
Descriptive Typing Rules for Xcerpt

and their Soundness

Sacha Berger1, Emmanuel Coquery2, W lodzimierz Drabent3,4 and Artur Wilk4

1 Institute for Computer Science, University of Munich, Germany
sacha.berger@ifi.lmu.de

2 INRIA Rocquencourt and Conservatoire des Arts et Métiers, France
Emmanuel.Coquery@inria.fr

3 IPI PAN, Polish Academy of Sciences, Warszawa, Poland
4 IDA, Linköping University, 581-83 Linköping, Sweden

{wdr|artwi}@ida.liu.se

Abstract. We present typing rules for the Web query language Xcerpt.
The rules provide a descriptive type system: the typing of a program is an
approximation of its semantics. The rules can also be seen as an abstract
form of a type inference algorithm (presented in previous work), and as a
stage in a formal soundness proof of the algorithm. The paper considers
a substantial fragment of Xcerpt; the main restriction is that we deal
with data terms corresponding to trees (instead of general graphs), and
we do not deal with Xcerpt rule chaining. We provide a formal semantics
for the fragment of Xcerpt and a soundness theorem for the presented
type system. The semantics is a basis for a soundness proof of the typing
system, the proof is given in a full version of this paper.

1 Introduction

This article presents a type system for the Web and Semantic Web query lan-
guage Xcerpt [11,5,10], formalized using typing rules in the spirit of [6]. It is an
extension and reformulation of the type system presented in the earlier work
[12,7]. The type system is descriptive, this means a typing approximates the
semantics of a program (in an untyped programming language). In descriptive
typing, type inference means finding an approximation of the semantics of the
given program; type checking means proving program correctness with respect
to a specification expressed by means of types. In our case, for a given Xcerpt

program and a type of data (i.e. the set of data objects to which the program
may be applied) the type system provides a type of the program’s results (i.e.
a superset of the set of the program’s results). This is type inference; if a type
of expected results is given then type checking can be performed by checking if
the obtained type of results is a subset of the the given one. The main intended
application of the proposed type system is discovering errors in Xcerpt programs.

In the previous work [12,7] two descriptive type systems for an Xcerpt frag-
ment5 have been presented. They are formulated by means of algorithms. This
is rather complicated and makes any formal reasoning about the type system
difficult. In the present paper we generalize the simpler of these type systems
to a bigger fragment of Xcerpt (grouping constructs are added). An important
difference is that we formulate the type system by means of derivation rules.
The rules are similar to proof rules of logic, rules used in operational semantics,
and those used in prescriptive typing [6]. Employing rules makes it possible to
specify a type system in a formal and concise way. Such approach facilitates
formal reasoning; we confirm this by presenting a soundness proof of the type
system. The rules may be seen as an abstraction of an algorithm; they abstract
from lower level details. Thus – we believe – this formulation of a type system
is also easier to understand by humans than the previous one.

To facilitate the soundness proof we provide a formal semantics (based on
[12,5,10]) of the fragment of Xcerpt. The semantics is substantially simpler than
that of a full Xcerpt [10] (as it does not use the notion of simulation unification),
and may be of separate interest.

Similarly to other work related to Xcerpt [11,10] we use data terms as an
abstraction of semi-structured data [1] of the Web. Data terms generalize the
notion of a term: the number of arguments of a symbol is not fixed, moreover
a symbol may have an (unordered) set of arguments, instead of an ordered
sequence. (This paper does not deal with data terms representing graphs which
are not trees). As a formalism to define types we use type definitions [12,3]. They
are similar to unranked tree automata [2] (and equivalent formalisms), but deal
also with the case of unordered children of a tree node. The types defined by
type definitions roughly correspond to the sets of documents defined by various
schema languages like DTD, XML Schema or Relax NG.[9]

Our descriptive type system uses rules in a similar way as prescriptive type
systems [6] do. We expect that this should make possible a formal comparison of
the two approaches, and maybe even combining their advantages, thus obtaining
a system that can be used for detecting errors, checking program composition
and providing a base for documentation. (There is no general agreement about
what exactly descriptive and prescriptive typing mean. Roughly speaking, the
former deals with an untyped programming language and types approximate
program semantics, while in the latter the language is typed and types are an
important part of its semantics.)

The article is organized as follows: First, data terms and type definitions
are introduced. A short introduction of Xcerpt is given afterwards, explaining a
substantial fragment of the language and the semantics of the fragment. Then,
in Section 4 the type system for the Xcerpt fragment is introduced, by (1) mo-
tivating the idea of descriptive types for Xcerpt, and (2) providing typing rules
in the spirit of [6], specifying the type system inductively based on the syntax

5 The main Xcerpt features excluded are: data terms corresponding to general graphs
(which are not trees), grouping constructs (all, some), negation, and programs con-
sisting of multiple query rules.

2

of Xcerpt. In the Appendix, a soundness proof of the given typing rules with
respect to the semantics of Xcerpt is presented.

2 Modelling XML Data

We model XML data using a formalism of data terms similar to that defined
in [11]. Data terms can be seen as mixed trees which are labelled trees where
children of a node are either linearly ordered or unordered. This is related to
existence of two basic concepts in XML: tags which are nodes of an ordered tree
and attributes that attach attribute-value mappings to nodes of a tree. These
mappings are represented as unordered trees. Unordered children of a node may
also be used to abstract from the order of elements, when this order is inessential.
We assume that there is no syntactic difference between XML tag names and
attribute names and they both are labels of nodes in our mixed trees (and
symbols of our data terms). The infinite alphabet of labels will be denoted by L.

A content of an element is a sequence of other elements or basic constants.
Basic constants are basic values such as attribute values and all “free” data
appearing in an XML document – all data that is between start and end tag
except XML elements, called PCDATA (short for parseable character data) in
XML jargon. Basic constants occur as strings in XML documents but they can
play a role of data of other types depending on an adequate definition in DTD (or
other schema languages) e.g. IDREF, CDATA,. . . . The set of basic constants will
be denoted by B. In our notation we will enclose all basic constants in quotation
marks ” ”.

XML documents are represented as data terms.

Definition 1. A data term is an expression defined inductively as follows:

– Any basic constant is a data term,
– If l is a label and t1, . . . , tn are n ≥ 0 data terms, then l[t1, . . . , tn] and

l{t1, . . . , tn} are data terms.

The linear ordering of children of the node with label l is denoted by enclosing
them by brackets [], while unordered children are enclosed by braces {}.

A subterm of a data term t is defined inductively: t is a subterm of t, and
any subterm of ti (1 ≤ i ≤ n) is a subterm of l′[t1, . . . , tn] and of l′{t1, . . . , tn}.
Data terms t1, . . . , tn will be sometimes called the arguments of l′, or the direct
subterms of l′[t1, . . . , tn] (and of l′{t1, . . . , tn}). The root of a data term t, de-
noted root(t), is defined as follows . If t is of the form l[t1, . . . , tn] or l{t1, . . . , tn}
then root(t) = l; for t being a basic constant we assume that root(t) = $.

2.1 Type Definitions

Here we introduce a formalism for specifying a class of decidable sets of data
terms representing XML documents. It is a certain simplification of the formal-
ism of [3]. First we specify a set of type names T = C ∪ S ∪ V which consist
of

3

– type constants from the alphabet C
– special type names from the alphabet S
– type variables from the alphabet V

We associate each type name T with a set [[T]] (the type denoted by T) of
data terms which are allowed values assigned to T . For T being a type constant
or a special type name, the elements of [[T]] are basic constants.

Type constants correspond to an XML schema language base types. The set
of type constants is fixed and finite. In our examples we will use a type constant
assuming that [[#]] is the set of non empty strings of characters. This is similar
to #PCDATA in DTD. In our notation, type constants and special type names are
sequences of letters beginning with character #.

Each type variable T is associated with a set of data terms [[T]] which is
specified in a way similar to that of [3] and described below. Similarly, each
special type name T is associated with a finite set [[T]] of basic constants.

