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Abstract

The FuTI–library is a collection of classes and methods for representing and manipulating fuzzy

time intervals. The report consists of three parts. The mathematical theory is described in the first

part. The concrete representation of fuzzy time intervals as polygons, together with the algorithms

for operating on these polygons is presented in the second part. Finally, the third part contains a

short description of the application interface. FuTI is an open source C++ library.
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1 Motivation and Introduction

Many temporal notions used in everyday life have a deliberate imprecise meaning. For example, if I say
in the morning “tonight I’ll go to the disco”, and somebody asks me “will you go to the disco at 8 pm?”
I may neither want to say “yes” nor may I want to say “no”. One may argue whether in this case any
precise mathematical model of “tonight” is useful at all. There are other cases, however, where a fuzzy
logic model of imprecise notions is definitely helpful. Consider, for example, a database with, say, a
cinema timetable. If you query the timetable “give me all performances ending before midnight”, do you
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really want to exclude a performance ending just one minute after midnight? I think, not. One could
solve this problem by giving the ‘before’ relation a fuzzy meaning, such that performances ending before
midnight get a fuzzy value 1, and performances ending after midnight get a fuzzy value which decreases
the later the performance ends. The fuzzy value could then be used to order the answers to the query
such that the performances ending after midnight come late in the list.

In this paper I describe the FuTI–library (Fuzzy Temporal Intervals) of data structures and algorithms
for representing and manipulating fuzzy temporal notions. In the first part the components of the FuTI–
library are described in a purely mathematical way, without any commitment to concrete data structures
and algorithms. In the second part I present a representation of the fuzzy intervals as polygons with
integer coordinates. All algorithms in FuTI work on these polygons. Finally the concrete interface to the
library is listed and explained.

The library is a component of the CTTN-system (Computational Treatment of Temporal Notions)
[3], a program for evaluating temporal expressions like ‘three weeks after Easter’. CTTN is currently
under development. CTTN contains in particular the specification language GeTS for specifying and
working with temporal notions [4]. Many of the language primitives in GeTS are the operations of the
FuTI–library. Other language primitives in GeTS use the PartLib–library for representing periodical
temporal notions [5]. GeTS is in particular suitable for specifying fuzzy relations between fuzzy time
intervals. Therefore FuTI is only one piece in a bigger mosaic. Some of the design decisions in FuTI are
motivated by the needs of the GeTS language.

The fuzzy intervals in FuTI are fuzzy subsets of the real values. Therefore they can represent all
kinds of things. The main motivation for most of the operations in FuTI, however, comes from their
interpretation as temporal intervals and relations; and this is the reason for the ‘T’ in FuTI.

2 The Mathematics of Fuzzy Time Intervals

The mathematics of general fuzzy sets [8] has been investigated in great depth. The particular fuzzy sets
in FuTI are subsets of the real numbers. On the one hand, this makes things easier. On the other hand,
however, it offers a very rich algebraic structure with many different operations and relations. Therefore
it is useful to start with an overview of the basic ideas and definitions about fuzzy sets. Some, but not
all of them can be found in textbooks about fuzzy sets (see e.g. [1]).

Since FuTI is designed as a library to be used in many different applications, we need to provide a
broad spectrum of quite different concepts and operations. I tried to organise them in a meaningful way
and to motivate them with temporal notions and operations.

Definition 2.1 (Basic Notions and Notations) We define some notions and notations about num-
bers and intervals.

N are the integers, R are the real numbers and R
+=def

R ∪ {−∞, +∞}.
sup{s} is the supremum of the set s ⊆ R and inf{s} is the infimum of the set s ⊆ R.
For an interval I = [a, b] ⊆ R let |I |=defb − a be the length of I. If I consists of several subintervals let |I |
be the sum of the length of the subintervals. The same definitions apply if I consists of open or half-open
intervals.

2.1 Fuzzy Time Intervals

Fuzzy Intervals are usually defined through their membership functions. A membership function maps a
base set to a real number between 0 and 1. This “fuzzy value” denotes a kind of degree of membership
to a fuzzy set S. For example, the base set may consist of all people on earth, and S may be the set of
‘large persons’. If for the person John the fuzzy value for ‘large persons’ is 1 then John is definitely a
large person. If the fuzzy value is 0 then John is definitely not a large person. If, instead, the fuzzy value
is, for example, 0.8, then John is quite tall, but not as tall as really large persons.

The base set for fuzzy time intervals is the time axis, in FuTI represented by the set R of real numbers.
Real numbers allow us to model the continuous time flow which we perceive in our life. A fuzzy time
interval in FuTI is now a fuzzy subset of the real numbers.

Definition 2.2 (Fuzzy Time Intervals) A fuzzy membership function in FuTI is a total function
f : R 7→ [0, 1] which need not be continuous, but it must be integratable.

The fuzzy interval If that corresponds to a fuzzy membership function f is

If =def{(x, y) ⊆ R × [0, 1] | y ≤ f(x)}.
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Given a fuzzy interval I we usually write I(x) to indicate the value of the corresponding membership
function.

Let FR be the set of fuzzy time intervals.

This definition comprises single or multiple crisp intervals like this:

-

6

R
0

1

Crisp Fuzzy Intervals [0,20],[50,80]

0 20 50 80

It also comprises finite fuzzy intervals like this one:

-
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R
0

1

Party Time

6pm 7pm 10pm 12pm 2am 3am

This set may represent a particular party time, where the first guests arrive at 6 pm. At 7 pm all
guests are there. Half of them disappear between 10 and 12 pm (because they go to the pub next door to
watch an important soccer game). Between 12 pm and 2 am all of them are back. At 2 am the first ones
go home, and finally at 3 am all are gone. The fuzzy value indicates in this case the number of people at
the party. Fuzzy intervals may also be infinite.
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Danger Time: Caused by Radioactive Decay

More realistic examples of infinite fuzzy time intervals are intervals where the fuzzy value remains
constant after a while. For example, the term ‘after tonight’ may be represented by a fuzzy value which
rises from fuzzy value 0 at 6 pm until fuzzy value 1 at 8 pm and then remains 1 ad infinitum.

-

6

R
0

1

After Tonight

6 8

The more general case are infinite fuzzy intervals which may be infinite at one or two sides, but where
the membership function becomes constant, but not necessarily 1, after a while.

-
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1

Infinite Fuzzy Interval with Mostly Constant Membership Function
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Remark 2.3 The representation of a fuzzy interval as a subset of R × [0, 1] means that one can apply
the standard set operators ∪ (union), ∩ (intersection) and \ (set difference) to fuzzy intervals. The
standard set theoretic definition of intersection and set difference, however, need not yield fuzzy intervals
any more. Therefore there are other, more appropriate definitions of the set operations on fuzzy intervals
(see Section 2.4).

Definition 2.4 (Height of a Fuzzy Interval (sup, inf)) For a fuzzy interval I ∈ FR let

sup(I)=def sup{I(x) | x ∈ R}

be the height (largest fuzzy value, supremum) of I and let

inf(I)=def inf{I(x) | x ∈ R}

be the smallest fuzzy value, (infimum) of I

sup(I) is usually, but not necessarily, 1 for nonempty fuzzy time intervals. If sup(I) = 0 then, however,
I must be empty.

Fuzzy time intervals may be quite complex structures with many different characteristic features. The
simplest ones are core and support. The core is the subset of R where the fuzzy value is 1, and the support
is the subset of R where the fuzzy value is non-zero. In addition we define the kernel as the subset of R

where the fuzzy value is not constant ad infinitum. Finally, maxRegion is the interval between the first
and last point where the fuzzy value is maximal.

Definition 2.5 (Core, Support, Kernel and MaxRegion)
The core C(I) of a fuzzy set I is the subset of R where the membership function is 1:

C(I)=def{x ∈ R | I(x) = 1}.

