

K2 = {B(x), D(x), P (x, f1(x)), P (x, f2(x)), A(f1(x)), C(f2(x)) }

K3 = {C(x), P (x, f4(x)), A(f4(x)), D(f4(x)) }

K4 = {C(x), P (x, f4(x)), B(f4(x)), D(f4(x)) }

K5 = {A(x), Q(x, f3(x)) }

Q
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Figure 1: Example set of knots and interpretations.

Definition 5. Let x be an individual not occurring in any
ALCH KB. A knot K with root t is abstract, if t = x.
A knot K ′ with root u is an instanceof K, if K ′ can be
obtained fromK by replacing each occurrence ofx with u.

Note that min-consistency is invariant under such substi-
tutions, i.e., ifK ′ is an instance ofK, then K ′ is min-
consistent iffK is min-consistent. We show next that a set
of abstract knots can be used to represent all the minimal
models. Given two sets of atomsI andJ , we writeIt ≈ Ju

if {A | A(t) ∈ I} = {A | A(u)∈J}.

Definition 6. Let L be a set of abstract knots. GivenK∈L
ands∈ succ(K), we sayK ′∈L is an s-successor ofK, if
Ks≈K ′

x
. Let L[K, s] be the set ofs-successors ofK in

L. ThenL is K-founded, if for eachK∈L, K is minimal-
consistent w.r.t.K, andL[K, s]6=∅ for eachs ∈ succ(K).

Example 4. Figure 1 shows the abstract knotsK0, . . . , K5.
Note thatKa andKb are instances ofK3 andK4 respec-
tively. The setL1={K0, . . . , K5} is K1-founded, while
L2={K0, K2, K4, K5} is K2-founded. In the graphic, the
dotted arcs connect a nodes in K to x in K ′ whenever
Ks ≈ K ′

x
; the links tox in K0 are omitted.

In what follows, we provide a construction of minimal mod-
els out of knots in a founded set. Moreover, we show that for
a given KB there exists a founded set of knots that captures
all the minimal models.

Definition 7. We sayan interpretationI is generatedby
a K-founded knot setL if I is a⊆-minimal interpretation
containing some min-graphG of K and for each termt∈̂I,
I ∩ Bt is an instance of someK ∈ L. By FK(L) we denote
the set of interpretations generated byL.

Intuitively, FK(L) represents all the forest-shaped interpre-
tations that can be built from from some min-graph by in-
stantiating the knots inL. Importantly, such interpretations
are actually minimal models. Indeed, due to Theorem 2, if
L isK-founded andI∈FK(L), thenI∈M(K).

Definition 8. Let KK denote the smallest set of abstract
knots which contains eachK-founded set of knots.

The crucial property ofKK is that it captures the tree-
structures of the minimal models ofK, and together with
the min-graphs, it captures all the minimal models ofK.



Theorem 3. KK isK-founded, andFK(KK) = M(K).

Example 5. Clearly L1⊆KK1
and L2⊆KK2

. For I1, I2

as given in the figure,I1, I2∈FK1
(KK1

) =M(K1). Also
I1∈FK2

(KK2
) =M(K2), which is not the case forI2. In

fact, eachI ∈ FK2
(KK2

) starts with an instance ofK2 and
contains infinitely many instances of each knot inL2.

We can deriveKK in two steps. First, the setAK of all
knots that are min-consistent w.r.t.K is constructed. This
can be done, for instance, by exhaustively traversing each
atom setH={A1(x), . . . , An(x)}, where eachAi is a con-
cept name fromK, and extendingH to become consistent
w.r.t.K by adding necessary atoms to satisfy the conditions
in Def. 3. Min-consistency of the resulting knot can be ver-
ified by considering its proper subsets. In the second step,
AK is cleaned to ensure foundedness according Def. 6, by
exhaustively rewriting the setL := AK with the following
rule: if L[K, s] = ∅ for someK ∈ L ands ∈ succ(K), then
removeK from L. The resulting setL is KK.