First we introduce some auxiliary notions. The empty string will be denoted
by ε. A regular expression over an alphabet Σ is ε, φ, any a ∈ Σ and any
r1r2, r1|r2 and r∗1 , where r1, r2 are regular expressions. A language L(r) of
strings over Σ is assigned to each regular expression r in the standard way (see
e.g. [8]). In particular, L(φ) = ∅, L(ε) = {ε} and L(r1|r2) = L(r1) ∪ L(r2).

Definition 2. A regular type expression is a regular expression over the
alphabet of type names T . We abbreviate a regular expression rn|rn+1| · · · |rm,
where n ≤ m, as r(n:m), rnr∗ as r(n:∞), rr∗ as r+, and r(0:1) as r?. A regular
type expression of the form

r1 · · · rk

where k ≥ 0, each ri is T
(ni,1:ni,2)
i , 0 ≤ ni,1 ≤ ni,2 ≤ ∞ for i = 1, . . . , k, and

T1, . . . , Tk are distinct type names, will be called a multiplicity list.

Multiplicity lists will be used to specify multisets of type names. We use typesD(r)
to denote the set of all type names occurring in the regular expression r.

Definition 3. A type definition is a set D of rules of the form

T → l[r], T → l{s}, or T ′ → c1| . . . |cn,

where T is a type variable, T ′ a special type name, l a label, r a regular type
expression, s a multiplicity list, and c1, . . . , cn are basic constants. A rule U→G
∈ D will be called a rule for U in D. We require that for any type name U ∈ V∪S
occurring in D there is exactly one rule for U in D.

If the rule for a type variable T in D is as above then l will be called the
label of T (in D) and denoted labelD(T) = l. For T being a type constant or a
special type name we define labelD(T) = $. The regular expression in a rule for
type variable T is called the content model of T .

Example 4. Consider type definition D:

4

Cd → cd [Title Artist+ #Category?]
Title → title[# Subtitle?]
Subtitle → subtitle[#]
Artist → artist [#]
#Category → pop | rock | classic

D contains a rule for each of type variables: Cd, Title, Subtitle, Artist and a rule
for special type name #Category . Labels occurring in D are: cd, title, subtitle,
artist, and pop, rock, classic are basic constants.

Type definitions are a kind of grammars, they define sets by means of deriva-
tions, where a type variable T is replaced by the right hand side of the rule for
T and a regular expression r is replaced by a string from L(r); if T is a type
constant or a special type name then it is replaced by a basic constant from
respectively [[T]], or from the rule for T . This can be concisely formalized as
follows (treating type definitions similarly to tree automata).

Definition 5. Let D be a type definition. We will say that a data term t is
derived in D from a type name T , iff there exists a mapping ν from the subterms
of t to type names such that ν(t) = T and for each subterm u of t

– if u is a basic constant then ν(u) ∈ C and u ∈ [[ν(u)]] or ν(u) ∈ S and there
exists a rule ν(u)→ · · · |u| · · · in D.

– otherwise ν(u) = U ∈ V and
• there is a rule U ← l[r] ∈ D, u = l[t1, . . . , tn], and ν(t1) · · · ν(tn) ∈ L(r),
• or there is a rule U ← l{r} ∈ D, u = l{t1, . . . , tn}, and ν(t1) · · · ν(tn) is

a permutation of a string in L(r).

The set of the data terms derived in D from a type name T will be denoted
by [[T]]D.

Example 6. For the type definition D from the previous example, we have that
the data term

t = cd[title[”Stop”], artist[”Sam Brown”], ”pop”]

is derived from the type variable Cd . The type names assigned to the three ar-
guments of cd are, respectively, Title, Artist , #Category , and the type constant
is assigned to the constants ”Stop”, and ”Sam Brown”.

Notice that if T is a type constant then [[T]]D = [[T]]. If it is clear from the
context which type definition is considered, we will often omit the subscript in the
notation [[]]D and similar ones. For U being a set of type names {T1, . . . , Tn}, we
define a set of data terms [[U]] = [[T1]] ∪ . . .∪ [[Tn]]. For a regular type expression
r we define [[r]] = { d1, . . . , dn | d1 ∈[[T1]], . . . , dn ∈[[Tn]] for some T1, . . . , Tn ∈
L(r) }. Notice that if D ⊆ D′ are type definitions then [[T]]D = [[T]]D′ for any
type name T occurring in D.

5

3 Xcerpt– Introduction

Xcerpt is a rule-based query and transformation language for XML (see [10,5,11,4]).
It employs patterns instead of paths to query XML and semistructured data.
This approach stems from logic programming. A query term is matched against
a data term from a database. A successful matching results in binding the vari-
ables in the query term to certain subterms of the data term. This operation is
called simulation unification.

We consider here a somehow simplified version of Xcerpt. We focused on
core Xcerpt features to make our type system simpler and easier to understand.
The main difference is that our data terms represent trees while in full Xcerpt

terms are used to represent graphs (by adding unique identifiers to some tree
nodes and introducing nodes which are references to these identifiers). Other
neglected Xcerpt features in respect to the Xcerpt version described in [11,10] are:
functions and aggregations, non-pattern conditions, optional subterms, position
specifications, negation, regular expressions and label variables. Moreover, we
restrict ourselves to Xcerpt programs containing only one query rule.

We provide a formal semantics to the chosen fragment of Xcerpt. The seman-
tics of query terms is from [12], the rest of the semantics is based on [10].

We assume that a database is a data term or a multiset of data terms. There
are two other kinds of terms in Xcerpt: query terms and construct terms. The
role of query terms is to be matched against a database. Construct terms are
used in constructing data terms which are query results.

Definition 7. Query terms are inductively defined as follows:

– Any basic constant is a query term.
– A variable X is a query term.
– If q is a query term, then desc q is a query term.
– If X is a variable and q is a query term, then X ; q is a query term.
– If l is a label and q1, . . . , qn (n ≥ 0) are query terms, then l[q1, . . . , qn],

l{q1, . . . , qn}, l[[q1, . . . , qn]] and l{{q1, . . . , qn}} are query terms (called rooted
query terms).

For a rooted query term q = lαq1, . . . , qnβ, where αβ are parentheses [], [[]], {}
or {{}}, root(q) = l and q1, . . . , qn are the child subterms of q. If q is a basic
constant then root(q) = $.

To informally explain the role of query terms, consider a query term q =
lαq1, . . . , qmβ and a data term d = l′α′d1, . . . , dnβ′, where α, β, α′, β′ are paren-
theses. In order to q match d it is necessary that l = l′. Moreover the child
subterms q1, . . . , qm of q should match certain child subterms of d. Single paren-
theses in d ([] or {}) mean that m = n and each qi should match some (distinct)
dj . Double parentheses mean that m ≤ n and q1, . . . , qm are matched against
some m terms out of d1, . . . , dn. Curly braces ({} or {{}}) in q mean that the
order of the child subterms in d does not matter; square brackets in q mean that
q1, . . . , qm should match (a subsequence of) d1, . . . , dn in the same order.

6

A variable matches any data term, desc q matches a data term d whenever
q matches some subterm of d. A query term X ; q matches any data term
matched by q. A side effect of a query term X or X ; q matching a data term
d is that variable X obtains a value d.

Now we formally define which query terms match which data terms and what
are the resulting assignments of data terms to variables. We do not follow the
original definition of simulation unification. Instead we define a notion of answer
substitution for a query term q and a data term d. As usually, by a substi-
tution (of data terms for variables) we mean a set θ = {X1/d1, . . . , Xn/dn },
where X1, . . . , Xn are distinct variables and d1, . . . , dn are data terms; its do-
main dom(θ) is {X1, . . . , Xn}, its application to a (query) term is defined in a
standard way.

