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Abstract Various methods have been used in this context, ranging

Answering conjunctive queries (CQs) has been recognized as from adapted tableaux procedures (Levy & Rousset 1998;

o . . Ortiz et al. 2008) over query incorporation into the knowl-
a key task for the usage of Description Logics (DLs) in a ’ - e
number of applications, and has thus been studied by many edge base (Calvaneseal. 1998; Tessaris 2001; Glimet

authors. In this paper, we present an algorithm for this prob al. 2007a,2007b) and resolution techniques (Huseadl.

lem in the DL ALCH which works in exponential time. 2005) to automata-based algorithms (Calvaretse. 2007).

It improves over previous algorithms which require double However, up to now, the complexity of answering CQs in
exponential time and is worst-case optimal, as already sat- . ALC was not precisely known, and it was in particular not
isfiability testing in ALC is EXPTIME-complete. Further- clear how much the complexity increases compared to sat-
more, it shows that inverse roles cause an exponential jump jsfiability testing. We answer this question here. Our main
in complexity; as recently shown, the problem iS@H IME- contribution is an algorithm for answering CQs ove£CH

complete forALCZ. The algorithm is based on a technique

that compiles knowledge bases into sets of trees of depth 1. | knowledge bases in exponential time, which shows that the

is in coNP under data complexity (i.e., if the taxonomy part problem i_s not more EXpenSiVe than SatiSﬁabi“ty testing.
and the query are fixed), thus worst-case optimal. An exten- The algorithm is worst case optimal and improves over pre-

sion from. ALCH to DLs with further constructs is possible. vious ones that require double exponential time, confirming
Lutz’s finding (2007; 2008) that CQ answering #LC is

. feasible in exponential time.
Introduction Our algorithm is based oknots borrowed from (Simkus
In recent years, Description Logics (DLs) have received in- et al.2007), which are schematic trees of degth that oc-
creasing importance as formalisms to represent richer do- cur in the forest-shaped models of a knowledge base, and
main models in various contexts, including the Semantic has the following features:
Web, data and information integration, peer-to-peer data

q I based d F e It is CONP under data complexity, i.e., for a fixed TBox
management, and ontology-based data access. Forexample,,y qery, it can be nondeterministically run in polynomial

some of the standard Web ontologies from the OWL family time. This is also worst-case opti :
X . - ptimal, as the data complexit
are based on DLs (Heflin & Hendler 2001). of CQ answering is known to beoNP-complete for a wide

The wider use of DLs also requires to provide more rea- range of DLs includingd£C; see e.g. (Ortizt al. 2008)
soning services beyond traditional satisfiability, subgum ' e ) i

tion and instance checking. In particular, answering con- ® ltprovides a modulsknowledge compilatioof the TBox
junctive queries (CQs) over knowledge bases has been and the query, such_that further_querles can reuse the TBox
recognized as a key task in this respect and studied in compilation. In particular, queries of bounded size can be

many papers, including (Hustaelt al. 2005; Glimmet al. incorporated into the compilation in polynomial time (tv.r.
2007a,2007b; Lutz 2007; Calvanesel.1998: 2006: 2007; the size of the latter), which is specially useful when many
Krotzschet al. 2007; Ortizet al. 2008; Rosati 2007). queries have to be answered over the same knowledge base.

As the problem subsumes testing satisfiability of a knowl- e It works for non-ground query answering. After the com-
edge base, well-known results on the complexity of the lat- pilation, query answering can be reduced to evaluating-a dat
ter imply that it is at least EPTIME-hard for any DL in- alog program over a set of facts. This may make the algo-
cluding ALC, which is the very core of many DLs like  rithm more amenable for efficient implementation in prac-
SHIQ, SRIQ andDLR. As recently shown in (Lutz tice than automata- or tableaux-based algorithms.

e s s, Viewe focus hre onCC?t, the method s oxtendibe

S onégin U 'er bomjnds from (Calvanetel. 1998: ’2007_ to richer DLs includingSH, and shows that answering large
Hp tdt(gt ?2005_ Gli tal. 2007 t ht ' ' classes of CQs in such logics is not more expensive than sat-
ustadtet al. » Slimmet al. a) are tight. isfiability testing. The knot technique opens an interggtin

Copyright(© 2008, Association for the Advancement of Artificial ~ perspective that might be fruitfully exploited for otherrpu
Intelligence (www.aaai.org). All rights reserved. poses as well.