The core of I can be empty even if I itself is not empty.

The support S(I) of I is the subset of R where the membership function is nonzero:

S(I)=def{x ∈ R | I(x) 6= 0}.

If S(I) = ∅ then I = ∅.
The kernel K(I) of I is the smallest interval [a, b[⊆ R

+ such that there are I1 ∈ [0, 1] and I2 ∈ [0, 1] with
I(x) = I1 for all x < a and I(x) = I2 for all x > b.

K(I) can be empty, finite or infinite. If K(I) = ∅ then I is either empty or infinite and crisp.

The maxRegion M(I) of I is the interval between the first and last maximal points, i.e.

M(I)=def

{
[inf{x | I(x) = sup(I)}, sup{x | I(x) = sup(I)}[ if sup(I) 6= 0
[] otherwise

For O ∈ {C, S, K, M} let Ou(I) be the (crisp) fuzzy interval such that C(Ou(I)) = S(Ou(I)) = Ou(I).

For O ∈ {C, S, K, M} let

IfO =def

{
inf{x | O(I)(x) 6= 0} if O(I) 6= ∅
+∞ otherwise

be the first O-point of I and let

IfO =def

{
sup{x | O(I)(x) 6= 0} if O(I) 6= ∅
+∞ otherwise

be the last O-point of I.

IfC and I lC are the first/last core points.
IfS and I lS are the first/last support points.
IfK and I lK are the first/last kernel points.
IfM and I lM are the first/last maxRegion points.
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First and Last Core and Support Points

I

IfS I lSIfC = IfM I lC = I lM

core and maxRegion
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First and Last Kernel Points
IfK I lK

The next picture shows the kernel of the same interval I as crisp interval Ku(I).
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Ku(I)

I Ku(I)

The next picture shows an example where IfM = I lM and where sup(I) is really the supremum, and not
the maximum because I(IfM ) = 0.
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First and Last Maximal Points
IfM = I lM

If sup(I) = 1 then IfM = IfC and I lM = I lC . If, however, sup(I) < 1 then IfM and I lM have
nothing to do with the core of I .

Fuzzy time intervals with finite kernel are of particular interest because although they may be infinite,
they can easily be implemented with finite data structures. Therefore we give them an extra name.

Definition 2.6 (Fuzzy Time Intervals with Finite Kernel) Let F f
R

be the set of fuzzy time inter-
vals (Def. 2.2) with finite kernel (Def. 2.5).

Fuzzy time intervals which are in fact crisp intervals can now be characterised very easily as intervals
where core and support are the same.

Definition 2.7 (Crisp Interval) A crisp interval is a fuzzy interval I (Def. 2.2) such that C(I) = S(I)
(Def. 2.5).

Remark 2.8 (Openness and Closedness) Ordinary intervals can be open or closed. A similar dis-
tinction can also be made for fuzzy intervals. As an example, consider the following fuzzy interval I:

-

6
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Half Open Fuzzy Interval

I

a b c d
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If we have I(a) = 0.5, I(b) = 1, but I(c) = 0.5 and I(d) = 0 then I is closed at a and b and open at c
and d.

We sometimes indicate the open sides of fuzzy intervals with dashed lines.

Half-open intervals are of particular interest for time intervals. Consider, for example, the two intervals
‘this week’s Monday’ and ‘this week’s Tuesday’. If both intervals are represented as closed intervals then
midnight belongs to Monday and Tuesday. This is not what we usually want. Therefore it is more
realistic to represent the intervals as half-open intervals such that midnight belongs to either Monday
or Tuesday, but not to both days. As a convention, we assume that (finite) time intervals are half open
at the positive side: their structure is [a, b[. Midnight would then belong to Tuesday. This has some
consequences for the algorithms (cf. Remark 3.24).

2.2 Scalar Properties of Fuzzy Time Intervals

Fuzzy time intervals can be measured in various ways. Besides the size, which is the integral over the
membership function, one can locate the position of the core, support and kernel. One can also measure
the maximal fuzzy value. This should, but need not be 1. Furthermore, one can split the interval into
parts of equal size (the first half and the second half etc.), and locate their boundaries. Let us start with
the size of the interval.

Definition 2.9 (Size) For a, b ⊆ R
+ and a fuzzy time interval I let

|I |ba =def

∫ b

a

I(x) dx. |I |=def|I |+∞−∞ is the size of I.

If I is a crisp interval then |I | yields the length of I in the usual sense.

Centre Points
The n, m-centre points defined below are used to express temporal notions like ‘the first half of the year’,
or ‘the second quarter of the year’ or more exotic expressions like ‘the 25th 49th of the weekend’ etc. The
notion of n, m-centre points makes only sense for finite intervals.

Definition 2.10 (n, m-Centre Points) Let I ∈ FR with |I | < ∞. For two integers m > 1 and 0 ≤ n ≤
m we define the n, m-centre points
In,m=defxn where xn is a minimal R-value in a sequence IfS = x0, . . . , xm = I lS with |I |x1

x0
= |I |x2

x1
= . . . =

. . . |I |xm
xm−1

= |I |/m.

Examples: I1,2 splits I in two halfs of the same size. I1,3 indicates a split of I into three parts of the
same size. I1,3 is the boundary of the first third, I2,3 is the boundary of the second third.

-

6

R
0

1

n, 3-Centre Points
I0,3 I1,3 I2,3 I3,3

-

6

R
0

1

n, 2-Centre Points
I0,2 I1,2 I2,2

Middle Points:
The middle point between the centre points In,m and In+1,m is just I2n+1,2m. For example, the middle
point in the first half of I is I1,4 and the middle point in the second half is I3,4.
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Components
Fuzzy time intervals can consist of several different components. A component is a sub-interval of a
fuzzy interval such that the left and right end is either infinity, or the membership function drops down
to 0. Let Cmp(I) be the list of components of I . nComponents(I) is the number of components of I .
Component(I, k) is the kth component of I .

Definition 2.11 (Components) Let I ∈ FR. The components I0, . . . , In of I are fuzzy time intervals
such that: (i) Ik(x) = I(x) for all x ∈ S(Ik) and 0 ≤ k ≤ n, and (ii) for all k ∈ {1, . . . , n − 1}:
(limx→IfS

k

I(x) = 0 or limIfS

k
←x I(x) = 0) and (limx→IlS

k
I(x) = 0 or limIlS

k
←x I(x) = 0).

Let nComponents(I) be the number of components of I.
Let Component(I, k) be the kth component of I.

The definition is quite complicated because we want to count as separate components parts of fuzzy
time intervals where the membership function drops down to 0 at just one single point.

Example:

-

6

R
0

1

Components

I0 I1 I2

2.3 Functions Operating on Fuzzy Time Intervals

Time intervals usually don’t appear from nowhere, but they are constructed from other time intervals.
We distinguish two ways of constructing new fuzzy time intervals, first by means of y-functions and then
by means of interval operators. Y-functions map fuzzy values to fuzzy values. They can therefore be used
to construct a new interval from a given one by applying the y-function point by point to the membership
function values.

Interval operators are more general construction functions. They take one or more fuzzy time intervals
and construct a new one out of them.

Definition 2.12 (Y-Functions)
Y-FCTn =def{f : [0, 1]

n 7→ [0, 1]} is the set of n-place y-functions.
They map fuzzy values to fuzzy values.

Y-FCT=def
⋃

n≥0 Y-FCTn.

Definition 2.13 (Interval Operators)
I-OPsn=def{g : FR

n 7→ FR} is the set of n-place interval operators.
They map fuzzy intervals to fuzzy intervals.

I-OPs=def
⋃

n≥0 I-OPsn.

Every y-function can be used to construct a new fuzzy time interval from given ones by applying the
y-function to the fuzzy values.

Definition 2.14 (Associated Interval Operators) If f ∈ Y-FCTn is a y-function then gf ∈ I-OPsn

defined by gf (I1, . . . , In)(x)=deff(I1(x)), . . . , In(x)) is the associated interval operator.