Definition 8 ([12]). A substitution θ is an answer substitution (shortly, an an-

swer) for a query term q and a data term d if q and d are of one of the forms
below and the corresponding condition holds. (In what follows m, n ≥ 0, X is
a variable, l is a label, q, q1, . . . are query terms, and d, d1, . . . data terms; set
notation is used for multisets, for instance {d, d} and {d} are different multisets).

q d condition on q and d

b b b is a basic constant

l[q1, . . . , qn] l[d1, . . . , dn] θ is an answer for qi and di,
for each i = 1, . . . , n

l[[q1, . . . , qm]] l[d1, . . . , dn] for some subsequence di1 , . . . , dim
of d1, . . . , dn

(i.e. 0 < i1 < . . . < im ≤ n)
θ is an answer for qj and dij

,
for each j = 1, . . . , m,

l{q1, . . . , qn} l{d1, . . . , dn} for some permutation di1 , . . . , din
of d1, . . . , dn

or (i.e. {di1 , . . . , din
} = {d1, . . . , dn})

l[d1 · · · dn] θ is an answer for qj and dij

for each j = 1, . . . , m,

l{{q1, . . . , qm}} l{d1, . . . , dn} for some {di1 , . . . , dim
} ⊆ {d1, . . . , dn}

or θ is an answer for qj and dij

l[d1, . . . , dn] for each j = 1, . . . , m,

X d Xθ = d

X ; q d Xθ = d and θ is an answer for q and d

desc q d θ is an answer for q
and some subterm d′ of d

We say that q matches d if there exists an answer for q, d.

Thus if q is a rooted query term (or a basic constant) and root(q) 6= root(d)
then no answer for q, d exists. If q = d then any θ is an answer for q, d. A query
l{{}} matches any data term with the label l. If θ, θ′ are substitutions and θ ⊆ θ′

7

then if θ is an answer for q, d then θ′ is an answer for q, d. If a variable X occurs
in a query term q then queries X ; q and X ; desc q match no data term,
provided that q 6= X and q is not of the form desc · · ·descX .

Example 9. Query term q1 = a[c{{d[], ”e”}}, f [[g[], h{”i”}]]] matches data
terms a[c{”e”, d[], g[]}, f [g[], l[], h[”i”]]] and a[c[d[], g[], ”e”], f [g[], h[”i”]]].
In contrast, data terms f [h[”i”], g[]] and f{g[], h[”i”]} are not matched
by f [[g[], h{”i”}]]. Query term q2 = desc w{{}} matches data terms
a[b{w[]}] and w{”s”}. Query term q2 = a[[X1;c[[d{}]], X2, ”p”]] matches
a[”s”, c[d{}, ”r”], h{j[]}, ”p”], with an answer which binds X1 to c[d{}, ”r”]
and X2 to h{j[]}.

Each answer for a query term q binds all the variables of the query to some
data terms. For any such answer θ′ (for q and d) there exists an answer θ ⊆ θ′

(for q and d) binding exactly these variables. We will call such answers non
redundant. From Definition 8 one can derive an algorithm which produces non
redundant answers for a given q and d. Construction of the algorithm is rather
simple, we skip the details. Non redundant answers are actually those of interest;
we consider a more general class of answers to simplify Definition 8.

A targeted query term is a pair in(db, q), of a URI and a query term.
We assume that the URI locates on the Web a data term d(db). An answer
substitution for q and d(db) is called an answer substitution for in(db, q) (and
an arbitrary data term).

Definition 10. A query is inductively defined as follows.

– Any query term and any targeted query term is a query.
– If Q1, . . . , Qn (n ≥ 0) are queries then and(Q1, . . . , Qn) and or(Q1, . . . , Qn)

are queries.
A substitution θ is an answer substitution for and(Q1, . . . , Qn) (respectively
for or(Q1, . . . , Qn)) and a data term d iff θ is an answer substitution for
each of (some of) Q1, . . . , Qn and d.

A query can be transformed into equivalent one in disjunctive normal form
or(Q1, . . . , Qn), where each Qi is of the form and(Qi1, . . . , Qiki

) and each Qij is
a (targeted) query term (cf. [10, Proposition 6.4]).

Definition 11. A construct term and the set FV (c) of free variables of a
construct term c are defined recursively. If b is a basic constant, X a variable, l
a label, c, c1, . . . , cn construct terms (n ≥ 0), and k a natural number then

b, X, l[c1, . . . , cn], l{c1, . . . , cn}, all c, some k c,

are construct terms. FV (b) = ∅, FV (X) = {X}, FV (l[c1, . . . , cn]) =
FV (l{c1, . . . , cn}) =

⋃n

i=1 FV (ci), FV (all c) = FV (some k c) = ∅.

Notice that any data term is a construct term. (Also, a construct term without
any all and some construct is a query term).

Before we define the notion of a query rule and its result we need to provide
some auxiliary definitions. By a substitution set we mean a set of substitutions
of data terms for variables, e.g. of answers for a query and a data term.

8

Definition 12. Given a substitution set Θ and a set V of variables, such that
V ⊆ dom(θ) for each θ ∈ Θ, the equivalence relation 'V ⊆ Θ ×Θ is defined as:
θ1 ' θ2 iff θ1(X) = θ2(X) for all X ∈ V . The set of equivalence classes of 'V

is denoted by Θ/'V
.

The concatenation of two sequences S1, S2 of data terms will be denoted
by S1 ◦ S2. We do not distinguish between a data term d and the one element
sequence with the element d.

Definition 13. Let c be a construct term and Θ be a substitution set containing
the same assignments for the free variables FV (c) of c (i.e. θ1 'FV (c) θ2 for any
θ1, θ2 ∈ Θ). The application Θ(c) of the substitution set Θ to c is a sequence of
data terms defined as follows

– Θ(b) = b, where b is a basic constant
– Θ(X) = Xθ, where θ ∈ Θ
– Θ(l{c1, . . . , cn}) = l{Θ(c1) ◦ · · · ◦Θ(cn)}
– Θ(l[c1, . . . , cn]) = l[Θ(c1) ◦ · · · ◦Θ(cn)]
– Θ(all c′) = Θ1(c′) ◦ · · · ◦Θk(c′), where {Θ1, . . . , Θk} = Θ/'FV (c′)

– Θ(some k c′) = Θ1(c′) ◦ · · · ◦Θm(c′), where {Θ1, . . . , Θm} ⊆ Θ/'FV (c′) and
m = k if |Θ/'FV (c′)| ≥ k or m = |Θ/'FV (c′)| otherwise.

For a construct term c containing neither all nor some, Θ(c) = cθ for any θ ∈ Θ.
Notice that Θ(c) is defined uniquely unless c contains all or some (and Θ(c) is
defined uniquely up to reordering provided c does not contain some). Notice also
that Θ(c) is a one element sequence unless c is of the form all c′ or some k c′.

Definition 14. A construct-query rule (shortly, query rule) is an expres-
sion of the form c ← Q, where c is a construct term not of the form all c′ or
some k c′, Q is a query and every variable occurring in c also occurs in Q. More-
over, if or(Q1, . . . , Qn) is a disjunctive normal form of Q then every variable of
c occurs in each Qi, for i = 1, . . . , n. The construct term c will be sometimes
called the head and Q the body of the rule.

If Θ is the set of all answers for Q and a data term d, and Θ′ ∈ Θ/'F V (c)

then Θ′(c) is a result for query c← Q and d.

Each result of a query rule is a data term, as an answer for a query term
binds all the variables of the rule to data terms.