Preliminaries

In this section, we introducglLCH knowledge bases and
define their conjunctive query answering problem.
Syntax. We assume countably infinite sef§ R andI of
concept namesoles names, andndividuals respectively.
C containsT and L. ALCH concepts(or concept} are
inductively defined as follows: (a) every concept name
Cis a concept, and (b) if’, D are concepts an®® € R is a
role, thenC' 1 D, C U D, —=C,VR.C,3R.C are concepts.
Let C, D be conceptsR, S be roles,a,b be individu-
als, andA be a concept name. An expressiOfitD is a
general concept inclusion axiom (GC8n expressioRC.S
is a role inclusion axiom (RI)and expressiona:A and
(a,b):R areassertions An ALCH knowledge baséKB)
is a tupleKX=(7, A), where theTBox 7 is a finite set of
GClIs and RIs; and thé&Box A is a finite nonempty set
of assertions. W.l.o.g.we assume that all concept and role
names occurring itd, as well asT and_L, occurin7. Let
C(K), R(K) andI(K) respectively denote the sets of con-
cept names, roles, and individuals occurringdin

Semantics. An interpretationZ = (AZ,.7) for a KB K
consists of adomainAZ and avaluation function- that
maps each individuale I(K) to an element” € AZ, every
concept nam&' € C(K) to a subsetC? of AZ, and every
role R € R(K) to a subseRz” of AZxAZ. The function?®
is extended to all concepts in such a way that it satisfies:

TE=AT, 1P =0, (-0) = AN\CT,
(cn D)t =c*nD?, (cuD)r =c*uD?,
(3R.C)F ={z | Jy.(z,y) € RT Ay € CT},
(VR.C)F ={z | Vy.(z,y) € RT —y e CT}.

An interpretatior? is amodelof K = (T, A), if (i) for each
GClCC DinT,CT C D?; (ii)yforeachRIRC S in 7T,
RT C S7; (iii) for each assertiom:A in A, a € A%; and
(iv) for each assertiotu, b):R in A, (a,b?) € RZ.
Conjunctive Query Answering. Let V be a countably in-
finite set of variables. Aconjunctive querfCQ, orquery)
over a KBK is a finite set of atoms of the form(z) or
R(z,y), whereAe C(K), ReR(K) andz,ye V.l By
V(gq) we denote the variables occurring in the atomg.of
A querygq is associated with a unique (possibly empty) tuple
Z=(x1, ..., x,) of answervariables fromV (q)

A match forg in an interpretatioriZ for X is a mappindg
fromV(q) to AZ such that (ip(x) € AZ foreachA(z) € q,
and (ii) (6(x),0(y)) € R? for eachR(z,y) € q. Atuple
(e1,...,cn) ofindividuals fromI(K) is an answer of over
T, if (e1F,. .., cn%) = (0(z1),...,0(x,)) for some match
6 for ¢ in Z; ans(q,Z) denotes all answers gfoverZ. The
answerof g overkC, denotedins(q, K), is the set of all tuples
¢such that € ans(q,Z) for every model of K.

Normal Knowledge Bases

We focus in this paper on normalized KBs and a restricted
class of their models, which correspond to the minimal Her-

INote that no individuals occur ig. This is no limitation, as
for any constant. we can use a new concept nafig, replacea
in ¢ by a new variable;, and add”, (y) to g anda : C,, to A.

brand models of the theory obtained by the usual translation
of ALCH into first-order logic and skolemization.

Definition 1. A KB K is normal if all its GCls are of the
form (D) ApMn...NA,EByL...UB,,, (E) Ap C 3R.By, or
(U) AoCVR.By, where each;, B; € C, andn, m > 0.

For a normal KBK, its Herbrand universé{ is the set
of all termsinductively defined as follows: (i) eache I(K)
is a term, and (i) ift is a term andy is a GCI of type (E)
occurring infC, then f,,(t) is a term. LetBx be the set of
all expression€’(s) andR(s, t) with C € C(K), R e R(K),
ands, t € Ui, which we callatoms

An Herbrand interpretationof K is any set/ C By; it
represents the interpretatidhwith AZ = Uy, C* ={d |
C(d)el}, RT={(c,d) | R(c,d)el} andc? =c for each
c€I(K). Such anl is anS-Herbrand modedf I, if it is a
model of €, and for eaclh=A C 3R.Bin K, A(t)el im-
pliesR(t, fo(t))el andB(f,(t))eI. Moreover,[ is amin-
imal S-Herbrandmodel ofC, if no JCI is an S-Herbrand
model of . We denote byM (K) the set of all minimal
S-Herbrand models df.

Using well-known structural transformations, every KB

can be transformed in linear time into a normal KBin a

way that preserves query answers. Moreover, one can show
via standard first-order logic that, to answer a query @ver

it is sufficient to consider its minimal S-Herbrand models.

Theorem 1. For any ALCH KB K and a CQgq, we can ob-
tain in linear time a normaldLCH KB K’ s.t.ans(¢, K) =
ans(g, K'). Moreoverans(q, K') = (e i) ans(a, ).

In the following, unless stated otherwise, by ‘interprietat
we mean Herbrand interpretation, and by ‘(minimal) model’
we mean (minimal) S-Herbrand model.