Linear Y-Functions
A small, but important class of y-functions are linear y-functions. They are important firstly because
very natural operators, like standard complement, intersection and union of fuzzy time intervals can
be described with linear y-functions. Secondly they are important because they allow us to transform
intervals represented by polygons in a very efficient way: only the vertices and intersection points of the
polygons need to be transformed.

The main characterisation of linear y-functions is therefore that they map non-intersecting straight
line segments to straight line segments, and not to curves.

7



Definition 2.15 (Linear Y-Function) A y-function f ∈ Y-FCTn is linear if the mapping
f ′((x, y1), . . . , (x, yn))=def(x, f(y1, . . . , yn)) maps non-intersecting line segments (x1, z11) – (x2, z12), . . .,
(x1, zn1) – (x2, zn2) to a line segment (x1, f(z11, . . . , zn1)) – (x2, f(z12, . . . , zn2)).

One-place linear y-functions can be characterised in the following way:

Proposition 2.16 (Characterisation of One-Place Linear y-Functions) A one-place y-function f
is linear if and only if f(y) = f(0) + (f(1) − f(0)) · y holds.

Proof: Suppose f is linear. We take the straight line segment between (0, 0) and (1, 1). The mapping
f ′(x, y)=def(x, f(y)) maps this line segment to a line segment between (0, f(0)) and (1, f(1)). Therefore

f(y) = f(0) + f(1)−f(0)
1−0 · (y − 0) (line equation)

= f(0) + (f(1) − f(0)) · y
The other direction of the proof is trivial.

An example for a one-place linear y-function is the standard negation n(y) = 1 − y.

The characterisation of two-place linear y-functions is a bit trickier.

Proposition 2.17 (Characterisation of Two-Place Linear y-Functions) A two-place y-function f
is linear if and only if the following condition holds:

f(y1, y2) =

{
f(0, 0) + (f(y1/y2, 1) − f(0, 0)) · y2 if y1 ≤ y2

f(0, (y1 − y2)/(1 − y2)) + (f(1, 1) − f(0, (y1 − y2)/(1 − y2))) · y2 otherwise

Proof: Suppose f is linear.

-

6

�
�

�
�

�
��

�������

0
0

1

y2

1

y2

y1

z

We consider the case y1 ≤ y2 first. To this end we take the straight
line segment between (0, 0) and (1, 1). The line equation for this line is just
y = x. Now take an arbitrary y2 ∈ [0, 1] and an arbitrary y1 ≤ y2. The
line equation for the line segment starting at (0, 0) and crossing (y2, y1) is
y = (y1 − 0)/(y2 − 0) · x. For x = 1 we get z = y1/y2.

Since f is linear we have

f(y1, y2) = f(0, 0) + f(z,1)−f(0,0)
1−0 · y2

= f(0, 0) + (f( y1

y2
, 1) − f(0, 0)) · y2

Now consider the case y1 ≥ y2.

-
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1
y1

y2

y2

z

The line starting at (1, 1) and crossing (y2, y1) crosses the y-axis at z =
(y1 − y2)/(1 − y2).

Since f is linear we have

f(y1, y2) = f(0, z) + f(1,1)−f(0,z)
1−0 · y2

= f(0, y1−y2

1−y2
) + (f(1, 1) − f(0, y1−y2

1−y2
)) · y2

The other direction, showing that the two conditions imply linearity, is again
straightforward.

Simple examples for linear two-place y-functions are the minimum and maximum functions. The
minimum function is used to realize standard intersection of two fuzzy time intervals, and the maximum
function is used to realize standard union of two fuzzy time intervals.

2.4 Set Operators for Fuzzy Intervals

For ordinary intervals there are the standard Boolean set operators: complement, intersection, union
etc. These are uniquely defined. There is no choice. Unfortunately, or fortunately, because it gives you
more flexibility, there are no such uniquely defined set operators for fuzzy intervals. Set operators are
essentially transformations of the membership functions, and there are lots of different ones. One has
tried to classify them such that essential properties of the Boolean set operators are preserved.
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Complement of Fuzzy Time Intervals
The complement operator for fuzzy time intervals is to be understood in the following sense: if for
a particular point x the probability to belong to a set S is y then the probability to belong to the
complement of S is n(y) where n is a so called negation function.

Definition 2.18 (Negation Function) A function n ∈ Y-FCT1 satisfying the conditions

• n(0) = 1 and n(1) = 0;

• n is non-increasing, i.e. ∀x, y ∈ [0, 1] : x ≤ y ⇒ n(x) ≥ n(y)

is called a negation function.
Let NF be the set of all negation functions.

Example 2.19 (Standard Negation and λ-Complement) The function

n(y)=def1 − y

is the standard fuzzy negation.

For any λ > −1 the so called λ-complement is the function

nλ(y)=def 1 − y

1 + λy
.

Both functions n and nλ are negation functions in the sense of Def. 2.18.

N(I)(x)=defn(I(x)) is the standard complement operator.
Nλ(I)(x)=defnλ(I(x)) is the λ-complement operator.

If I is a crisp interval then N(I) = Nλ(I)

Proposition 2.20 (Idempotency of the negation functions) For every y ∈ [0, 1] we have for the
standard negation n(n(y)) = y and for the λ-complement: nλ(nλ(y)) = y.

The proof is straightforward.

This property need not hold for other negation functions.
We give some examples for standard and λ-complement. The dashed lines indicate the complement.

-
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Standard Complement and λ-Complement for a Crisp Interval

-
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Standard Complement for a Fuzzy Interval

If we define ‘tonight’ as a fuzzy interval, rising from 0 at 6pm to 1 at 8pm, we could use the standard
complement for ‘before tonight’. The term ‘long before tonight’ must of course be represented differently
to ‘before tonight’. A λ-complement version with λ = 2 looks as follows:

-
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λ-Complement for λ = 2

6 8
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If λ is increased then the descend from 6 pm till 8 pm becomes steeper. A suitable λ could then in fact
mean ‘long before tonight’.

Intersection and Union of Fuzzy Time Intervals
The two figures below show standard union and intersection of fuzzy intervals. Union is obtained by
taking the maximum of the two member functions. The minimum of the two member functions yields
intersection.

-
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Standard Union of Fuzzy Sets

I J

I ∪ J
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Standard Intersection of Fuzzy Sets

I
JI ∩ J

Standard union and intersection, however, is only one particular form of union and intersection. In-
stead of minimum and maximum one could think of other functions for computing union and intersection.
These other functions, so called triangular norms and co-norms, must fulfill certain axioms in order to
satisfy our intuition about union and intersection.

Definition 2.21 (Triangular Norms and Co-norms) A function T : [0, 1]
2 7→ [0, 1] is called a tri-

angular norm, or t-norm for short, iff it satisfies the laws T1-T4 below. A function S : [0, 1]
2 7→ [0, 1] is

called a triangular co-norm, or t-co-norm for short, iff it satisfies the laws S1-S4 below.

Identity law: T1: ∀x T (x, 1) = x,
S1: ∀x S(x, 0) = x

Commutativity: T2: ∀x, y T (x, y) = T (y, x),
S2: ∀x, y S(x, y) = T (y, x)

Associativity: T3: ∀x, y, z T (x, T (y, z)) = T (T (x, y), z),
S3: ∀x, y, z S(x, S(y, z)) = S(S(x, y), z)

Monotonicity: ∀x, y, u, v ∈ [0, 1] x ≤ u, y ≤ v :
T4: T (x, y) ≤ T (u, v),
S4: S(x, y) ≤ S(u, v)

Triangular norms and co-norms are y-functions in Y-FCT2 (Def. 2.12).

Let TNorm be the set of triangular norms and
let TCoNorm be the set of triangular co-norms.