Query Answering with Knots
In what follows, we assume a fixedK-founded set of knots
L and a fixed CQq, and describe a method for computing
the answers ofq in all the interpretations inFK(L). Using
the results in the preceding section and settingL = KK, this
allows us to computeans(q,K).

The idea is to decompose the problem. We first define
the entailment ofsubqueries at a knotK, which informally
means that there is a match for some parts of the query in
eachtree that is generated fromL and starts withK, and
provide a decision procedure for it. The method is based on a
fixpoint computation that derives in each iteration new pairs
of knots and subqueries for which the entailment relation
holds, based on previously computed pairs. For a given knot
K, the decision on whether it entails a subquery is made by
looking at the subqueries that the possible successors knots
of K entail. Hence, the algorithm “back-propagates” the
information via the possible successor relation. The entail-
ment of subqueries at the knots inL is the key to answering
the whole queryq overK.

In a second stage, we consider the min-graphs ofK and
verify whether for each min-graphG, the query can be
mapped in each forest-shaped minimal model ofK that is
built from G and the knots inKK. To this end, we verify
whether, for any possible way of constructing a model out
of G, a mapping for the full query can be composed from
some partial mapping ofq into G and some mappings that
exist in the trees rooted at the individuals. The existence of
the latter mappings will be witnessed by the precomputed set
of all pairs of knots and subqueries for which the entailment
relation holds.

Rooted Subquery Entailment
Observe that, since the minimal models ofK are forest-
shaped, for any query matchπ and any tree-shaped partI
of a model, the the image underπ of the subquery ofq that
is mapped insideI is a subtree ofI. This implies, for ex-
ample, that if there are atoms of the formR(x, y), R′(x′, y)
in q, thenx andx′ must be mapped to the same node in the

tree. Whenever a query match maps a variablex to a node
in a tree,x induces a set of variablesVx which have to be
mapped inside the tree defined by the image of the query
graph under the match. This set containsx, the successors
of x, and all variables that must be mapped to the same node
as one of them because they have a common successor.

Definition 9. Assume a variablex ∈ V(q) and a variable
setX ⊆V(q). Let R0(x)= {x} and

Rn+1(x) = {y ∈ V(q) | R(x′, y) ∈ q andx′ ∈ Rn(x)},

for everyn ≥ 0. Then byVx we denote the set of ally ∈
V(q) such thatRn(x) ∩ Rm(y) 6= ∅ for somem ≤ n.

We also denoteR1(x) by next(x), and defineprev(x) =
{y∈V(q) | x∈next(y)}. Moreover, we definenext(X) =⋃

x∈X next(n) andprev(X) =
⋃

x∈X prev(n).

We are ready to formally define the subqueries and their en-
tailment in trees.

Definition 10. For a knotK ∈ L, I is a tree generated byL
(starting withK), if I is a⊆-minimal set of atoms such that
K⊆I and, for each termt∈̂I, I∩Bt is an instance of some
K ′∈L. We denote byT (L, K) the set of all such trees.

Definition 11. A root set ofq is any setρq ⊆V(q). By Rq

we denote the set of all root sets ofq.
For a treeI generated byL, a rooted match forx ∈ ρq in

I is a functionπ from Vx to U(I) s.t. for eachy, z∈Vx:

(RM1) if A(y)∈ q thenA(π(y))∈ I;
(RM2) if R(y, z) ∈ q thenR(π(y), π(z)) ∈ I; and
(RM3) if y ∈Vx andprev(y) 6⊆ Vx, thenπ(y)=x.

We write I |= ρq if for some x∈ ρq there exists a rooted
match inI. Further,I |=d ρq holds if for somex ∈ ρq there
exists a rootedπ match inI s.t. for eachy∈Vx, the depth of
the termπ(y) is less or equal tod. We writeK |=L ρq (resp.,
K |=d

L ρq) if for eachI ∈ T (L, K) we haveI |= ρq (resp.,
I |=d ρq). We omit the subscripts if clear from the context.