Example 1. As running example, we consider the nor-
mal KBs K1=(A,T;) and K2=(A, 73), where A={a:D},
Ti={ag, a1, a2, a3, a4}, Ta={af, a1, a2, as, o} and:
OZOZDEAUB OélzBEE'PA OégZAEEQT
a,=DCB ar =BC3IP.C a4=CLC3IPD
We also consider the following CQ:

01 (z, 2" )={B(x), P(x,y), A(y), P(z', y), Q(y, 2)}.
Note thatans(g1, K1) = 0 andans(q1, K2) = {{a,a)}.

Knots

In this section, we exploit the model-theoretic propertiés
normal KBs to provide a method for finitely representing
their possibly infinite minimal models. Of particular impor
tance is theforest-shaped model propertgn the basis of
which, each minimal model of a normal KB can be viewed
as a graph and a set of trees rooted at nodes of the graph. In
what follows, letlC = (7", A) be an arbitrary normal KB.

Proposition 1. An interpretation ofC is forest-shapedf its
binary atoms are of the formR(a, b) or R(t, f(t)) for aterm
t and individualsz, b. EachIe M (K) is forest-shaped.

The key intuition underlying the finite representation iatth
minimal models ofC can be composed out of trees of depth
< 1 that we calknots For convenience of presentation, we
write t€1 if a set of atomd contains an atom with the term
t as argument, and denote kyT) the set of all terms& 1.



Definition 2. (Knots) A knot with root (term) is a set of
atoms K such that each atom iK is of the form A(¢),
R(t, f(t)), or A(f(t)) whereA, R, andf are arbitrary. Let
succ(K) denote the set of terms of the forfiit) K.

A knot with root term¢ can be viewed as a labeled tree of

depth at most 1, where the nodes and edges are labeled with .

concept names and roles respectively. In the following we
only consider the knot# where each concept name and
role occurring inK also occurs inC (¢t need not be from
Ux). For a termy, let B; denote the set of all atoms that can
be built from concept names and roleg®iisingt and terms
of the form f(¢) as arguments. Note that for a forest-shaped
interpretationy for K andt&1, the setl N B; is a knot.

We introduce min-consistentknots, which are self-
contained model building blocks for minimal modelstof

Definition 3. Given a knotK with roott¢, we sayK is con-
sistent(w.r.t. ), if the following are satisfied:

(@) T(u)eK and L(u)¢K for all ue{t}U{f ()| f(t)eUx };
(b)if ACVR.BeT, A(t) € K andR(t, f(t)) € K, then
B(f(1)) € K;

(¢) if « A C 3R.B, acT and A(t) € K, then
R(t, fa(t)) € K andB(fq(t)) € K;

(dyif Apn...MA, CByU...UB,, €7T,s € succ(K)
and{A4y(s),...,A,(s)} C K, thenB,(s)eK for someB;;
(e)if RES €T andR(t, f(t))e K, thenS(¢, f(t))eK

K is min-consistenif each K’ C K obtained fromK by re-
moving atoms where anc succ(K') occurs is inconsistent.

Intuitively, given a termt and a set of concepts it satisfies, a
min-consistent knot with roatencodes a possible combina-
tion of immediate successors foin a model ofkC.

Example 2. To simplify the notation, foll <i<4, we write
fi instead off,,, and we omit the atomr (u) for each
u. The knotsK,={C(t), P(t, f4(t)), A(f4(t)), D(fa(2))},
Kpy={C(t), P(t, f4(t)), B(f4(t)), D(f4(t))} are both min-
consistent w.r.tC; ; and only K, is min-consistent w.r.#Cs.

After the necessary notions for dealing with the tree-part o
forest-shaped interpretations, we deal with the graph part

Definition 4. The KB K9 is obtained fromiC by deleting all
axioms of type (E). Eactre M (K9) is amin-graphof iC.

Example 3. G1={D(a), B(a)} andG2={D(a), A(a)} are
the min-graphs ok, , while G, is the only min-graph ofs.

The next theorem characterizes the minimal models.of

Theorem 2. Let I be an interpretation fofC, and let/9 be
the set of all atoms id of the formA(a), R(a,b) for any
individualsa, b. ThenTe M(K) iff I is forest-shaped]? is
a min-graph ofkC, and for each term& 1, the knotl N B, is
min-consistent w.r.#C.

The characterization above allows to view minimal mod-
els as being constructed of knots, each of which is min-
consistent, and to provide a finite representation of these

models. Roughly, the representation relies on the observa-

tion that although infinitely many knots might occur in some
minimal model of a KB, only finitely many of them are non-
isomorphic modulo the root term.

Ko =1{}

K1 = {A(x), D(x), Q(x, f3(x)) }

Ko = {B(x), D(x), P(x, f1(x)), P(x, f2(x)), A(f1(x)), C(f2(x)) }
K3 = {C(x), P(x, fa(x)), A(fa(x)), D(fa(x)) }

K4 ={C(x), P(x, fa(x)), B(fa(x)), D(fa(x)) }

K5 = {A(x) Q(x, f%(x))}

D,B D, A
A Q

o P 2 fa(a @ 3@
f*"‘) fz( 100 Q
DKy e () » Bofalfi(e)
\ X \ x x P,
P \\ P Q 64
DA D,\B\ f2(f4(f2(“)1; f1(fa(f2(a)))

fa(x) fa(x) 3(x)

D, Qf4(f2(f4(f2(a))))

Figure 1: Example set of knots and interpretations.