The triangular norms and co-norms are now turned into interval operators ∩T and ∪S :

Definition 2.22 (Intersection and Union) Let I, J ∈ FR be two fuzzy intervals. If T is a triangular
norm and S a triangular co-norm (Def. 2.21) then

(I ∩T J)(x)=defT (I(x), J(x)) and (I ∪S J)(x)=defS(I(x), J(x))

are the intersection and union operators on the fuzzy intervals.

Example 2.23 (Standard Fuzzy Intersection and Union) The function min is a triangular norm
and the function max is a triangular co-norm. Therefore

(I ∩min J)(x)=def min(I(x), J(x)) and (I ∪max J)(x)=def max(I(x), J(x))

are the standard fuzzy intersection and union operators.
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A particular class of triangular norms and co-norms, together with a negation function, is the
Hamacher family.

Example 2.24 (Hamacher Family) The Hamacher family consists of the following parameterised fam-
ilies of triangular norms and co-norms, and negation functions (λ-complement):

Tγ(x, y) =def xy

γ + (1 − γ)(x + y − xy)
γ ≥ 0

Sβ(x, y) =def x + y + (β − 1)xy

1 + βxy
β ≥ −1

nλ(x) =def 1 − x

1 + λx
λ > −1
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1

Hamacher Intersection and Union with β = γ = 0.5

Set Difference of Fuzzy Time Intervals Set difference I \ J can also be defined by means of y-
functions. The following versions are derived from corresponding implication functions:

Definition 2.25 (Set Difference)
Kleene: (I \ J)(x)=defmin(I(x), 1 − J(x))
Lukasiewicz: (I \ J)(x)=defmax(0, I(x) − J(x))
Goedel: (I \ J)(x)=def0 if I(x) ≤ J(x) and 1 − J(x) otherwise

Example 2.26 (Set Difference) The following picture shows the difference between the three versions
of set difference.
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Set Difference

Kleene

Lukasiewicz

Goedel

I J

The Kleene version corresponds to the crisp definition of set difference: I \ J = I ∩ J c where Jc is the
complement of J . This can be generalised by replacing ∩ with ∩T and Jc with a complement operator.

Definition 2.27 (Generalised Set Difference) Let N be a complement function and T a t-norm. We
define the set difference operator \N,T between two fuzzy intervals I and J as

(I \N,T J)=defI ∩T N(J)
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1

Fuzzy Set Difference I \N0.5,T0.5
J

I

JI \N0.5,T0.5
J

Splitting an interval into two intervals is the worst that can happen for the set difference of two crisp
intervals. In the case of fuzzy intervals, the set difference operator can produce arbitrary many disjoint
intervals, as the next figure shows.
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Set Difference Splits into three Components

I

J

I \n,min J

2.5 Hull Operators for Fuzzy Intervals

Except for the closed hull of an open interval there is no meaningful notion of a ‘hull’ for a single crisp
time interval. It turns out, however, that there are various hulls for fuzzy intervals. We define them in
the order of information loss. The first notion of a hull, the crisp hull looses most information about the
interval, whereas the last notion, the monotone hull looses the least information. All these notions of a
hull coincide for crisp intervals.

Definition 2.28 (Crisp Hull) For an interval I ∈ FR let CrH(I) be the smallest convex crisp interval
containing I.
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Crisp Hull of a Finite Interval
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1

Crisp Hull of an Infinite Interval

Notice that CrH(I) 6= Su(I) if I consists of several unconnected components.

Definition 2.29 (Convex Hull) The convex hull CoH(I) of a fuzzy set I is the smallest convex set
containing I.
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Convex Hull of a Finite Set
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Convex Hull of an Infinite Set

Finally we define the monotone hull which looses the least of the structural information about the
interval.
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Definition 2.30 (Monotone Hull) The monotone hull MoH(I) of a fuzzy set I is the smallest mono-
tone fuzzy interval containing I. Monotone means that from left to right the fuzzy values MoH(I)(x) are
rising monotonically to sup(I), and then falling monotonically again.
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Monotone Hull
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Monotone Hull of a Fuzzy Interval with Three Components

2.6 Basic Unary Transformations

We now introduce a little library of interval operators. They are used in the GeTS specification language
as building blocks, for example, to define fuzzy point–interval and fuzzy interval–interval relations.

Definition 2.31 (Basic Unary Transformations) Let I ∈ FR be a fuzzy interval. We define the
following (parameterised) interval operators:

identity(I) =def I

extend+(I)(x) =def

{
sup{I(y) | y ≤ x} if x ≤ IfM

1 otherwise

extend−(I)(x) =def

{
sup{I(y) | y ≥ x} if x ≥ I lM

1 otherwise

scaleup(I)(x) =def

{
I(x)/ sup(I) if sup(I) 6= 0
0 otherwise

cutx1,x2
(I)(x) =def

{
0 if x < x1 or x ≥ x2

I(x) otherwise

cutx1,+(I)(x) =def

{
0 if x < x1

I(x) otherwise

cutx1,−(I)(x) =def

{
0 if x ≥ x1

I(x) otherwise

shiftn(I)(x) =def I(x − n)

timesa(I)(x) =def min(1, a · I(x)) a ≥ 0

expe(I)(x) =def I(x)e e ≥ 0

integrate+(I)(x) =def lim
a7→∞

∫ x

−a
I(y)dy

∫ +a

−a
I(y)dy

integrate−(I)(x) =def lim
a7→∞

∫ +a

x I(y)dy
∫ +a

−a I(y)dy
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negateoffset(I)(x) =def 1 − I(x − offset)

invert(I)(x) =def







1 − I(x) if IfM
k ≤ x < I lM

k+1

where I0, . . . Im are the components of I
0 otherwise.

extend
extend+(I) follows the left part of the monotone hull of the interval until the left maximum I lM is reached
and then stays at fuzzy value 1. extend−(I) is the symmetric version of extend+(I).
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1

extend+ and extend−
IfM I lM

I I

extend+(I) is useful for implementing a ‘before’-relation because only the left part of I is relevant for
evaluating ‘before’. extend−(I), on the other hand, can be used for an ‘after’-relation.

scaleup
The scaleup-function is different to the identity function only if the hight sup(I) is not 1. In this case it
scales the membership function up such that sup(scaleup(I)) = 1.
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scaleup

cut
cutx1,x2

(I) just cuts the piece between x1 and x2 out of the interval I . The resulting interval is closed at
x1 and half open at x2.
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cutx1,x2

x1 x2

cutx1,+(I) cuts the part out of I before x1 whereas cutx1,−(I) cuts the part out of I after x1.

shift
shiftn just moves the interval by n time units.
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shift20
0 20
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times
timesa multiplies the membership function by a, but keeps the result smaller or equal 1. timesa has no
effect on crisp intervals.
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1

times2

exp
expe takes the membership function to the exponent e. It can be used to damp increases or decreases.
expe has also no effect on crisp intervals. expe is non-linear in the sense that straight lines are turned
into curved lines.
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1

exp3

integrate
This operator integrates over the membership function and normalises the integral to values ≤ 1. The
two integration operators integrate+ and integrate− can be simplified for finite fuzzy time intervals.

Proposition 2.32 (Integration for Finite Intervals) If the fuzzy interval I is finite then

integrate+(I)(x) =

∫ x

−∞
I(y)dy

|I | and integrate−(I)(x) =

∫ +∞

x
I(y)dy

|I |
The proofs are straightforward.

Example for integrate+ and integrate−:
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integrate+ and integrate−

integrate+(I) integrate−(I)

The integration operator for infinite intervals I with finite kernel turns the interval into a constant
function which does no longer depend on the finite part of I .