Intuitively, a rooted match forx in a treeI is a homomor-
phic embedding into the treeI of the subquery ofq obtained
by restricting it to atoms whose variables are inVx. Addi-
tionally, every variabley in Vx that has some predecessor
variable not inVx must be mapped to the root ofI (RM3).
A rooted match forx may be part of a full query mapping in
some model containingI, provided that the predecessors of
y have a match above the root ofI.

Example 6. Vz = {z}, andπ(z)=x is a rooted match for
z in everyI ∈T (L, K) for everyK ∈L1

1. HenceK |= ρ for
eachρ with z ∈ ρ. SinceVx = Vx′ = {x, x′, y, z}, I |= {x}
iff I |= {x′} for any treeI.

In the following, we construct a setΓ(L, q) of all pairs
(K, ρ) such thatK |=L ρ. We first compute the pairs(K, ρ)
with K |=0

L ρ, and then continue via fixpoint iteration to ob-
tain the pairs(K, ρ) with K |=d

L ρ for an arbitraryd∈ω.
Such pairs capture the|=L relation due to the following.

Proposition 2. If K |=L ρ, then there existsd ∈ ω such that
K |=d

L ρ.



A key part of the algorithm is to establish, using the pairs
(K, ρ) with K |=d

L ρ, the sets of variables that have a match
within depthd in the different trees starting atK. This will
be crucial for obtaining the pairs(K ′, ρ′) with K ′ |=d+1

L ρ′.
Specifically, for eachK, we characterize the minimal sets

of variablesl such that each tree starting atK models neces-
sarily the variables inl. To this aim, we useminimal hitting
sets. Informally, we can see each setl as a most general
way of ‘grouping’ the trees starting atK by the exact set of
variables for which they provide a match of bounded depth.

Definition 12. Assume a knotK ∈ L and a setS ⊆L×Rq.
A set of variablesl⊆V(q) is aminimal hitting set ofS w.r.t.
K if it is a ⊆-minimal set s.t.l∩ρ 6= ∅ for every(K, ρ)∈S.

Proposition 3. AssumeK ∈ L, d ∈ ω and letS be the set of
all tuples(K, ρ) such thatK |=d

L ρ for someρ. If l is a mini-
mal hitting set ofS w.r.t.K, then there is someI ∈T (L, K)
such that, for everyx∈V(q), I |=d {x} iff x∈ l.

We now sketch the procedure for computing|=L. For each
d ∈ ω, let Sd denote the set of all pairs(K, ρ) such that
K |=d

L ρ. As easily seen, in cased = 0, the setS0 can be
computed by checking which root sets can be satisfied by
direct mappings into the roots of the knots inL.

For the inductive case, suppose for somed ∈ ω we have
computed the setSd. Assume someρ and an arbitrary knot
K ∈ L. To verify whetherK |=d+1

L ρ, we considerK-hits
which capture the possible ways of choosing for eachs ∈
succ(K) a knotK ′ ∈L[K, s] and a minimal hitting setl of
Sd w.r.t. K ′. Intuitively, we concludeK |=d+1

L ρ if for each
K-hit there is a variablex ∈ ρ such that part ofVx can be
mapped intoK, while the rest of the variables are contained
in the chosen minimal hitting sets; this partitioning ofVx

will be captured by the notion ofK-mapping.

Definition 13. A successor choicefor K ∈L is a function
that maps eachs∈ succ(K) to someK ′ ∈L[K, s]. A K-
hit of S ⊆L×Rq is a pair(sc, hs), wheresc is a successor
choice forK, andhsis function that maps eachs∈ succ(K)
to a minimal hitting set ofS w.r.t. the knotsc(s).

Example 7. If S = {(K0, {z})}, then{z} is the only mini-
mal hitting set ofS w.r.t.K0. Also, (sc, hs) is aK1-hit of S,
wheresc(f(x))= K0 andhs(f(x))= {z} for everyf .