Definition 5. Let x be an individual not occurring in any
ALCH KB. A knot K with root ¢ is abstract if ¢ =

A knot K’ with root « is aninstanceof K, if K’ can be
obtained fromK by replacing each occurrencexofvith w.

Note that min-consistency is invariant under such substi-
tutions, i.e., if K’ is an instance of<, then K’ is min-
consistent iffK is min-consistent. We show next that a set
of abstract knots can be used to represent all the minimal
models. Given two sets of atonisand.J, we writel; ~ J,,

if {A]A@t) eI} ={A]|A(u)eJ}.

Definition 6. Let L be a set of abstract knots. GivéfeL
ands € succ(K), we sayK’eL is an s-successor of¢, if
Ks~KJ. Let L[K,s] be the set ofs-successors of in
L. ThenL is K-founded if for eachKeL, K is minimal-
consistent w.r.t’C, and L[ K, s]#(0 for eachs € succ(K).

Example 4. Figure 1 shows the abstractknéfs, ... , Ks.
Note thatK, and K, are instances of{3 and K, respec-
tively. The setL,={Ky, ..., K5} is K;-founded, while
Lo={Ky, K2, K4, K5} is Ko-founded. In the graphic, the
dotted arcs connect a nodein K to x in K’ whenever
K, ~ K; the links tox in K, are omitted.

In what follows, we provide a construction of minimal mod-
els out of knots in a founded set. Moreover, we show that for
a given KB there exists a founded set of knots that captures
all the minimal models.

Definition 7. We sayan interpretation/ is generatedby
a K-founded knot sef if I is a C-minimal interpretation
containing some min-grapf of X and for each termé/,
I N B, is aninstance of somE € L. By Fx (L) we denote
the set of interpretations generatedihy

Intuitively, Fx (L) represents all the forest-shaped interpre-
tations that can be built from from some min-graph by in-
stantiating the knots if.. Importantly, such interpretations
are actually minimal models. Indeed, due to Theorem 2, if
L is K-founded and € F.(L), thenle M(K).

Definition 8. Let Kx denote the smallest set of abstract
knots which contains eadti-founded set of knots.

The crucial property ofKx is that it captures the tree-
structures of the minimal models &, and together with
the min-graphs, it captures all the minimal model&of



Theorem 3. K is K-founded, andF (Kx) = M(K).

Example 5. Clearly L1 CKx, and LoCKg,. For I, 1,
as given in the figure]y, I,eFi, (Kk,) =M(K;1). Also
L eFi,Kgk,) =M(K2), which is not the case fof,. In
fact, eachl € Fi,(Kk,) starts with an instance df, and
contains infinitely many instances of each knoLin

We can deriveK in two steps. First, the sed of all
knots that are min-consistent w.Iif. is constructed. This
can be done, for instance, by exhaustively traversing each
atom setH={A;(x), ..., A,(x)}, where each; is a con-
cept name froniC, and extending? to become consistent
w.r.t. K by adding necessary atoms to satisfy the conditions
in Def. 3. Min-consistency of the resulting knot can be ver-
ified by considering its proper subsets. In the second step,
Ax is cleaned to ensure foundedness according Def. 6, by
exhaustively rewriting the sdt := Ay with the following
rule: if L[K, s] = 0 for someK € L ands € succ(K), then
removeK from L. The resulting seL is K.

Query Answering with Knots

In what follows, we assume a fixéd-founded set of knots
L and a fixed CQy, and describe a method for computing
the answers of in all the interpretations itFic(L). Using
the results in the preceding section and setfing Ky, this
allows us to computens(g, K).

The idea is to decompose the problem. We first define
the entailment ofubqueries at a knak’, which informally
means that there is a match for some parts of the query in
eachtree that is generated fronk and starts with/, and

tree. Whenever a query match maps a variable a node

in a tree,z induces a set of variablas, which have to be
mapped inside the tree defined by the image of the query
graph under the match. This set containghe successors

of z, and all variables that must be mapped to the same node
as one of them because they have a common successor.

Definition 9. Assume a variable € V(q) and a variable
setX CV(q). LetRy(x)={z} and

Rori(z) = {y € V(g) | R(z',y) € gandz’ € R, (x)},

for everyn > 0. Then byV, we denote the set of all

V(q) such thaR,,(xz) N R,,(y) # 0 for somem < n.
We also denot®; (x) by nex{x), and defingorev(z)

{yeV(q)|xenex(y)}. Moreover, we defin@ex{X)

U, c x Nextn) andpreX) = {J, ¢ y prev(n).
We are ready to formally define the subqueries and their en-
tailment in trees.