Proposition 2.33 (Integration for Intervals with Finite Kernel) If the infinite fuzzy interval I
has a finite kernel with I1=defI(−∞) and I2=defI(+∞) then

integrate+(I)(x) =
I1

I1 + I2
and integrate−(I)(x) =

I2

I1 + I2

Proof:

integrate+(I)(x) = lima7→∞

R

x

−a
I(y)dy

R

+a

−a
I(y)dy

= lima7→∞
|I|I

fK

−a +|I|x
IfK

|I|I
fK

−a
+|I|I

lK

IfK
+|I|a

IlK

= lima7→∞
|I|I

fK

−a

|I|I
fK

−a
+|I|a

IlK

= lima7→∞
(IfK+a)·I1

(IfK+a)·I1+(a−IlK)·I2

= lima7→∞
a·I1

a·I1+a·I2

= I1
I1+I2

integrate−(I)(x) = lima7→∞

R

+a

x
I(y)dy

R

+a

−a
I(y)dy

= lima7→∞
|I|I

lK

x +|I|a
IlK

|I|I
fK

−a
+|I|I

lK

IfK
+|I|a

IlK

= lima7→∞
|I|a

IlK

|I|I
fK

−a
+|I|a

IlK

= lima7→∞
(a−IlK)·I2

(IfK+a)·I1+(a−IlK)·I2

= lima7→∞
a·I2

a·I1+a·I2

= I2
I1+I2
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invert
The invert function is almost like the standard negation function, except that invert(I) is nonzero only in
the gaps between the components of I . The interval I in the next picture consists of three components.
The maximal fuzzy value of the middle component is not 1. Nevertheless invert(I) drops down to
0 between the first and last maximum of the middle component. invert is needed for an in the gap
operator.
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invert

Fuzzification
Fuzzy time intervals could be defined by specifying the shape of the membership function in some way.
This is in general very inconvenient. Therefore FuTI provides an alternative. The idea is to take a crisp
interval and to ‘fuzzify’ the front and back end in a certain way. For example, one may specify ‘early
afternoon’ by taking the interval between 1 and 6 pm and imposing, for example, a linear or a Gaussian
shape increase from 1 to 2 pm, and a linear or a Gaussian shape decrease from 4 to 6 pm. Technically
this means multiplying a linear or Gaussian function with the membership values.

The fuzzification functions can be defined with absolute coordinates and with relative coordinates.
We define the absolute version first.

Definition 2.34 (Linear Fuzzification Function) Let I ∈ FR, x1, x2 and offset be x-coordinates.
We define the ‘front’ linear fuzzification function with zero offset first:

FALfx1,x2,0(I)(x)=def







0 if x < x1

I(x) if x ≥ x2

I(x) x−x1

x2−x1
otherwise

If the offset is nonzero we have

FALfx1,x2,offset(I)(x)=def







FALfx1,x2,0(x + offset) if x < x2 − offset
FALfx1,x2,0(x2) if x2 − offset ≤ x < x2

I(x) otherwise

The ‘back’ linear fuzzification function is:

FALbx1,x2,0(I)(x)=def







0 if x ≥ x2

I(x) if x < x1

I(x) x2−x
x2−x1

otherwise

If the offset is nonzero we have

FALbx1,x2,offset(I)(x)=def







FALbx1,x2,0(x − offset) if x ≥ x1 + offset
FALbx1,x2,0(x2) if x1 ≤ x ≤ x1 + offset
I(x) otherwise

In the picture below we fuzzify a crisp interval with a linear increase from 0 – 10, and a linear decrease
from 20 – 30, which is shifted by an offset of 10.
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Linear Fuzzification:

0 10 25 35

FALf0,10,0(I)

FALb20,30,10(I)

The next example shows the linear fuzzification of an already fuzzy interval. The dotted lines show the
linear increase and decrease. The dashed line is the result of the fuzzification operator. Since the two
polygons are multiplied, we get quadratic curves.
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Linear Fuzzification of an Already Fuzzy Interval

Gaussian Fuzzification
Besides linear fuzzification, FuTI offers the fuzzification with a Gaussian shape. The Gaussian function

is e−(
x−x0

σ
)2 . x0 is the symmetry point and σ determines the increase and decrease.
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Gaussian Shape

xh x0

0.5

The Gaussian fuzzification function is determined by the parameters x0 and xh. xh is the x-coordinate
where e−((xh−x0)/σ)2 = 0.5. This condition determines σ =

√

(−1/ln(0.5)) · (xh − x0).
Since the Gauss function does not become 0, we must cut it off at some x-coordinate. The heuristic

is to cut it off at a distance 3(x0 − xh) from x0.

Definition 2.35 (Gaussian Fuzzification Function) Let I ∈ FR, xh, x0 and offset be x-coordinates.
Let σ=def

√

(−1/ln(0.5)) · (xh − x0).
We define the ‘front’ Gaussian fuzzification function with zero ‘offset’ first:

FAGfxh,x0,0(I)(x)=def







0 if x < 3xh − 2x0

I(x) if x ≥ x0

I(x)e−((x−x0)/σ)2 otherwise

If the offset is nonzero we have

FAGfxh,x0,offset(I)(x)=def







FAGfxh,x0,0(x + offset) if x < x0 − offset
FAGfxh,x0,0(x0) if x0 − offset ≤ x < x0

I(x) otherwise

The ‘back’ Gaussian fuzzification function is:

FAGbxh,x0,0(I)(x)=def







0 if x > 3xh − 2x0

I(x) if x < x0

I(x)e−((x−x0)/σ)2 otherwise

If the offset is nonzero we have

FAGbxh,x0,offset(I)(x)=def







FAGbxh,x0,0(x − offset) if x ≥ x0 + offset
FAGbxh,x0,0(x2) if x0 ≤ x ≤ x0 + offset
I(x) otherwise

Example 2.36 We fuzzify ‘early afternoon’ by taking the interval between 1pm and 6pm, imposing a
Gaussian rise between 1pm and 2pm and a Gaussian decrease between 4 and 6pm.
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Early Afternoon: FAGf1.5,2,0(I) and FAGb5,4,0(I)

1pm 2pm 4pm 6pm

I

Fuzzification functions with absolute coordinates are not that useful because usually one does not know
the coordinates in advance. Therefore FuTI also provides fuzzification functions where the parameters
are percentage values. FRLf10,5, for example, means linear fuzzification where the linear increase is 10%
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of the kernel size and the offset is 5% of the kernel size. FRGf10,0 means a Gaussian increase where x0

is 10% of the kernel size past IfK , xh is 1/2 the distance between IfK and x0, and the offset is such that
xh coincides with IfK .

Definition 2.37 (Fuzzification with Relative Coordinates) For an interval I, percentage numbers
r and o between 0 and 100 we define the relative fuzzification functions.

Let d = (I lK − IfK)/100.

FRLfr,o(I) =def FALfIfK ,IfK+d·r,IfK−d·o(I)
FRLbr,o(I) =def FALbIlK−d·r,IlK ,IlK+d·o(I)
FRLr,o(I) =def FALbIlK−d·r,IlK ,IlK+d·o(FALfIfK ,IfK+d·r,IfK−d·o(I))
FRGfr(I) =def FAGfIfK+d·r,IfK+1/2·d·r,2/3·d·r(I)
FRGbr(I) =def FAGbIlK−d·r,IlK−1/2·d·r,2/3·d·r(I)
FRGr(I) =def FAGbIlK−d·r,IlK−1/2·d·r,2/3·d·r(FAGfIfK+d·r,IfK+1/2·d·r,2/3·d·r(I))

The functions FRL and FRG fuzzify an interval at both sides. A simple composition of FRLf and
FRLb, for example, yields an unsymmetric result because the fuzzification at one end first changes the
kernel size. The relative fuzzification of the other side of the changed literal therefore uses the data of
the changed interval for computing xh and x0. FRL and FRG avoid this by computing the absolute
coordinates first and using them for both sides.