Now we introduceK-mappings which are composed of a
setr of variables and a functionb(·) that maps variables to
leaves ofK; the variables inr have a match at theroot of
K, while the variables captured byb have a matchbelowthe
root ofK. Intuitively, in order for aK-mapping to represent
a rooted match in a tree starting withK, eachx in the do-
main ofb must have a match in the subtree with rootb(x).
In particular, the latter holds whenever each suchx is in the
hitting seths(b(x)) of someK-hit; if this is the case, we say
that theK-hit complieswith theK-mapping.

For a (partial) functiong from A to B, its domain is de-
noteddom(g). As usual,g−1(b)= {a ∈ A | g(a) = b}.

Definition 14. For a knotK ∈L, a K-mapping forq is a
tuplem = 〈r, b〉, wherer⊆V(q), b is a partial function from
V(q) to succ(K), r ∩ dom(b) = ∅, and the following hold:

- x∈ r andA(x) ∈ q imply A(x)∈K;

- x∈r andR(x, y)∈q imply y∈ dom(b) andR(x, b(y))∈K;
- for eachs ∈ succ(K), prev(b−1(s)) ⊆ r ∪ b−1(s); and
- for eachs ∈ succ(K), next(b−1(s)) ⊆ b−1(s).

We defineroots(m) as the set of allx∈ r∪ dom(b) s.t.x∈ r
or prev(x)= ∅. A K-hit (sc, hs) complies withm, if for each
s∈ succ(K), b−1(s)⊆Vv, whereVv =

⋃
x∈hs(s) Vx.

Example 8. m0 = 〈{z}, ∅〉 is aK-mapping for anyK ∈L1
1,

and it complies with anyK-hit; m1 = 〈{y}, {z 7→ f3(x)}〉
is a K1-mapping and a K5-mapping, it complies
with {z}; m2 = 〈{x, x′}, {y 7→ f1(x), z 7→ f1(x)}〉 and
m3 = 〈{x, x′}, {y 7→ f2(x), z 7→ f2(x)}〉 areK2-mappings.

We are ready to define a relationS ⊢L,q (K, ρ) for obtaining
new pairs(K, ρ) such thatK |= ρ, which follow from a
given setS of pairs(K ′, ρ′) such thatK ′ |= ρ′.

Definition 15. AssumeK ∈L, ρ∈Rq and a setS ⊆L×Rq.
The pair(K, ρ) follows fromS, in symbolsS ⊢L,q (K, ρ),
if for everyK-hit k of S there is aK-mappingm such that
ρ ∩ roots(m) 6= ∅ andk complies withm.

Next, using the consequence relation above we construct a
setΓ(L, q) to capture all pairs(K, ρ) such thatK |=L ρ.

Definition 16. We define the following sets:

Γ(L, q)0 = {(K, ρ) ∈ L × Rq | ∅ ⊢L,q (K, ρ)}, and

Γ(L, q)
d+1

= {(K, ρ) ∈ L × Rq | Γ(L, q)
d ⊢L,q (K, ρ)},

for eachd > 0. ThenΓ(L, q) =
⋃

d∈ω Γ(L, q)
d.

Note that Γ(L, q)
0 ⊆Γ(L, q)

1 ⊆ · · · ⊆Γ(L, q)
d for each

d∈ω. SinceL×Rq is finite,Γ(L, q) is finite and unique.
Example 9. For simplicity, we use⊢1 instead of⊢L1

1
,q1

and
⊢2 instead of⊢L2

1
,q1

. The following hold:

∅⊢1 (K0, {z}) ∅⊢2 (K0, {z})
{(K0, {z})}⊢1 (K1, {y}) {(K0, {z})}⊢2 (K5, {y})
{(K0, {z})}⊢1 (K5, {y}) {(K5, {y})}⊢2 (K2, {x})
{(K5, {y})}⊢1 (K2, {x}) {(K2, {x})}⊢2 (K4, {x})
{(K2, {x})}⊢1 (K4, {x})

Thus we have{(K0, {z}), (K1, {y}), (K5, {y}), (K2, {x}),
(K4, {x})}⊆Γ(L1

1, q1); {(K0, {z}), (K5, {y}), (K2, {x}),
(K4, {x})} ⊆ Γ(L2

1, q1).