Definition 10. For a knotK € L, I is a tree generated h¥
(starting with K), if 7 is aC-minimal set of atoms such that
KCI and, for each terméI, INB; is an instance of some
K'eL. We denote by (L, K) the set of all such trees.

Definition 11. A root set ofg is any sefp, C V(g). By R,
we denote the set of all root setsqf

For a treel generated by., arooted match for: € p, in
I'is a functionr fromV, toU/(I) s.t. for eachy, z € V,.:

(RM1) if A(y) € g thenA(w(y)) €I,
(RM2) if R(y, z) € gthenR(n(y),n(z)) € I, and

provide a decision procedure forit. The method is based ona i _
fixpoint computation that derives in each iteration newpair (RMS3) if y €V andprev(y) £ Vo, thenm(y)=x.

of knots and subqueries for which the entailment relation We write I = p, if for some z € p, there exists a rooted
holds, based on previously computed pairs. For a given knot match inI. Further,I =4 p, holds if for somer € p, there
K, the decision on whether it entails a subquery is made by exists a rooted match inI s.t. for eachy € V., the depth of
looking at the subqueries that the possible successors knot the termr(y) is less or equal td. We write K =1, p, (resp.,
of K entail. Hence, the algorithm “back-propagates” the g IZ% pg) if for eachI € T(L, K) we havel |= p, (resp.,

information via the possible successor relation. The entai  1_d , ) We omit the subscripts if clear from the context.
ment of subqueries at the knotsinis the key to answering a

the whole query; over .

In a second stage, we consider the min-graph§ aind
verify whether for each min-graptv, the query can be
mapped in each forest-shaped minimal modekKothat is
built from G and the knots irfKx. To this end, we verify
whether, for any possible way of constructing a model out
of G, a mapping for the full query can be composed from
some partial mapping af into G and some mappings that
exist in the trees rooted at the individuals. The existerice o
the latter mappings will be witnessed by the precomputed set
of all pairs of knots and subqueries for which the entailment
relation holds.

Intuitively, a rooted match fox in a treel is a homomor-
phic embedding into the trefeof the subquery of obtained
by restricting it to atoms whose variables arevip. Addi-
tionally, every variabley in V, that has some predecessor
variable not inV,, must be mapped to the root 6f(RM3).

A rooted match for: may be part of a full query mapping in
some model containinfy, provided that the predecessors of
y have a match above the root bf

Example 6. V, ={z}, andn(z) =x is a rooted match for
zineveryl € T(L,K) for everyK € Li. HenceK [ p for
eachp with z € p. SinceV, =V, ={x,2',y,z}, I ={z}
iff 7= {z'} for any treel.

In the following, we construct a sdt(L,q) of all pairs

(K, p) such thatK =y, p. We first compute the pairds’, p)
with K =9 p, and then continue via fixpoint iteration to ob-

tain the pairs(K, p) with K =4 p for an arbitraryd € w.

Rooted Subqguery Entailment

Observe that, since the minimal models /6fare forest-
shaped, for any query matehand any tree-shaped pdrt
of a model, the the image underof the subquery of that : . X
is mapped insidd is a subtree of. This implies, for ex- Such pairs capture tfe , relation due to the following.
ample, that if there are atoms of the foRfz, y), R’ (', y) Proposition 2. If K =1, p, then there existd € w such that
in ¢, thenz andz’ must be mapped to the same node inthe K =4 p.



A key part of the algorithm is to establish, using the pairs
(K, p) with K =4 p, the sets of variables that have a match
within depthd in the different trees starting & . This will

be crucial for obtaining the paig’, p’) with K’ =3t .

Specifically, for eachli{, we characterize the minimal sets

of variabled such that each tree starting/dtmodels neces-
sarily the variables ih. To this aim, we useninimal hitting
sets Informally, we can see each seas a most general
way of ‘grouping’ the trees starting & by the exact set of
variables for which they provide a match of bounded depth.

Definition 12. Assume aknok’ € L andasef C L xR,.
A set of variableg C V (g) is aminimal hitting set of5 w.r.t.
K ifitis a C-minimal sets.tiNp # (0 for every(K, p) € S.

Proposition 3. Assumél € L, d € w and letS be the set of
alltuples(K, p) such that’ =¢ p for somep. If I is a mini-
mal hitting set ofS w.r.t. i, then there is somee 7 (L, K)
such that, for every € V(q), I =4 {x} iff x €.