Example 15. Consider a database which is a data term:

catalogue[cd[title[”Empire Burlesque”], artist[”Bob Dylan”], year[”1985”]],
cd[title[”Hide your heart”], artist[”Bonnie Tyler”], year[”1988”]],
cd[title[”Stop”], artist[”Sam Brown”], year[”1988”]]]

Here is a rule which extracts titles and artists for the CD’s issued in 1988
and presents the results in a changed form (title as name and artist as author).
TITLE and ARTIST are variables.

result [name[TITLE], author [ARTIST]] ←
catalogue{{ cd{title[TITLE], artist [ARTIST], year [”1988”] }}}

9

The results returned by the rule are:

result [name[”Hide your heart”], author [”Bonnie Tyler”]]
result [name[”Stop”], author [”Sam Brown”]]

The next query rule is similar. It uses all for grouping all the results together
and another all for grouping together the CD’s from the same year.

results [all result [cds [allname[TITLE]], year [YEAR]]] ←
catalogue{{ cd{{ title[TITLE], year [YEAR] }}}}

The rule returns the following result:

results [result[year[”1988”], cds[title[”Hide your heart”], title[”Stop”]]],
result[year[”1985”], cds[title[”Empire Burlesque”]]]]

4 Reasoning about Types of Xcerpt Query Results

4.1 Motivation

In this section we study the relation between types of databases and types of
query results. Assume that the only information available about the database is
that it is a data term (or a set of data terms) from a given type [[TDB]] (or from
a given union of types [[T1]] ∪ . . . ∪ [[Tn]]). One may want to know what query
results are possible for such database. We show how to compute (a superset of)
the set of such results The set will be expressed as a type, specified by a type
definition. We will usually call it the query result type.

Computing the query result type may serve some additional purposes. 1. If
this type is empty, then the query will never give an answer for a data term from
[[TDB]]. An algorithm checking this property is obtained by combining computing
query result type with checking emptiness of a type. 2. If some specification of
the intended type of results exists, one may check if the query is correct w.r.t. the
specification, by checking whether the computed type of the results is included
in the specified one. 3. If we use a data term d as the body of the query, then
computing the result type is also a check whether d ∈ [[TDB]]. Namely d ∈ [[TDB]]
iff the result type is not empty. 4. The algorithm computing the query result type
produces as a side effect the types of the variables of the queries. For each variable
from the query it gives a set containing every value that can be assigned to the
variable (when querying a data term from type [[TDB]]). This provides additional
information about the behaviour of the query. We may consider specifications of
the types of the query variables. A query is correct w.r.t. such a specification if
for every variable the computed type is a subset of the specified type.

Example 16. Consider the type definition D from Example 4 and a construct-
query rule Q:

result [name[TITLE], author [ARTIST]]←
cd{{TITLE , ARTIST;artist{{}}, ”rock”}}

10

The intention of the rule is to collect titles and authors of all the CD’s of the
rock category. When the query term of the rule is matched against a database
of type Cd, the variables TITLE, ARTIST are bound to data terms of types,
respectively, Title, Artist or Artist, Artist. As the variable TITLE is intended
to take values only of type Title, the query is incorrect w.r.t. our expectations.
The type Result of the query result can be described by the following type
definition D ′ = D ∪ {Result→result [Name Author], Name→name[Title|Artist],
Author→author[Artist] }.

4.2 Variable-type mappings

In this section we assume a fixed type definition D (describing the type of the
database).

To represent a set of answers (for a query term and a set of data terms) we
will use a mapping Γ : V → E (called a variable-type mapping), where V is the set
of variables occurring in the considered query rule and E is a set of expressions.
E contains 0, 1, the type names from D, and expressions of the form T1 ∩ T2,
where T1, T2 ∈ E . Each expression E from E denotes a set [[E]] of data terms. [[1]]
denotes the set of all data terms, [[0]] = ∅, [[T]] = [[T]]D for any type name T , and
[[T1 ∩ T2]] = [[T1]] ∩ [[T2]]. The set of substitutions corresponding to a mapping
Γ : V → E is

substitutionsD(Γ) = { θ | ∀X∈V θX ∈ [[Γ (X)]] }.

(According to our convention, we will often skip the index D.) Notice that if
θ ∈ substitutions(Γ) then V ⊆ dom(θ) and if θ ⊆ θ′ then θ′ ∈ substitutions(Γ).
For a set Ψ of variable-type mappings we define substitutions(Ψ) =
⋃

Γ∈Ψ substitutions(Γ).
For Y1, . . . , Yk ∈ V, T1, . . . , Tk ∈ E , mapping [Y1 7→ T1, . . . , Yk 7→ Tk] : V → E

is defined as

[Y1 7→ T1, . . . , Yk 7→ Tk](X) =

{

Ti if X = Yi

1 otherwise.

We will not distinguish between expressions T ∩ 1 and T , and between T ∩ 0
and 0 (where T ∈ E).

Inclusion of types induces a partial order v on the mappings from V → E ,
as follows. If Γ and Γ ′ are such mappings then Γ v Γ ′ iff [[Γ (X)]] ⊆ [[Γ ′(X)]]
for each variable X ∈ V . Notice that Γ v Γ ′ is equivalent to substitutions(Γ) ⊆
substitutions(Γ ′).

4.3 Typing Rules for Xcerpt

The rules presented in this section provide a descriptive type system for Xcerpt:
the typing of a program is an approximation of its semantics. An algorithm com-
puting a type of results for a given Xcerpt query rule can be easily derived from
the presented rules as they can be seen as an abstract version of the algorithm.
Below we present the rules for query terms, queries, construct terms and query
rules. In the Appendix we prove correctness of the typing system.

11

Query terms. The rules in this subsection provide a way to derive facts of the
form D ` q : T . Γ , where D is a type definition, q a query term, T a type name,
and Γ a variable-type mapping. The intention is that if q is applied to a data
term d ∈ [[T]] then the resulting substitution is in substitutions(Γ) for some Γ
such that D ` q : T . Γ can be derived.

b ∈ [[T]]

D ` b : T . Γ
(Const)

where b is a basic constant.

Γ v [X 7→ T]

D ` X : T . Γ
(Var)

D ` q : T . Γ Γ v [X 7→ T]

D ` X ; q : T . Γ
(As)

D ` q : T . Γ

D ` desc q : T . Γ
(Descendant)

D ` desc q : T ′ . Γ

D ` desc q : T . Γ
(Descendant Rec)

where T ′ ∈ types(r) and r is the content model of T .

D ` q1 : T1 . Γ · · · D ` qn : Tn . Γ

D ` l αq1, · · · , qnβ : T . Γ
(Pattern)

where the rule for T in D is of the form T → l[r]
or it is of the form T → l{ r } and (αβ = {} or αβ = {{}}),
s is r with every type name U replaced by U |ε,
T1 · · ·Tn ∈ L(r) if αβ = [],
T1 · · ·Tn ∈ L(s) if αβ = [[]],
T1 · · ·Tn ∈ perm(L(r)) if αβ = {},
T1 · · ·Tn ∈ perm(L(s)) if αβ = {{}}.

Here perm(L) stands for the language of permutations of the strings from a
language L.

Queries. From the rules below one can derive facts of the form D ` Q : U . Γ ,
where Q is a query, U a finite set of type names and Γ a variable-type map-
ping. If θ is an answer substitution for Q and a data term from [[U]] then
θ ∈ substitutions(Γ) for some Γ such that D ` q : T . Γ can be derived.

12

In general a query may be applied to data terms produced by query rules of
an Xcerpt program. As their results may be of different types, we consider here
a set of types U instead of a single type T .

D ` q : T . Γ T ∈ U

D ` q : U . Γ
(Query Term)

D ` q : T . Γ

D ` in(db, q) : U . Γ
(Targeted Query Term)

where d(db) is of type T (formally d(db) ∈ [[T]]).

D ` Q1 : U . Γ · · · D ` Qn : U . Γ

D ` and(Q1, . . . , Qn) : U . Γ
(And Query)

D ` Q : U . Γ

D ` or(. . . , Q, . . .) : U . Γ
(Or Query)

Construct terms. To formulate typing rules for construct terms we need an
equivalence relation on mappings:

Definition 17. Given a type definition D, a set of variable-type mappings Ψ
and a set V of variables, such that V ⊆ dom(Γ) for each Γ ∈ Ψ , the relation
∼V ⊆ Ψ × Ψ is defined as: Γ1 ∼V Γ2 iff [[Γ1(X)]] ∩ [[Γ2(X)]] 6= ∅ for all X ∈ V .