As intended,Γ(L, q) captures the|=L relation.

Theorem 4. For each pair (K, ρ)∈L×Rq, K |=L ρ iff
(K, ρ)∈Γ(L, q).

Proof. (Sketch) Due to Proposition 3 and the definition of
the |=L relation, it suffices to show that for eachd ∈ ω,
K |=d

L ρ iff (K, ρ) ∈ Γ(L, q)
d. The latter is proved by

induction ond ∈ ω. As easily verified, the claim holds in
cased = 0. Suppose the claim holds for an arbitraryd ∈ ω.

For the soundness, assume a pair(K, ρ) ∈ Γ(L, q)
d+1.

Due to the definition of the⊢L,q relation, it can be shown
that for an arbitraryI ∈T (L, K), there exists a variable
x∈ ρ for which a rooted match can be composed from a
K-mappingm with x ∈ roots(m) and rooted matches for
the variables in the hitting sets of a complyingK-hit; such
matches exist due to the induction hypothesis.



For the completeness, assume a pair(K, ρ) such that
K |=d+1

L ρ. To show that(K, ρ) ∈ Γ(L, q)
d+1, take an

arbitraryK-hit (sc, hs) of Γ(L, q)
d. For eachs ∈ succ(K),

build a treeIs starting atsc(s) which has rooted matches
only for the variables inhs(s). Take a treeI starting atK
such that each sub-tree rooted at each leafs of K coincides
with the constructed treeIs (up to the renaming of terms).
SinceK |=d+1

L ρ, there exists a (bounded) rooted match
π for some variable inρ. Due to the construction ofI, π
has to map some variables intoK, while the rest of vari-
ables that it maps are captured by minimal hitting sets. This
rooted match witnesses the existence of aK-mapping that
complies with the arbitrarily assumedK-hit (sc, hs).

Query Answering over the Full Knowledge Base
Now that we have the machinery to decide subquery entail-
ment, we move to query answering overK. In what follows,
we assume the queryq has answer variables~x, while~c is a
tuple of individuals with the same arity as~x.

To answerq, we use the min-graphs ofK and the knot set
KK. By Theorems 1 and 3, the models constructed from
the min-graphs ofK and the knots inKK suffice to pro-
vide query answers. The previously introduced machinery
deals with the parts of query matches that occur inside the
trees generated fromKK. Next, we extend this machinery to
deal with the graph part of the forest-shaped minimal models
of K.
Definition 17. An extended min-graphH of K is a ⊆-
minimal set of atoms containing a min-graph ofK and s.t.
for each individuala, H ∩Ba is an instance of a knot inKK.
Consider a min-graphG. Intuitively, each extended min-
graph containingG can be viewed as a “super” knot whose
root is G, while its leaves are the leaves of the knots that
extendG. Given this similarity, the full queryq can be an-
swered by adjusting the notions ofK-hits andK-mappings
to deal with extended min-graphs.
Definition 18. Let H be an extended min-graph. Asucces-
sor choicefor H is a function that maps each termf(c)∈̂H
to someK ∈ L such thatHf(c) ≈ Kx. Then anH-hit is a
pair (sc, hs), wheresc is a successor choice forH , andhs is
a function that maps eachf(c)∈̂H to a minimal hitting set
of Γ(KK, q) w.r.t. the knotsc(f(c)).
Example 10. The following are some minimal hitting sets
of Γ(KK1

, q): {z} w.r.t. K0, {x, x′} w.r.t. K2, {x, x′} w.r.t.
K4, and{x, y} w.r.t.K5.