-

6

R
0

1

Relative Gaussian Fuzzification FRG20

3 Data Structures and Algorithms

The algorithms presented in this document need to deal with four basic datatypes: time points, fuzzy
values, fuzzy temporal intervals and y-functions.

Time Points
The time points are points on the R-axis. Arbitrary real numbers cannot be represented on computers.
The choice is therefore between floating point numbers and integers as representation of time points. The
range of floating point numbers is much higher than the range of integers. Unfortunately, algorithms
operating on floating point numbers are prone to uncontrollable rounding errors. Another argument for
using integers instead of floating point numbers is that the real time measurements on earth give you
always integers. The very definition of exact time measurement already uses integers: in 1967 one second
was defined as 9.192.631.770 cycles of the light emitted when an electron jumps between the the two
lowest hyperfine levels of the Caesium 133 atom. Therefore the most precise time measurement available
at all depends on counting integers (cycles of light).

Therefore the FuTI–library represents time with integer coordinates. There is no assumption about
the meaning of these integers. They may be years, seconds, picoseconds or even cycles of the Caesium
133 light.

Fuzzy Values
Fuzzy values are usually real numbers between 0 and 1. A first choice would therefore be to use floating
point numbers for the fuzzy values. Again, floating point numbers are prone to rounding errors. Moreover,
computation with floating point numbers is more expensive than computation with integers. Therefore
I decided again to use integers instead of floating point numbers. This means of course that one cannot
represent the fuzzy value 1 as the integer 1. We could then use just 0 and 1 and no other fuzzy value.
Instead one better represents the fuzzy value 1 as a suitable unsigned integer of a certain bit size. Since
fuzzy values are estimates only anyway, 16 bit unsigned integer (unsigned short int in C) are precise
enough for fuzzy values.

Definition 3.1 (Largest Fuzzy Value) Let > be the maximal fuzzy value in the implementation.
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To make the examples more easy to understand, we use > = 1000 in this paper. > is a compiler
option in the actual implementation and can be changed easily.

Fuzzy Time Intervals
Fuzzy intervals are usually implemented by a representation of their membership functions. Arbitrary
membership functions are almost impossible to represent precisely on a computer. A natural choice for
realizing approximated fuzzy time intervals over integer time and integer fuzzy values is the representation
with envelope polygons over integer coordinates. This has a number of advantages: the representation
is compact and can nevertheless approximate the membership functions very well; simple structures,
like crisp intervals, have a simple representation; we can use ideas and algorithms from Computational
Geometry [7, 2]; there are very efficient algorithms for most of the problems, and it is clear where rounding
errors can occur, and where not.

Coordinates and Integer Datatypes
The implemented fuzzy intervals are independent of their interpretation as fuzzy time intervals. Therefore
we shall speak of the x-axis instead of the time axis and of the y-axis instead of the fuzzy value axis.
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The Used Coordinate System

Definition 3.2 (x-Integers and y-Integers) FuTI uses integers of different size for the x-coordinates
and the y-coordinates. Therefore we shall speak of the x-integers and of the y-integers. The default for
x-integers is 64 bit long long integers, and the default for y-integers is 16 bit short integers. The library
has also been tested with multiple-precision x-integers.

Notation for Algorithms
We shall write most algorithms in a functional notation which is as mathematical as possible, but still
concrete enough that they can be implemented straight away. It turned out that the object oriented
paradigm is not only very good for getting modularised and easy to understand implementations, but it
also makes the mathematical notation clearer. Therefore we shall use the notion o.v and o.m(p1, . . . , pn)
where o is an object, v is an instance variable, and m is a method (function) with arguments p1, . . . , pn.

The expression min(i ≥ 0 | ϕ(i)) denotes a loop: starting with i = 0, increase i by 1 until ϕ(i) becomes
true. In this case return the i with ϕ(i) = true. Notice that the loop may in general not terminate. We
use similar expressions with the obvious meaning.

The expression

a=def







s1 if ϕ1

s2 if ϕ2

. . . . . .
sn otherwise

is a case analysis. It means:
a=defs1 if ϕ1 is true
a=defs2 if ϕ1 is false and ϕ2 is true
. . .
a=defsn if ϕ1, . . . , ϕn−1 are all false.

The notation Σm
n=0s(n) is well known in mathematics. In the same style we define a notation V m

n=0s(n).
The V operator causes the values s(n) to be collected in a list. For example,

V 20
n=0

{
(n) if n is a prime number
() otherwise

yields the list (1,3,5,7,11,13,17,19).
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We may also use the keyword break to stop the V -loop. For example,

Vn>0







break if n > 20
(n) if n is a prime number
() otherwise

yields the same list (1,3,5,7,11,13,17,19).

Sometimes it is necessary to include a value in a list and then stop the loop. We specify this with an
expression ‘s and break’.

Vn>0







(n) and break if n > 20
(n) if n is a prime number
() otherwise

yields the list (1,3,5,7,11,13,17,19,21).

Partial Functions and Error Handling
Most of the functions defined in this chapter are partial functions. Therefore the preconditions the
arguments must meet when these functions are called need to be stated very clearly. This means for
an implementation that the functions should only be called when the preconditions are guaranteed. An
error handling mechanism treats the cases where the preconditions are not met.

Special Functions
We use the following functions:

roundX(a) rounds the floating point number a to the closest x-integer (time value).

roundY (a) rounds the floating point number a to the closest y-integer (fuzzy value).

The two functions are almost identical. The only difference is the bit length of the resulting integer
values.

3.1 Points

We need 2-dimensional points with coordinates (x, y) as the representation of points on the envelope
polygon. The x-coordinate is the time coordinate and the y-coordinate is the fuzzy value coordinate.
x-coordinates are represented with x-integers and y-coordinates are represented with y-integers (Def.
3.2).

Notation
If p = (x, y) is a point then p.x denotes the x-coordinate (time coordinate) of p and p.y denotes the
y-coordinate (fuzzy coordinate) of p.

Collinearity
The collinearity check for three points p1, p2 and p3 is a standard method from Computational Geometry
[7]. The doubled area of the triangle p1, p2 and p3 is computed. With integer coordinates this can be
done without any error at all. If the doubled area is 0 then the three points are collinear.

Definition 3.3 (Collinear) The method p1.collinear(p2, p3) returns true if the three points p1, p2 and
p3 are collinear.

Left turn
Another important operator is the ‘left turn test’.

Definition 3.4 (Left Turn) The method p1.leftturn(p2, p3) returns true if the three points p1, p2 and
p3 make a left turn.

The leftturn method computes the doubled area of the triangle p1, p2 and p3 and checks its sign. Left
turns and right turns yield opposite signs.

Intersection
Testing whether line segments intersect and computing the intersection point are also standard methods
from Computational Geometry.
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Definition 3.5 (IntersectsProper) The method p1.intersectsProper(p2, q1, q2) returns true if the line
segment (p1, p2) intersects properly, and not only touches the line segment (q1, q2).

Definition 3.6 (Intersection) The method p1.intersection(p2, q1, q2) returns the rounded x-coordinate
of the intersection point of the two intersecting line segments (p1, p2) and (q1, q2).

LineY
The function p.LineY (q, x) considers the line crossing the points p and q, and computes for a given
x-value the corresponding y value at the line.
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Definition 3.7 (LineY) Let p and q be the two points which define a line, and let x be an x-coordinate.

p.LineY (q, x)=def

{

undefined if p.x = q.x

p.y + (q.y−p.y)·(x−p.x)
q.x−p.x otherwise

The result is floating point number.

LineX
This method computes for a line and a y-value the corresponding x-value.

Definition 3.8 (LineX) Let p and q be the two points which define a line, and let y be a y-coordinate.

p.LineX(q, y)=def

{

undefined if p.y = q.y

p.x + roundX( (q.x−p.x)·(y−p.y)
q.y−p.y ) otherwise

The result is an x-coordinate.