The set of equivalence classes of the transitive closure
∗
∼V of ∼V is denoted by

Ψ/ ∗

∼V
.

The following rules allow to derive facts of the form D ` c : Ψ . S, where c is
a construct term, Ψ is a set of variable-type mappings (for which the types are
defined by D) and S is a regular type expression. The intention is that if applying
a substitution set Θ to c results in a data term sequence Θ(c) = d1, . . . , dn and
substitutions(Θ) ⊆ substitutions(Ψ) then D ` c : Ψ . S can be derived such that
each di ∈ [[Ti]] and T1 · · ·Tn ∈ L(S). To derive D ` c : Ψ . S it is necessary that
Γ (X) 6= 1 for any Γ ∈ Ψ and any variable X occurring in c. For correctness of

the rules it is required that for any Γ1, Γ2 ∈ Ψ , Γ1
∗
∼FV (c) Γ2.

(Tc → c) ∈ D

D ` c : Ψ . Tc

(Const)

where c is a basic constant.

[[T1]] = [[Γ1(X)]] · · · [[Tn]] = [[Γn(X)]]

D ` X : {Γ1, . . . , Γn} . T1 | · · · |Tn

(Var)

13

D ` c1 : Ψ . S1 · · · D ` cn : Ψ . Sn (Tc → lαS1 · · ·Snβ) ∈ D

D ` lαc1, . . . , cnβ : Ψ . Tc

(Pattern)

D ` c : Ψ1 . S1 · · · D ` c : Ψn . Sn {Ψ1, . . . , Ψn} = Ψ/ ∗

∼F V (c)

D ` all c : Ψ . (S1 | · · · |Sn)+
(All)

D ` c : Ψ1 . S1 · · · D ` c : Ψn . Sn {Ψ1, . . . , Ψn} = Ψ/ ∗

∼F V (c)

D ` some k c : Ψ . (S1 | · · · |Sn)(1:k)
(Some)

Xcerpt query rules. For a given type definition D, query Q and a set U of
types names, the rules introduced above nondeterministically generate variable
type mappings. Now we describe which sets of generated mappings are sufficient
for the purpose of approximating the semantics of query-rules.

Definition 18. Let D be a type definition. Let Q be a query term and W a
type name, or Q a query and W a set of type names. A set {Γ1, . . . , Γn} of
variable-type mappings is complete for Q and W wrt. D if

– D ` Q : W . Γi for i = 1, . . . , n, and
– whenever D ` Q : W . Γ , there exists i ∈ {1, . . . , n} such that Γ v Γi.

From the following rule one can derive facts of the form
D ` (c← Q) : U . S1 | · · · | Sn where c ← Q is a query rule, U is a finite
set of type names and Si are regular type expressions. The intention is that if
we apply a query rule c← Q to a database of a type [[U]] then we obtain results
belonging to the set [[S1 | · · · | Sn]].

D ` c : Ψ1 . S1 · · · D ` c : Ψn . Sn {Ψ1, . . . , Ψn} = Ψ/ ∗

∼F V (c)

D ` (c← Q) : U . S1 | · · · | Sn

(Query Rule)

where Ψ is complete for Q and U wrt. D.

Example 19. Consider type definition D = {T → l[A∗B C], A→ a, B→ b,
C→ c, R1 → a[A+A], R2 → a[A+B], R3 → a[(A |B)+C] } and the query rule

a [allX, Y] ← l [[X, Y]]

abbreviated as c0 ← q. We apply the query rule to a set of types U = {T, A, B, C}.
First we need to find a complete set of mappings Ψ0 for q and U . If we apply the
query term q to the type T using the rules for query terms we can derive facts
D ` q : T . Γi for i = 1, . . . , 4, where Γ1 = [X 7→A, Y 7→A], Γ2 = [X 7→A, Y 7→B],
Γ3 = [X 7→A, Y 7→C] and Γ4 = [X 7→B, Y 7→C]. If we apply the query term q to
the type A, B or C we cannot derive anything using the rules. Hence, the rules
for queries allow us to derive D ` q : U . Γi for i = 1, . . . , 4. The set Ψ0 =
{Γ1, Γ2, Γ3, Γ4} is complete for q and U . Since FV (c0) = {Y }, Ψ0/ ∗

∼FV (c0)
=

14

{Ψ1, Ψ2, Ψ3}, where Ψ1 = {Γ1}, Ψ2 = {Γ2}, Ψ3 = {Γ3, Γ4}. Now we apply each of
Ψi to the construct term c0. Using the rules for construct terms we can derive
the following facts: D ` c0 : Ψ1 . R1, D ` c0 : Ψ2 . R2 and D ` c0 : Ψ3 . R3.
Using the rule (Query Rule) we can derive D ` c0 ← q : U . R1 |R2 |R3. It
means that if the rule c0 ← q is applied to a data term from [[U]] all the obtained
results are in the set [[R1 |R2 |R3]].

The following theorem expresses the correctness of the typing rules wrt. the
semantics given in section 3. More precisely, it expresses the existence of a typing
derivation for a rule whenever it has a result for some data term d in the type
denoted by a set U of type names. It also expresses that any derivation of a
query rule (c← Q) wrt. a set of type names U is a correct approximation of the
set of results for (c← Q) and any data term in the type denoted by U .

Theorem 20. Let D be a type definition and (c← Q) be a query rule, where for
each targeted query term in(db, q) in Q there is a type name T in D such that
d(db) ∈ [[T]]. Let U be a set of type names and d a data term such that d ∈ [[U]].

If a result for (c ← Q) and d exists then there exist S and D′ such that
D′ ⊇ D and D′ ` (c← Q) : U . S.

If there exists S such that D ` (c ← Q) : U . S and if d′ is a result for
(c← Q) and d, then d′ ∈ [[S]].

Proof. See the Appendix.

5 Conclusion

This paper presents a descriptive type system for a substantial fragment of the
Web and Semantic Web query language Xcerpt. The type system provides ap-
proximation of the semantics of Xcerpt programs. For a given Xcerpt query rule
it provides a type of its results (i.e. a superset of the set of the results) under
the assumption that the query rule is applied to data of a given type. The main
contribution of the paper is a formalization of the type system of [12] by means
of typing rules, and a correctness proof of the type system. The employed formal
semantics of the Xcerpt fragment may be of separate interest.

A topic for the future work is formalization by means of typing rules of the
more precise typing algorithm presented in [7]. The current work should also be
generalized to the omitted features of Xcerpt. Dealing with some of them, e.g.
negation or terms representing graphs, seems to be difficult and needs further
investigation. Moreover the type system should be extended to Xcerpt programs
containing more than one query rule.

Ongoing research on Xcerpt is about integration of standard Web and Se-
mantic Web, especially querying of RDF. As RDF data represents graph shaped
structures, dealing with graph structured data is the central aspect for typed
RDF querying. Additionally, investigation of existing Semantic Web type for-
malisms found in RDFS and OWL and integration of some of their features (eg.
transitive properties) in the Xcerpt type systems is a subject of further work.

15

Another interesting topic for the future work is a comparison between the
descriptive typing approach (to which our work belongs) and the prescriptive
approach [6,7]. As our type system is presented by means of typing rules similar
to the typing rules of prescriptive type systems, the differences and similarities
between two approaches can be better understood.

The work on a prototype implementation of the type system for Xcerpt is in
progress. The algorithm corresponding to the presented typing rules has been
implemented as an additional module in Xcerpt prototype. We plan to implement
the more precise version of the algorithm and also to extend the prototype to
be able to handle all constructs used in Xcerpt.