The setsG′
1 andG′

2 given below are extended min-graphs
for K1, while G′

1 is also an extended min-graph forK2.

G′
1={D(a), B(a), P (a, f1(a)), P (a, f2(a)),A(f1(a)), C(f2(a))}

G′
2={A(a),D(a), Q(a, f3(a)),E(f3(a))}

(sc01, hs01) and(sc11, hs11) areG′
1-hits and(sc2, hs2) is aG′

2-
hit, where: sc01(f1(a))=K5, hs01(f1(a))={y},

sc01(f2(a))=K3, hs01(f2(a))=∅,
sc11(f1(a))=K5, hs11(f1(a))={y},
sc11(f2(a))=K4, hs11(f2(a))={x, x′}, and

for every otherf , sc01(f(a))= sc11(f(a))= sc2(f(a))= K0

andhs01(f(a))= hs11(f(a))= sc2(f(a))= {z}.

Next, we provide a way to decide the existence of matches
for the query in all models starting with all possible extended
graphsH . In a similar way as for knots, we consider all pos-
sibleH-hits and check whether they comply with the differ-
ent partial mappings inside the extended graphH .

Definition 19. Let q↓V be the restriction of the queryq to the
atoms containing variables inV . We say anH-hit (sc, hs)
complies with a constant tuple~c if there exists a setV ⊆
V(q) and a homomorphismπ from q↓V to H such that:

- if π(x) = f(a), thenx ∈ hs(f(a));
- if y ∈V(q)\V , then for somef(a) ∈̂H and some

x∈hs(f(a)), we havey ∈Vx;
- for each answer variablexi, π(xi) = ci.

Definition 20. Let CK be the set of all tuples(H, sc, hs)
such thatH is an extended min-graph ofK and(sc, hs) is an
H-hit. Then, for each such tupleλ = (H, sc, hs) in CK, we
defineans(q, λ) to be the set of all tuples~c that comply with
theH-hit (sc, hs).

The next theorem, which characterizes CQ entailment over
ALCH KBs, is proven in a similar way as Theorem 4.

Theorem 5. For any CQq over anALCH KB K, we have

ans(K, q) =
⋂

λ∈CK

ans(q, λ).

Example 11. ConsiderV = {x, x′, y} and the homomor-
phismh(x)= h(x′)= a, h(y)= f1(a) fromq↓V toG′

1; (sc01,
hs01) and(sc11, hs11) comply with〈a, a〉. Moreover,{y} is the
only minimal hitting set ofΓ(KL1

1
, q) w.r.t. K5, so every

G′
1-hit must mapf1(a) to {y}. As G′

1 is the only extended
min-graph ofK2, we have〈a, a〉 ∈ ans(q1,K2). Note that
no~c complies with(sc2, hs2), thusans(q1,K1)= ∅.

We remark here that for a givenλ = (H, sc, hs) in CK, the
set ans(q, λ) can be computed by posing a union of con-
junctive queries over a set of atomsHλ that is obtained by
augmentingH with additional atoms to capture theH-hit
(sc, hs). Furthermore, the setsHλ for differentλ ∈ CK can
be generated in models of a datalog program (with unstrat-
ified negation); hence,ans(K, q) is reducible to computing
cautious consequence in datalog (with negation).

Computational Complexity
We now state the main complexity result of this paper.

Theorem 6. Given anALCH KB K, a conjunctive query
q, and tuple of individuals~c, deciding~c ∈ ans(K, q) is in
EXPTIME w.r.t. the combined size ofK andq.

Proof. (Sketch) Letcs:=|K| + |q|. The result is derived
based on the following observations:

• The number of distinct abstract knots over the signature of
K is (single) exponential incs, andKK can be constructed
in exponential time by the procedure sketched in this paper.
• For a givenS ⊆ KK×Rq and (K, ρ) ∈ KK ×Rq, we
can verify S ⊢KK,q (K, ρ) in time exponential incs. As
|KK×Rq| is exponential incs, we can computeΓ(L, q) in
time exponential incs; note that⊢KK,q is monotonic.