We now sketch the procedure for computiag,. For each
d € w, let S¢ denote the set of all pairgs, p) such that
K =4 p. As easily seen, in casé = 0, the setS° can be
computed by checking which root sets can be satisfied by
direct mappings into the roots of the knots/in

For the inductive case, suppose for sadne w we have
computed the sef¢. Assume some and an arbitrary knot
K € L. To verify whetherK |:‘£+1 p, We consideri -hits
which capture the possible ways of choosing for each
succ(K) aknotK'’ € LK, s] and a minimal hitting set of
S4w.r.t. K. Intuitively, we concludek” =411 p if for each
K-hit there is a variable € p such that part o¥/, can be
mapped intds, while the rest of the variables are contained
in the chosen minimal hitting sets; this partitioning \6f
will be captured by the notion ok -mapping

Definition 13. A successor choictr K € L is a function
that maps each € succ(K) to someK’ € LK, s]. A K-
hit of S C L x R, is a pair(sc hs), wherescis a successor
choice forK, andhsis function that maps eache succ(K)
to a minimal hitting set of w.r.t. the knotsd(s).

Example 7. If S={(Ko, {z})}, then{z} is the only mini-
mal hitting set ofS w.r.t. K. Also, (sc hs) is aK;-hit of S,
wheresd f(x)) = Ko andhs(f(x)) = {z} for everyf.

Now we introduceK -mappings which are composed of a
setr of variables and a functiob(-) that maps variables to
leaves ofK’; the variables in- have a match at theot of
K, while the variables captured byhave a matchelowthe
root of K. Intuitively, in order for ak-mapping to represent
a rooted match in a tree starting witti, eachz in the do-
main of b must have a match in the subtree with régt).
In particular, the latter holds whenever each sué$iin the
hitting sethg(b(z)) of someK-hit; if this is the case, we say
that theK -hit complieswith the K-mapping.

For a (partial) functiory from A to B, its domain is de-
noteddom(g). As usualg=1(b) ={a € A | g(a) = b}.

Definition 14. For a knotK € L, a K-mapping forg is a
tuplem = (r, b), wherer C V(q), bis a partial function from
V(gq) tosucc(K), r N dom(b) = 0, and the following hold:

- zerandA(z) € gimply A(x) € K;

- x erandR(z,y)eqimply y€ dom(b) andR(x, b(y))€K;
- for eachs € succ(K), preMb~1(s)) C r U b~ !(s); and

- for eachs € succ(K), nextb=1(s)) C b=1(s).

We defingoots(m) as the setof alt € r Udom(b) s.t.xer
orprevz) = (). A K-hit (sc hs) complies withn, if for each
s €succ(K), b~ (s) C Vo, whereV, = |, chys) Va-

Example 8. mo = ({2}, 0) is aK-mapping for anyk € L1,
and it complies with anyK-hit; m; = ({y}, {z— f3(x)})
is a Kj;-mapping and a Ks-mapping, it complies
with {z}; me={{z,2'},{y— fi(x),2— f1(x)}) and
mz=({z,2'}, {y— fa(x), 2~ fa(x)}) areK>-mappings.
We are ready to define a relatidht-1, , (K, p) for obtaining
new pairs(K, p) such thatK' | p, which follow from a
given setS of pairs(K’, p') such thatk’ = p'.

Definition 15. AssumeK € L, pe R, and a se C LxR,.
The pair (X, p) follows fromS, in symbolsS -, , (K, p),
if for every K -hit k of S there is al-mappingm such that
p Nrootgm) # () andk complies withm.

Next, using the consequence relation above we construct a
setl'(L, q) to capture all pair§ K, p) such thatk' =, p.

Definition 16. We define the following sets:
T(L,q)° ={(K,p) € Lx Ry |01y (K, p)} and

T(L,q)"" = {(K.p) € Lx Ry |T(L.0)" Fry (K,p)},
foreachd > 0. ThenI'(L, q) = e, (L, q)".

Note thatT'(L,q)° CT'(L,q)' C --- CT(L,q)" for each
d € w. SinceL x Ry is finite,I'(L, g) is finite and unique.

Example 9. For simplicity, we usé-; instead 0f"L§,q1 and
o instead ofl—L%ql . The following hold:

Pk (Ko, {z}) Pk2 (Ko, {z})
{(K07{Z})}F1 (Klv{y}) {(K07{Z})}F2 (K57{y})
{(Ko, {z})} 1 (K5, {y}) {(Ks, {y})}F2 (K2, {z})
{(K5,{yD 1 (K2, {z})  {(K2,{z})} 2 (K4, {z})
{(K2, {z})} F1 (K4, {z})

Thus we haVQ(Ko» {Z}), (Kla {y}), (K57 {y})v (K27 {.’L‘}),
(K47 {.’L‘})} - F(Liv QI); {(K07 {Z})v (K57 {y})7 (K% {ZE}),
(Ka{z})} ST(LY, 1)

As intendedI'(L, ¢) captures thé=y, relation.

Theorem 4. For each pair (K,p)e LxR,, Ky p iff
(K, p) (L, q).

Proof. (Sketch) Due to Proposition 3 and the definition of
the =/, relation, it suffices to show that for eache w,

K 4 piff (K,p) € T'(L,q)". The latter is proved by
induction ond € w. As easily verified, the claim holds in
cased = 0. Suppose the claim holds for an arbitrahg w.