Area
We provide two methods for computing the area between a line and the x-axis. The first function
p.Area2(q) computes for two points p and q twice the area below the line segment between p and q.
When p and q are points with integer coordinates then twice the area yields also an integer, and no
rounding is necessary.

The second method p.Area2(q, x1, x2) computes twice the area between x1 and x2 below the line
segment between p and q.

Definition 3.9 (Area2) Let p and q be the two points which define a line, let x1 and x2 x-coordinates.
p.Area2(q) =def (q.x − p.x) · (q.y + p.y)
The result is an x-integer.

p.Area2(q, x1, x2) =def







undefined if p.x = q.x and p.x 6= x
0 if p.x = q.x = x
(x2 − x1) · (p.LineY (q, x2) − p.LineY (q, x1)) otherwise

The result is a floating point number.

The next method, p.Area2X(q, a) computes for two points p and q and for a doubled area a the
x-coordinate x such that twice the area below the line segment between p and q from p.x till x is a. The
function is undefined if the line is vertical, or the line is just the coordinate axis and a > 0, or the slope
of the line is negative and there is not enough area available between p.x and the point where the line
crosses the coordinate axis.
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Definition 3.10 (Area2X) Let p and q be the two points which define a line. Let a ≥ 0 be an integer
or floating point number.

p.Area2X(q, a)=def







undefined if p.x = q.x
or p.y = q.y = 0 and a > 0
or p.y2 < −slope · a

p.x if p.y = q.y = 0 and a = 0
p.x + roundX( a

2p.y ) if p.y = q.y

p.x + roundX(

√
p.y2+slope·a−p.y

slope ) otherwise

where slope=defq.y−p.y
q.x−p.x

The result is a rounded x-integer.

Proposition 3.11 (Soundness of Area2X) Let p and q be two points and a a doubled area (non-
negative number). Then p.Area2X(q, a) returns the (rounded) x-coordinate x such that the doubled area
below the line crossing p and q and between p.x and x equals a.

Proof: The doubled area below the line crossing p and q and between p.x and x is
(x − p.x) · (p.y + (p.y + slope · (x − p.x))) = a
where slope = q.y−p.y

q.x−p.x

Case 1: q.x − p.x = 0, i.e. p.x = q.x.
The equation is not solvable in this case.

Case 2: slope = 0, i.e. p.y = q.y:
Case 2a: p.y = 0: the equation is only solvable for a = 0, in which case p.x is a solution.

Case 2b: p.y > 0: The equation simplifies in this case to
(x − p.x) · 2p.y+ = a with solution
x = p.x + a

2p.y .

Case 3: slope 6= 0:
The equation is normalised to
slope · (x − p.x)2 + 2p.y(x − p.x) − a = 0 with solution

(x − p.x) =
−2p.y±

√
4p.y2+4slope·a

2slope

x = p.x +
−p.y+

√
p.y2+slope·a

slope
The −√

. . .-case yields a point left of p.x, which is not what we want. The square root has a real

number solution only if p.y2 + slope · a ≥ 0. Otherwise the function is undefined.

Integration
Some interval–interval relations are defined as an integral over two multiplied polygons (Section 3.3). A
building block for the integration algorithm is a method which integrates the product of two lines.

Definition 3.12 (Integration of Multiplied Lines) Let p1, p2 and q1, q2 be the two pairs of points
which define two lines. Let x1 and x2 be two x-coordinates.

p1.Integrate(p2, q1, q2, x1, x2) =def







undefined if (p1.x = p2.x or q1.x = q2.x) and x1 6= x2

0 if x1 = x2

a · b · (x2 − x1) + (m2a + m1b) · (x2
2 − x2

1)/2 + m1 · m2 · (x3
2 − x3

1)/3 otherwise

where a =def p1.y − m1p1.x, b =def q1.y − m2q2.x,

m1 =def p2.y − p1.y

p2.x − p1.x
and m2 =def q2.y − q1.y

q2.x − q1.x
.

The result is a floating point number.

Proposition 3.13 (Soundness of Integration of Multiplied Lines) Let p1, p2 and q1, q2 be the two
pairs of points which define two lines. Let x1 and x2 be two x-coordinates. Then

p1.Integrate(p2, q1, q2, x, y) =
∫ x2

x1
l1(x) · l2(x) dx

where l1 is the line crossing p1 and p2 and l2 is the line crossing q1 and q2.
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Proof: Let l1(x)=defp1.y + m1(x − p1.x) and l2(x)=defq1.y + m2(x − q1.x)

where m1=defp2.y − p1.y

p2.x − p1.x
and m2=def q2.y − q1.y

q2.x − q1.x
.

∫ x2

x1
l1(x) · l2(x) dx

=
∫ x2

x1
(p1.y + m1(x − p1.x))(q1.y + m2(x − q1.x)) dx

= [(p1.y − m1p1.x)(q1.y − m2q2.x) + (m2(p1.y − m1p1.x) + m1(q1.y − m2q2.x))x + m1m2x
2]x2

x1

= [ab + (m2a + m1b)x + m1m2x
2]x2

x1

= ab(x2 − x1) + (m2a + m1b)(x
2
2 − x2

1)/2 + m1m2(x
3
2 − x3

1)/3

where a=defp1.y − m1p1.x and b=defq1.y − m2q2.x.

3.2 Fuzzy Time Intervals

In this section we introduce a concrete representation of fuzzy time intervals and present the algorithms
implemented in FuTI.

Definition 3.14 (Infinity) We use +∞ and −∞ with the same meaning as before. However, since
infinity cannot be represented properly on a computer, +∞ stands in fact for a sufficiently large positive
representable x-integer, and −∞ stands for a sufficiently large negative representable x-integer. If the bit
size of the integers is fixed, these can be the largest representable integers at all. For multiple-precision
integers one can choose an arbitrary very large number.

The finite representation of +∞ and −∞ could in principle cause errors if the time values become
extremely large. Therefore one has to check in the application how large the numbers could become and
then choose a large enough x-integer datatype.

3.2.1 Representation and Construction

Fuzzy intervals are represented by their envelope polygons. These polygons represent the membership
functions.

Definition 3.15 (Envelope Polygon) The envelope polygon I of a fuzzy time interval is a finite se-
quence of points p0, . . . , pn such that pi.x ≤ pi+1.x holds for all i.

The envelope polygons in FuTI are constructed that there are no redundant points. That means in
particular that there are no collinear triples (pi, pi+1, pi+2) of points.

We usually identify the envelope polygon with the fuzzy interval itself.

Example 3.16 (Envelope Polygon) The picture below shows the envelope polygon

I = (0, 0)(10, 500)(20, 500)(30, 1000)(60, 1000)(60, 500).

Since p5.y = 500 > 0 it represents a positive infinite fuzzy interval.

-

6

x

>

0

y

The Envelope Polygon

0 10 20 30 60

Example 3.17 (Crisp Intervals) The representation of finite crisp intervals consists always of four
points: I = ((x0, 0)(x0,>)(x1,>)(x1, 0).

-

6

x

>

0

y

Finite Crisp Interval

x0 x1
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Infinite crisp intervals can of course also be represented. For example, [10, +∞[ can be represented by
(10, 0)(10,>). [−∞, 10[ can be represented by (10,>)(10, 0).

An envelope polygon is constructed from the empty list of points by adding new points to the back of
the list. The push back method defined below ensures that the condition pi.x ≤ pi+1.x holds and that
collinear triples of points are avoided.

Definition 3.18 (push back and pop back) Let I = (p0, . . . , pn) be an envelope polygon and p a new
point.

I.push back(p)=def







undefined if I 6= () and p.x < pn.x
(p) if I = () or I = (p0) and p.y = p0.y
(p0, p) if I = (p0)
(p1, . . . , pn−1, p) if p.collinear(pn−1, pn) = true (Def. 3.3)
(p1, . . . , pn, p) otherwise

I.pop back() removes the last element.