Acknowledgement. This research has been partially funded by the European Com-
mission and by the Swiss Federal Office for Education and Science within the 6th
Framework Programme project REWERSE number 506779 (cf. http://rewerse.net).

References

1. Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: from rela-
tions to semistructured data and XML. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2000.

2. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets. Technical Report HKUST-TCSC-2001-0, The
Hongkong University of Science and Technology, April 2001.

3. François Bry, Wlodzimierz Drabent, and Jan Maluszynski. On subtyping of tree-
structured data: A polynomial approach. In International Workshop, PPSWR
2004, St. Malo, France, September, 2004, Proceedings, number 3208 in LNCS, pages
1–18, 2004.

4. François Bry, Tim Furche, Liviu Badea, Christoph Koch, Sebastian Schaffert, and
Sacha Berger. Identification of Design Principles. Deliverable I4-D2, REWERSE,
2004. At http://rewerse.net/publications.html/#REWERSE-DEL-2004-I4-D2 .

5. François Bry and Sebastian Schaffert. An Entailment Relation for Reasoning on
the Web. In Proceedings of Rules and Rule Markup Languages for the Semantic
Web, Sanibel Island (Florida), USA (20th October 2003), LNCS, 2003.

6. Luca Cardelli. Type Systems. In Allen B. Tucker, editor, The Handbook of Com-
puter Science and Engineering, Second Edition, chapter 97-1. CRC Press, 2004.

7. Horatiu Cirstea, Emmanuel Coquery, W lodzimierz Drabent, François Fages,
Claude Kirchner, Luigi Liquori, Benjamin Wack, and Artur Wilk. Types for REW-
ERSE reasoning and query languages. Deliverable I3-D4, REWERSE, 2005. Avail-
able at http://rewerse.net/publications.html/#REWERSE-DEL-2005-I3-D4 .

8. J. E. Hopcroft and J. D. Ullmann. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

9. M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema
languages using formal language theory. Submitted, 2003.

10. Sebastian Schaffert. Xcerpt: A Rule-Based Query and Transformation Language
for the Web. PhD thesis, University of Munich, 2004.

11. Sebastian Schaffert and François Bry. Querying the Web Reconsidered: A Prac-
tical Introduction to Xcerpt. In Proceedings of Extreme Markup Languages 2004,
Montreal, Quebec, Canada (2nd–6th August 2004), 2004.

16

http://rewerse.net
http://rewerse.net/publications.html/#REWERSE-DEL-2004-I4-D2
http://rewerse.net/publications.html/#REWERSE-DEL-2005-I3-D4

12. A. Wilk and W. Drabent. On types for XML query language Xcerpt. In Interna-
tional Workshop, PPSWR 2003, Mumbai, India, December 8, 2003, Proceedings,
number 2901 in LNCS, pages 128–145. Springer Verlag, 2003.

A Soundness Proof of the Descriptive Xcerpt Typing

Rules

Definition 21. Given a type definition D and a substitution θ, the mapping Γθ

is defined as:

Γθ(X) =

{

T1 ∩ . . . ∩ Tn if X ∈ dom(θ) and {T1, . . . , Tn} = {T | Xθ ∈ [[T]]D}
1 otherwise.

One can remark that by definition θ ∈ substitutions(Γθ).

Lemma 22. Let D be a type definition, q a query term, d a data term, T a type
name and θ an answer for q and d. If d ∈ [[T]]D then D ` q : T . Γθ.

Proof. By induction on the query term q.

– If q is a basic constant b, then d = b. Since d ∈ [[T]], by rule (Const) we
obtain D ` q : T . Γθ.

– If q is of the form lαq1, . . . , qnβ then d is of the form lα′d1, . . . , dmβ′. By
Definition 5, the rule for T in D is of the form T → lα′rβ′. Let {S1, . . . , Sp} =
types(r) and s be the regular expression r with every type name U replaced
by U | ε.
• If αβ = [] then α′β′ = [] and m = n. Moreover, for each i ∈ {1, . . . , n},

θ is an answer for qi and di. Since d ∈ [[T]] and by Definition 5, there
exists T1, . . . , Tn such that di ∈ [[Ti]] and T1 · · ·Tn ∈ L(r). By induction
hypothesis, D ` qi : Ti . Γθ. Thus, by rule (Pattern), we deduce D `
q : T . Γθ.

• If αβ = [[]] then α′β′ = [] and m ≥ n. Since θ is an answer for q and d,
there exists 0 < i1 < . . . < in ≤ m such that for each j ∈ {1, . . . , n}, θ
is an answer for qj and dij

. Moreover, there exists T1, . . . , Tm such that
di ∈ [[Ti]] and T1 · · ·Tm ∈ L(r). By induction hypothesis, D ` qj : Tij

.Γθ.
Since T1 · · ·Tm ∈ L(r) and Ti1 · · ·Tin

is a subsequence of T1 · · ·Tm, we
have Ti1 · · ·Tin

∈ L(s). Thus, by rule (Pattern), we deduce D ` q :
T . Γθ.

• If αβ = {} then m = n and there exists a permutation πQ of [1, n],
such that for each j in {1, . . . , n}, θ is an answer for qj and dπQ(j).
Moreover, since d ∈ [[T]], there exists a permutation πT of [1, n] and
a sequence of types T1, . . . , Tn, such that TπT (1) · · ·TπT (n) ∈ L(r) and
for each i ∈ {1, . . . , n}, di ∈ [[Ti]]. By induction hypothesis, for each
j ∈ {1, . . . , n}, D ` qj : TπQ(j) . Γθ. Since TπT (1) · · ·TπT (n) ∈ L(r),
T1 · · ·Tn ∈ perms(L(r)), and thus TπQ(1) · · ·TπQ(n) ∈ perms(L(r)). By
rule (Pattern), we deduce D ` q : T . Γθ.

17

• If αβ = {{}} then m ≥ n and there exists an injection πQ : {1, . . . , n} →
{1, . . . , m} such that for each j ∈ {1, . . . , n}, θ is an answer for qj and
dπQ(j). Since d ∈ [[T]], there exists a permutation πT of [1, m] and a
sequence of types T1, . . . , Tm, such that TπT (1) · · ·TπT (m) ∈ L(r) and
for each i ∈ {1, . . . , m}, di ∈ [[Ti]]. By induction hypothesis, we have,
for each j ∈ {1, . . . , n}, D ` qj : TπQ(j) . Γθ. Let k1, . . . , kn be such
that 0 < k1 < . . . < kn ≤ m and for each p ∈ {1, . . . , n}, ∃j s.t.
kp = π−1

T (πQ(j)). Since TπT (1) · · ·TπT (m) ∈ L(r), TπT (k1) · · ·TπT (kn) ∈
L(s). Thus TπT (π−1

T
(πQ(1))) · · ·TπT (π−1

T
(πQ(n))) ∈ perms(L(s)), that is

TπQ(1) · · ·TπQ(n) ∈ perms(L(s)). By rule (Pattern), we deduce D `
q : T . Γθ.

– If q is a variable X then Xθ = d. By construction Γθ(X) = T1 ∩ . . . ∩ Tn

with {T1, . . . , Tn} = {T ′ | Xθ ∈ [[T ′]]}. Since d ∈ [[T]], there exists i such
that T = Ti. Thus [[Γθ(X)]] ⊆ [[T]], and we obtain Γθ v [X 7→ T]. By rule
(Var), we obtain D ` X : T . Γθ.

– If q is of the form X ; q′, then θ is an answer for q′ and d. By induction
hypothesis, we have D ` q′ : T . Γθ. Similarly to the preceding case, obtain
Γθ v [X 7→ T]. By rule (As), we deduce D ` X ; q′ : T . Γθ.