For the soundness, assume a (&t p) € I'(L,q)" ™.
Due to the definition of thei-;, , relation, it can be shown
that for an arbitraryl € 7(L, K), there exists a variable
x € p for which a rooted match can be composed from a
K-mappingm with z € rootgm) and rooted matches for
the variables in the hitting sets of a complyiAghit; such
matches exist due to the induction hypothesis.



For the completeness, assume a [di, p) such that
K =91 p. To show that(K, p) € T(L,q)*™", take an

arbitrary K-hit (sc, hs) of T'(L, q)*. For eachs € succ(K),
build a treel, starting atsc(s) which has rooted matches
only for the variables irhs(s). Take a tred starting atiK’
such that each sub-tree rooted at each dezff K coincides
with the constructed tre&, (up to the renaming of terms).
Since K |:‘£+1 p, there exists a (bounded) rooted match
« for some variable irp. Due to the construction aof, 7
has to map some variables inf6, while the rest of vari-
ables that it maps are captured by minimal hitting sets. This
rooted match withesses the existence df anapping that
complies with the arbitrarily assuméd-hit (sc, hs). O

Query Answering over the Full Knowledge Base

Now that we have the machinery to decide subquery entail-
ment, we move to query answering ov@r In what follows,
we assume the queryhas answer variableg while ¢is a
tuple of individuals with the same arity as

To answely, we use the min-graphs &f and the knot set
Kx. By Theorems 1 and 3, the models constructed from
the min-graphs ofC and the knots inKx suffice to pro-
vide query answers. The previously introduced machinery
deals with the parts of query matches that occur inside the
trees generated froffix. Next, we extend this machinery to
deal with the graph part of the forest-shaped minimal models
of K.

Definition 17. An extended min-graplf of K is a C-
minimal set of atoms containing a min-graph/6fand s.t.
for each individuak, H N B, is an instance of a knot iKx.

Consider a min-grapld. Intuitively, each extended min-
graph containing~ can be viewed as a “super” knot whose
root is G, while its leaves are the leaves of the knots that
extendG. Given this similarity, the full query can be an-
swered by adjusting the notions &f-hits andK -mappings

to deal with extended min-graphs.

Definition 18. Let H be an extended min-graph. sAicces-
sor choicefor H is a function that maps each terfiac)€ H
to someK € L such thatl ;) ~ K. Then anH-hit is a
pair (sc hs), wherescis a successor choice féf, andhsis
a function that maps eacf(c)€H to a minimal hitting set
of I'(Kx, ¢) w.r.t. the knotsd( f (¢)).

Example 10. The following are some minimal hitting sets
of I'(Kk,, q): {z} w.r.t. Ko, {z, 2’} w.r.t. Ko, {z, 2’} w.r.t.
Ky, and{z,y} w.r.t. Ks.

The sets7| andG/, given below are extended min-graphs
for K1, while G is also an extended min-graph 65.

1={D(a), B(a), P(a, f1(a)), P(a, f2(a)), A(fi(a)), C(f2(a))}
G2={A(a), D(a), Q(a, fs(a)), E(fs(a))}
(s¢),hs)) and(sd, hs ) areG’j-hits and(sc,, hs,) is a G-
hit, where: sc(f1(a))=Ks, hs)(f1(a))={y},
¢ (f2(a))=Ks,  hs)(f2(a))=0,
scl(f1(a)=Ks,  hs(fi(a)={y},
sci(fa(a))= K4, hs; (f2(a))={z,2'}, and
for every otherf, sdf )=sc(f(a)) =s&(f(a)) =Ky
andhg (f(a)) = hsi(f —502 (f(a))={z}.

Next, we provide a way to decide the existence of matches
for the query in all models starting with all possible extedd
graphsH. In a similar way as for knots, we consider all pos-
sible H-hits and check whether they comply with the differ-
ent partial mappings inside the extended grahh

Definition 19. Let g,y be the restriction of the quetpto the
atoms containing variables W. We say anA-hit (sc hs)
complies with a constant tuple if there exists a set’ C
V(¢) and a homomorphism from ¢, to H such that:

- if m(x) = f(a), thenz € hgf(a));

- if yeV(q)\V, then for somef(a)€ H and some
xehsf(a)), we havey € V,;

- for each answer variablg, 7(z;) = ¢;.

Definition 20. Let Cx be the set of all tuple$H, sc hs)

such that” is an extended min-graph &f and(sc, hs) is an

H-hit. Then, for each such tuple= (H, sc hs) in Cx, we

defineans(g, \) to be the set of all tuplesthat comply with

the H-hit (s¢ hs).

The next theorem, which characterizes CQ entailment over

ALCH KBs, is proven in a similar way as Theorem 4.

Theorem 5. For any CQq over anALCH KB K, we have
ﬂ ans(q, \).