• For a given tupleλ = (H, sc, hs) in CK, the setans(q, λ)
can be computed in time exponential incs. Indeed, for
any tuple~c of constants, the compliance of~c with the H-
hit (sc, hs) can be decided in exponential time incs, and
there are only exponentially many tuples of constants from
K matching the arity of the answer variables ofq.

• Finally, since|CK| is exponential incs, verifying ~c ∈
ans(K, q) is feasible in time exponential incs.

EXPTIME-completeness of the problem follows from the
well-known hardness result in (Schild 1991). We note that
the above also implies that the set of all answers forq overK
can be computed in time that is exponential in the input size.

Data Complexity. For a givenK=〈T ,A〉 and a CQq, the
algorithm can be easily adjusted to run inCONP in the size
of A, i.e., in data complexity.

To this end, we add for each concept nameA in K the
axioms⊤⊑A⊔ Ā andA⊓ Ā⊑⊥ to T , whereĀ is a fresh
concept name. This transformation clearly preserves the an-
swers toq, is independent ofA and ensures that each model
of Kg is also a min-graph ofK. We also assume thatKK and
Γ(KK, q) are precomputed since they do not depend onA.

To check~c 6∈ ans(K, q), a tuple (H, sc, hs)∈CK s.t. ~c
does not comply with theH-hit (sc, hs) must be found. This
can be done in non-deterministic polynomial time in|A|:
(1) guess a tuple(H, sc, hs), whereH is set of atoms (i.e., a
candidate extended min-graph) andsc andhs are two func-
tions that map each termf(c)∈̂H to an abstract knot (over
the signature ofK) and to a set of variables inq respectively;
(2) verify in polynomial time whether(sc, hs) is anH-hit
and whether it complies with~c. Indeed, given thatKK is pre-
computed, checking whetherH is an extended min-graph is
feasible in polynomial time. We then useΓ(KK, q) to verify
if conditions in Def. 18 are satisfied. As the query is fixed,
only polynomially many potential homomorphisms must be
traversed for deciding the compliance of~c with (H, sc, hs).

It follows that ~c ∈ ans(K, q) can be decided inCONP
in data complexity by the procedure presented. This is also
worst-case optimal (Schaerf 1993).

Conclusion
In this paper, we have introducedknotsas a novel technique
for reasoning in expressive DLs, and developed a conjunc-
tive query answering algorithm forALCH that runs in single
exponential time and is thus worst-case optimal.

Our algorithm is based on knots, which are novel in the
context of DLs, and is different from previous query an-
swering techniques. Perhaps most closely related is the
resolution-based method by Hustadt et al. (2005). Similar as
in our approach, it first “compiles” the knowledge base and
the query into a special form, and then exploits the possibil-
ity to determine the query answer by means of a disjunctive
datalog program. On the other hand, this is done on differ-
ent grounds: the knot technique is model-theoretic in nature,
while Hustadt et al.’s approach is proof-theoretic and relies
on sophisticated resolution and superposition machinery.

The method that we presented forALCH can be extended
to richer DLs, and can be useful for query answering and

other tasks in this context. In particular, transitive roles can
be incorporated with some adjustment on the query answer-
ing part, while number restrictions can also be accommo-
dated by suitably adapting the knot representation of KBs.
This and other possible extensions, like more expressive
queries, will be explored elsewhere.
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Šimkus, M. and Eiter, T. 2007.FDNC: Decidable non
monotonic disjunctive logic programs with function sym-
bols. InProc. LPAR’07, LNCS 4790, 514–530.
Tessaris, S. 2001.Questions and Answers: Reasoning and
Querying in Description Logic. Ph.D. Dissertation, Univ.
Manchester, CS Dept.