– If q is of the form desc q′, then θ is an answer for some subterm d′ of d. We
show the result by induction on d.
• If d = d′ then, by the induction hypothesis for the query term q′, we have

D ` q′ : T . Γθ. By rule (Descendant), we obtain D ` desc q′ : T . Γθ.
• If d 6= d′, then d is of the form lαd1, . . . , dnβ and there exists i, such that

d′ is a subterm of di. We have that θ is an answer for desc q′ and di.
Let r be the content model of T . there exists a type T ′ ∈ types(r) such
that di ∈ [[T ′]]. By induction hypothesis on the data term di, we have
D ` desc q′ : T ′ . Γθ. Thus, by rule (Descendant Rec), we obtain
D ` desc q′ : T . Γθ.

Proposition 23. Let D be a type definition, d a data term and U a set of type
names, such that d ∈ [[U]]. Let Q be a query such that for each targeted query
term in(db, q) in Q there is a type name T in D such that d(db) ∈ [[T]]. If θ is
an answer for Q and d, then D ` Q : U . Γθ.

Proof. By induction on the query Q.

– If Q is a query term q, then θ is an answer for q and d, with d ∈ [[Ti]] for
some Ti ∈ U . By Lemma 22, D ` q : Ti . Γθ. By rule (Query Term), we
obtain D ` Q : U . Γθ.

– If Q is a targeted query term in(db, q), then d(db) ∈ [[T]] for some type name
T in D. Moreover θ is an answer for q and d(db). By Lemma 22, D ` q : T .Γθ.
By rule (Targeted Query Term), we obtain D ` Q : U . Γθ.

– If Q is of the form and(Q1, . . . , Qp), then for each i ∈ {1, . . . , p}, θ is an
answer Qi and d. By induction, we obtain, for each i ∈ {1, . . . , p}, D ` Qi :
U . Γθ. Thus, by rule (And Query), we have D ` Q : U . Γθ.

– If Q is of the form or(Q1, . . . , Qp), then for some i ∈ {1, . . . , p}, θ is an
answer Qi and d. By induction, we obtain D ` Qi : U . Γθ. Thus, by rule
(Or Query), we have D ` Q : U . Γθ.

18

Lemma 24. Let D be a type definition, U be a set of type names, Q be a
query and Γ be a variable-type mapping such that D ` Q : U . Γ . Let Q′ =
or(Q1, . . . , Qn) be a disjunctive normal form of Q. If X is a variable occurring
in each Qi (1 ≤ i ≤ n) then Γ (X) 6= 1.

Proof. If D ` Q : U . Γ then D ` Q′ : U . Γ (we skip the details of the proof).
Given D ` Q′ : U . Γ from the rule (Or Query) it holds D ` Qi : U . Γ for
some 1 ≤ i ≤ n. By induction on Qi: for each variable in Qi a rule (Var) or
(As) must be triggered which impose that Γ (X) 6= 1.

Lemma 25. Let D be a type definition, U be a set of type names, Q be a query
term and Γ and Γ ′ be variable-type mappings such that Γ (X) = Γ ′(X) for all
X occurring in Q. Then D ` Q : U . Γ if and only if D ` Q : U . Γ ′.

Proof. It is sufficient to show, by induction on the derivation, that if D ` Q :
U .Γ then D ` Q : U .Γ ′. The other direction is simply obtained by exchanging
the roles of Γ and Γ ′.

Lemma 26. Let D be a type definition, U be a set of type names, Q be a query
term. If there exists a variable-type mapping Γ such that D ` Q : U . Γ , then
there exists a (finite) variable-type mapping set Ψ that is complete for U and Q
wrt. D.

Proof. Let Ψ1 be the set of variable-type mappings Γ that can be defined in the
following way:

Γ (X) =

{

T1 ∩ . . . ∩ Tn for some T1, . . . , Tn defined in D, if X occurs in Q
1 otherwise.

Since the set of variables occurring in Q and the set of type names defined in D
are finite, Ψ1 is also finite. Let Ψ ⊆ Ψ1 be the set of variable-type mappings Γ
such that D ` Q : U . Γ .

Let Γ ′ be a variable-type mapping such that D ` Q : U . Γ ′. Let Γ ′′ ∈ Ψ1 be
a mapping such that for every X occurring in Q, Γ ′′(X) = Γ ′(X). By lemma 25,
we obtain that D ` Q : U . Γ ′′, that is Γ ′′ ∈ Ψ . Thus, Ψ is complete for Q and
U wrt D.

Lemma 27. Let D be a type definition, c a construct term and Ψ a nonempty
set of variable-type mappings such that {Ψ} = Ψ/ ∗

∼F V (c)
, and Γ (X) 6= 1 for any

variable X occurring in c and any Γ ∈ Ψ . Then there exists a type definition
D′ ⊇ D and a regular type expression S such that D′ ` c : Ψ . S.

Proof. By induction on a construct term c, it is clear that if D1 ` c : Ψ .S, then
for any D2 ⊇ D1, D2 ` c : Ψ . S. Now we show the lemma, by induction on the
construct term c.

– If c is a basic constant b, then the rule (Const) can be applied, with D′ =
D ∪ {Tc → b}.

19

– Assume that c is a variable X . For each Γi ∈ Ψ , Γi(X) is of the form
Ti1 ∩ . . .∩ Timi

. A type definition Di (employing new type variables) can be
constructed such that [[Ti]]Di

= [[Ti1]]D ∩ . . . ∩ [[Timi
]]D (see [7, Section 2.5.2]

for details). Thus there exists a type definition D′ ⊇ D such that [[Ti]]D′ =
[[Γi(X)]]D′ = [[Γi(X)]]D for each Γi ∈ Ψ . The rule (Var) produces D′ ` c :
Ψ . T1 | · · · | Tn.

– If c is of the form lαc1, . . . , cnβ, then, by induction hypothesis, there exists
D1, . . . , Dn such that for each i ∈ {1, . . . , n}, Di ` ci : Ψ . Si and Di ⊇ D.
Let D′ = {Tc → lαS1 · · ·Snβ} ∪

⋃n

i=1 Di. We have, for each i ∈ {1, . . . , n},
D′ ` ci : Ψ . Si. Thus, by applying (Pattern), we obtain D′ ` c : Ψ . Tc.

– If c is of the form all c′. Let {Ψ1, . . . , Ψn} = Ψ/ ∗

∼F V (C)
. For each i ∈

{1, . . . , n}, {Ψi} = Ψi/ ∗

∼F V (C)
. Thus, by induction hypothesis, there ex-

ists D1, . . . , Dn such that, for each i ∈ {1, . . . , n}, Di ` c : Ψi . Si. Let
D′ =

⋃n

i=1 Di. Thus, for each i ∈ {1, . . . , n}, D′ ` c : Ψi . Si. By rule (All),
we obtain D′ ` c : Ψ . Tc.

– The case where c is of the form some k c′ is similar to the case all c′.

Lemma 28. Let D ⊆ D′ be type definitions. If D ` q : T . Γ (respectively
D ` Q : U . Γ) then D′ ` q : T . Γ (D′ ` Q : U . Γ).

Proof. In any derivation tree of D ` q : T . Γ (or D ` Q : U . Γ) we can replace
D by D′, as Γ vD [X 7→ T] implies Γ vD′ [X 7→ T] whenever T and each type
name occurring in Γ occurs in D (or is a type constant).

Lemma 29. Let D, D′ be type definitions, Q a query, and U a set of type names.
If D ⊆ D′ and Ψ is complete for Q and U wrt. D then Ψ is complete for Q and
U wrt. D′.

Proof. The first condition of Definition 18 follows from Lemma 28 (for each
Γ ∈ Ψ if D ` Q : U . Γ then D′ ` Q : U . Γ).