AeCx

ans(K,q) =

Example 11. ConsiderV ={z,z/,y} and the homomor-
phismh(z) = h(z') =a, h(y) = fi(a) fromq,v to GY; (sc},
hs)) and(sd, hs}) comply with (a, a). Moreover,{y} is the
only minimal hitting set of['(K.:,q) w.rt. K5, so every
G’ -hit must mapfi(a) to {y}. As G is the only extended
min-graph ofC;, we have(a,a) € ans(qy, K2). Note that
no ¢ complies with(sc, hsy), thusans(q1, K1) =

We remark here that for a given= (H, sc hs) in Ci, the
setans(g, A) can be computed by posing a union of con-
junctive queries over a set of atomb, that is obtained by
augmentingH with additional atoms to capture thié-hit

(s¢ hs). Furthermore, the se, for differentA € Cx can

be generated in models of a datalog program (with unstrat-
ified negation); hencens(K, ¢) is reducible to computing
cautious consequence in datalog (with negation).

Computational Complexity
We now state the main complexity result of this paper.

Theorem 6. Given anALCH KB K, a conjunctive query
q, and tuple of individualg, decidingé € ans(K, ¢) is in
ExPTIME w.r.t. the combined size &f andg.

Proof. (Sketch) Letes:=|K| + |¢|. The result is derived
based on the following observations:

e The number of distinct abstract knots over the signature of
K is (single) exponential irs, andKx can be constructed

in exponential time by the procedure sketched in this paper.
e For a givenS C Kx xR, and (K, p) € K¢ xR,, we

can verify S Fg, 4 (K, p) in time exponential ircs. As

Kk x Rq| is exponential ircs, we can comput®'(L, ¢) in
time exponential ires; note thatkx, , is monotonic.



e For a given tuple\ = (H, sc hs) in Ci, the setins(q, \)

can be computed in time exponential éa. Indeed, for
any tuplec of constants, the compliance &fwith the H-

hit (s¢ hs) can be decided in exponential time és, and
there are only exponentially many tuples of constants from
K matching the arity of the answer variables;of

e Finally, since|Ck| is exponential incs, verifying ¢ €
ans(K, g) is feasible in time exponential iss. O

ExPTIME-completeness of the problem follows from the
well-known hardness result in (Schild 1991). We note that
the above also implies that the set of all answerg forer C

can be computed in time that is exponential in the input size.

Data Complexity. For a givenK=(7, A) and a CQy, the
algorithm can be easily adjusted to rundoNP in the size
of A, i.e., in data complexity.

To this end, we add for each concept narhén K the
axiomsTC AU AandAMALC L to7, whereA is a fresh
concept name. This transformation clearly preserves the an
swers tog, is independent afl and ensures that each model
of K9 is also a min-graph of.. We also assume th&tc and
I'(Kk, q) are precomputed since they do not dependion

To checkc¢ ans(K, q), a tuple (H,schs)eCk s.t. @
does not comply with thé7-hit (sc hs) must be found. This
can be done in non-deterministic polynomial time.ij:

(1) guess a tupléH, sc, hs), whereH is set of atoms (i.e., a
candidate extended min-graph) andandhs are two func-
tions that map each terpfi(c)€H to an abstract knot (over
the signature ok’) and to a set of variables inrespectively;
(2) verify in polynomial time whethefsc, hs) is an H-hit
and whether it complies with Indeed, given thay is pre-
computed, checking whethéf is an extended min-graph is
feasible in polynomial time. We then uB¢K, ¢) to verify

if conditions in Def. 18 are satisfied. As the query is fixed,
only polynomially many potential homomorphisms must be
traversed for deciding the complianced#ith (H, sc hs).

It follows that¢ € ans(K, ¢) can be decided irtoNP
in data complexity by the procedure presented. This is also
worst-case optimal (Schaerf 1993).

Conclusion

In this paper, we have introduc&dotsas a novel technique
for reasoning in expressive DLs, and developed a conjunc-
tive query answering algorithm fot CC'H that runsin single
exponential time and is thus worst-case optimal.

Our algorithm is based on knots, which are novel in the
context of DLs, and is different from previous query an-
swering techniques. Perhaps most closely related is the
resolution-based method by Hustadt et al. (2005). Simdar a
in our approach, it first “compiles” the knowledge base and
the query into a special form, and then exploits the possibil
ity to determine the query answer by means of a disjunctive
datalog program. On the other hand, this is done on differ-
ent grounds: the knot technique is model-theoretic in ratur
while Hustadt et al.'s approach is proof-theoretic ancereli
on sophisticated resolution and superposition machinery.

The method that we presented §é£CH can be extended
to richer DLs, and can be useful for query answering and

other tasks in this context. In particular, transitive sot@n

be incorporated with some adjustment on the query answer-
ing part, while number restrictions can also be accommo-
dated by suitably adapting the knot representation of KBs.
This and other possible extensions, like more expressive
queries, will be explored elsewhere.
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