To show the second condition, assume D′ ` Q : U .Γ and consider the corre-
sponding derivation tree. Let Γ ′ = [X1 7→ S1, . . . , Xn 7→ Sn], where X1, . . . , Xn

are all the variables occurring in the tree, each Si is of the form Ti1 ∩ . . .∩ Timi

and Tij occurs in Si iff the condition Γ v [Xi 7→ Tij] occurs in the tree (in an
instance of a rule (Var) or (As)). The mapping Γ in the tree can be replaced
by Γ ′. Hence D′ ` Q : U . Γ ′. Then D ` Q : U . Γ ′, as all the type variables
occurring in Γ ′ are in U , and all the type variables from U occur in D. Moreover
Γ vD′ Γ ′. As Ψ is complete for Q and U wrt. D then Γ ′ vD Γi for some Γi ∈ Ψ .
Hence Γ ′ vD′ Γi and Γ vD′ Γi.

Lemma 30. Let D be a type definition, Θ be a set of substitutions, and Ψ a
set of variable-type mappings such that Θ ⊆ substitutions(Ψ). Let V be a set of
variables such that V ⊆ dom(θ) for each θ ∈ Θ. If Θ′ ∈ Θ/'V

then there exists
Ψ ′ ∈ Ψ/ ∗

∼V
such that Θ′ ⊆ substitutions(Ψ ′).

Proof. Let us consider Θ′ ∈ Θ/'V
. Let θ′ ∈ Θ′. Since Θ′ ⊆ substitutions(Ψ),

there exists Γ ′ ∈ Ψ such that θ ∈ substitutions(Γ ′). Let Ψ ′ ∈ Ψ/ ∗

∼V
be such that

20

Γ ′ ∈ Ψ ′. Let θ′′ ∈ Θ′. There exists Γ ′′ ∈ Ψ such that θ′′ ∈ substitutions(Γ ′′).
Thus for every X ∈ V , Xθ′′ ∈ [[Γ ′′(X)]]. Since θ′ 'V θ′′, we have ∀X ∈ V, Xθ′ =
Xθ′′. Since θ′ ∈ [[Γ ′]], we obtain ∀X ∈ V, Xθ′′ = Xθ′ and Xθ′ ∈ [[Γ ′(X)]]. This

means that for every X ∈ V , [[Γ ′(X)]] ∩ [[Γ ′′(X)]] 6= ∅, that is Γ ′ ∗
∼V Γ ′′. Thus

θ′′ ∈ substitutions(Ψ ′).

Proposition 31. Let D be a type definition, Ψ a set of mappings, c be a con-
struct term and S a regular type expression such that {Ψ} = Ψ/ ∗

∼F V (c)
and

D ` c : Ψ . S. Let Θ be a set of substitutions such that Θ ⊆ substitutions(Ψ)
and {Θ} = Θ/'F V (c)

. Then Θ(c) ∈ [[S]].

Proof. By induction on the construct term c.

– If c = b, where b is a basic constant, then the typing rule used to deduce
D ` c : Ψ . S is (Const). We have Θ(c) = b. Moreover, we have S = Tc,
and, since the production rule for Tc is Tc → b, we obtain Θ(c) ∈ [[S]].

– If c is a variable X , the typing rule used to deduce D ` c : Ψ . S is (Var).
We have Θ(X) = Xθ for some θ ∈ Θ. Since Θ ⊆ [[Ψ]], Xθ ∈ [[Γ (X)]], for
some Γ ∈ Ψ , and thus Xθ ∈ [[Γ1(X)]] ∪ . . . ∪ [[Γn(X)]]. Thus Θ(c) ∈ [[S]].

– If c is of the form lαc1, . . . , cnβ, then the typing rule used to deduce D `
c : Ψ . S is (Pattern). Thus for each i ∈ {1, . . . , n}, D ` ci : Ψ . Si.
By induction hypothesis, for each i ∈ {1, . . . , n}, Θ(ci) ∈ [[Si]]. Therefore
Θ(c1) ◦ · · · ◦ Θ(cn) ∈ [[S1 · · ·Sn]]. Since the production rule for Tc is Tc →
lαS1 · · ·Snβ and Θ(c) = lαΘ(c1) ◦ · · · ◦Θ(cn)β, we obtain Θ(c) ∈ [[Tc]].

– If c is of the form all c′, then the typing rule used to deduce D ` c : Ψ . S
is (All). Let {Θ1, . . . , Θp} = Θ/'F V (c′)

. By lemma 30, there exists π :

[1, p]→ [1, n] such that for each i ∈ {1, . . . , p}, Θi ⊆ Ψπ(i). Moreover for each
j ∈ {1, . . . , n}n, we have D ` c′ : Ψj . Sj . By induction hypothesis, Θi(c

′) ∈
[[Sπ(i)]] ⊆ [[S1 | · · · | Sn]]. Thus Θ(c) = Θ1(c′)◦· · ·◦Θn(c′) ∈ [[(S1 | · · · | Sn)+]].

– If c is of the form some k c′, then, similarly to the case for all c′, we have
Θi(c

′) ∈ [[S1 | · · · | Sn]], where {Θ1, . . . , Θm} ⊆ Θ/'F V (c′)
with 1 ≤ m ≤ k.

Thus Θ(c) = Θ1(c′) ◦ · · · ◦Θm(c′) ∈ [[(S1 | · · · | Sn)(1:k)]].

Now, we recall Theorem 20 and show its proof.

Theorem 20. Let D be a type definition and (c← Q) be a query rule, where for
each targeted query term in(db, q) in Q there is a type name T in D such that
d(db) ∈ [[T]]. Let U be a set of type names and d a data term such that d ∈ [[U]].

If a result for (c ← Q) and d exists then there exist S and D′ such that
D′ ⊇ D and D′ ` (c← Q) : U . S.

If there exists S such that D ` (c ← Q) : U . S and if d′ is a result for
(c← Q) and d, then d′ ∈ [[S]].

Proof. Let us assume that there exists a result for (c ← Q) and d. By Proposi-
tion 23, D ` Q : U . Γθ. Thus, by Lemma 26, there is a set Ψ of mappings that
is complete for Q and U and D.

Let VQ be the set of variables occurring in Q and Vc the set of variables
occurring in c. Let or(Q′

1, . . . , Q
′

n) be the disjunctive normal form of Q. Since

21

Xcerpt requires that, for i ∈ {1, . . . , n}, all variables in c must occur Q′

i, by
Lemma 24, we have that for all variables X ∈ Vc and all mappings Γ ∈ Ψ ,
Γ (X) 6= 1.

Let {Ψ1, . . . , Ψn} = Ψ/ ∗

∼F V (c)
. By induction from Lemma 27 we obtain that

there exist Dn ⊇ · · · ⊇ D1 ⊇ D and S1, . . . , Sn such that Di ` c : Ψi . Si (and
Dn ` c : Ψi . Si) for each i ∈ {1, . . . , n}. By Lemma 29, Ψ is also complete
for Q and U wrt. Dn. By rule (Query Rule), we obtain Dn ` (c ← Q) :
U . S1 | · · · | Sn.

Now assume that there exists S such that D ` (c ← Q) : U . S. Let Θ be
the set of all answers for Q and d and let θ ∈ Θ. By Proposition 23, D ` Q :
U . Γθ. Since Ψ used in the rule (Query Rule) is complete for Q and U wrt.
D, there exists Γ ∈ Ψ such that Γθ v Γ . Since θ ∈ substitutions(Γθ), we obtain
θ ∈ substitutions(Ψ). Thus Θ ⊆ substitutions(Ψ).

We have d′ = Θ′(c) for some Θ′ ∈ Θ/'F V (c)
. By Lemma 30, there exists

Ψ ′ ∈ Ψ/ ∗

∼F V (c)
such that Θ′ ⊆ Ψ ′. Since D ` (c← Q) : U . S1 | · · · | Sn, then for

some i ∈ {1, . . . , n}, we have Ψi = Ψ ′ and D ` c : Ψi . Si. By Proposition 31,
d′ = Θ′(c) ∈ [[Si]] ⊆ [[S1 | · · · | Sn]].

22

	Descriptive Typing Rules for Xcerpt and their Soundness
	Sacha Berger, Emmanuel Coquery, Wlodzimierz Drabent and Artur Wilk