The push back method alone does not guarantee that there are no redundant points in an envelope
polygon. The method I.close() defined next removes all remaining redundancies. It is automatically
called before the other algorithms use the envelope polygon.

Definition 3.19 (Close) Let I = (p0, . . . , pn) be an envelope polygon.

I.close()=def







() if I = ((x, 0))
(p1, . . . , pn).close() if p0.y = p1.y
(p0, . . . , pn−1) if pn−1.y = pn.y
I otherwise

The method Index defined below can be used to locate for a given x-coordinate x and an envelope
polygon I the line segment which is above x. MaxIndex(true) locates the index of the leftmost polygon
point with maximum y-value (IfM ), whereas MaxIndex(false) locates the index of I lM .

Definition 3.20 (Index and MaxIndex) For an envelope polygon I = (p0, . . . , pn) let

I.Index(x)=def

{
−1 if I = () or x < p0.x
max{k ≤ n | xk ≤ x} otherwise

be the index of the rightmost polygon point that is left of x. The index is actually obtained with binary
search in O(log2(n)) time.

I.MaxIndex(front)=def







−1 if I = ()
min{i ≥ 0 | pi.y = > or ∀j : 0 ≤ j < i : pj .y < pi.y} if front = true
max{i ≤ n | pi.y = > or ∀j : i < j ≤ n : pj .y < pi.y} if front = false

MaxIndex requires linear search. Fortunately the search can be stopped as soon as a point pi is reached
with pi.y = >. Therefore for the important case of crisp polygons, the search stops always at the second
point.

Example 3.21 (Index and MaxIndex) For the envelope polygon

I = (0, 0)
︸ ︷︷ ︸

p0

(10, 500)
︸ ︷︷ ︸

p1

(10, 1000)
︸ ︷︷ ︸

p2

(50, 1000)
︸ ︷︷ ︸

p3

(50, 0)
︸ ︷︷ ︸

p4

we have
I.Index(0) = 0, I.Index(9) = 0, I.Index(10) = 2, I.Index(11) = 2, I.Index(50) = 4,
I.MaxIndex(true) = 2, I.MaxIndex(false) = 3.

-

6

x

>

0

y

Index and MaxIndex

0 10 50
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The envelope polygon contains only the vertices of a piecewise linear membership function. Therefore
we need a Member method which interpolates for a given x the corresponding y-value of the membership
function.

Definition 3.22 (Member Function) Given a fuzzy interval (envelope polygon) I = (p0, . . . , pn) the
Member function is defined:

I.Member(x)=def







0 if I = ()
p0.y if x < x0

pn.y if x ≥ xn

pi.y if x = pi.x
pi.lineY (pi+1, x) otherwise

where i = I.Index(x)

The result is converted to a floating point number, if necessary.

The usual membership function (Def. 2.2) is then I(x) = I.Member(I, x)/>

Remark 3.23 (Extrapolation and Infinite Intervals) The Member method extrapolates the mem-
bership function to x-coordinates below p0.x and above pn.x. The y-value for x-coordinates below p0.x is
constant p0.y. The y-value for x-coordinates above pn.x is constant pn.y. Therefore envelope polygons
always represent fuzzy intervals with finite kernel (Def. 2.5).

Remark 3.24 (Half-open Intervals) The Index method (Def. 3.20) which is used in the Member
method returns for a given x the largest index i such that pi.x ≤ x. This causes that the envelope
function is interpreted as a half-open interval which is closed at the left hand side and open at the right
hand side.

To see this, consider the following example:

I = (0, 0)
︸ ︷︷ ︸

p0

(0, 500)
︸ ︷︷ ︸

p1

(10, 500)
︸ ︷︷ ︸

p2

(10, 1000)
︸ ︷︷ ︸

p3

(50, 1000)
︸ ︷︷ ︸

p4

(50, 500)
︸ ︷︷ ︸

p5

(60, 500)
︸ ︷︷ ︸

p6

(60, 0)
︸ ︷︷ ︸

p7

-

6

x

>

0

y

Half-Open Interval

0 10 50 60

We have I.Member(0) = 500, I.Member(10) = 1000, I.Member(50) = 500, I.Member(60) = 0.

Remark 3.25 (Extreme Cases) There are a number of extreme cases of envelope polygons I:

• I = () represents the empty set;

• I = ((a, 0)) also represents the empty set;

• I = ((a, y)) with y > 0 represents the infinite fuzzy interval with constant membership function
I(x) = y;

• I = ((a, y1)(a, y2)) represents the fuzzy interval with membership function

I(x) =

{
y1 for x < a
y2 for x ≥ a.

• ((0, 0)(0,>)) = [0, +∞[

• ((0,>)(0, 0)) = ] −∞, 0[
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3.2.2 Basic Features of Fuzzy Intervals

We start with some simple predicates for checking whether the intervals are infinite.

Definition 3.26 (Infinity Predicates) Let I = (p0, . . . , pn) be an envelope polygon.
I.isNegInfinite() =def I 6= () and p0.y > 0
I.isPosInfinite() =def I 6= () and pn.y > 0
I.isInfinite() =def I 6= () and p0.y > 0 or pn.y > 0

Using the MaxIndex-method (Def. 3.20) we can define I.Sup() for computing the height sup(I) (Def.
2.4) of the fuzzy interval.

Definition 3.27 (Sup and Inf Values) Let I = (p0, . . . , pn) be an envelope polygon.
I.Inf() =def min(pi.y | 0 ≤ i ≤ n)

I.Sup() =def

{
0 if I = ()
pI.MaxIndex(true).y otherwise

The result of Sup and Inf are y-integer values.

The complexity of Sup and Inf are in general linear because MaxIndex requires linear search. It is
constant for crisp intervals.

Size of Fuzzy Intervals
The size of a fuzzy interval is the integral over its membership functions (Def. 2.9). We define now three
methods for computing the (doubled) size of a fuzzy interval. Size2() computes the overall size, i.e.
I.Size()/> = 2|I |. I.Size2(k, l) computes the size between two vertices of the envelope polygon, i.e.
I.Size2(k, l)/> = 2|I |pl.x

pk.x. Finally I.Size2(a, b) computes the size between two arbitrary x-coordinates

a and b: I.Size2(a, b)/> = 2|I |ba.

Definition 3.28 (Size) Let I = (p0, . . . , pn) be an envelope polygon. Let k and l be two indices.

I.Size2I(k, l) =def







undefined if k < 0 or l > n
−I.Size2(l, k) if l < k
0 if k = l or I = ()

Σl−1
m=kpm.Area2(pm+1) otherwise (Def.3.9)

I.Size2() =def







0 if I = ()
+∞ if p0.y > 0 or pn.y > 0
I.Size2(0, n) otherwise

Both versions of Size2 return x-integers.

Now let a and b be two x-coordinates:

I.Size2(a, b)=def







0 if I = () or a = b
−I.Size2(b, a) if b < a
2 · (b − a) · pn.y if a ≥ pn.x
2 · (b − a) · p0.y if b ≤ p0.x
(b − a) · (pi.LineY (pi+1, a) + pi.LineY (pi+1, b)) if pi−1.x ≤ a ≤ b ≤ pi.x

where i = I.Index(a)
head + middle + tail otherwise

where

head =def







2 · (p0.x − a) · p0.y if a ≤ p0.x
0 if pi.x = a
pi.Area2(pi+1, a, pi+1.x) otherwise

where i = I.Index(a) and

middle =def I.Size2(I.Index(a), I.Index(b)) and

tail =def







2 · (b − pn.x) · pn.y if b ≥ pn.x
0 if pi.x = b
pi.Area2(pi+1, pi.x, b) otherwise

where i = I.Index(b)

The method returns a floating point value.
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The next two methods compute the centre and middle points for a fuzzy interval (Def. 2.10).

Definition 3.29 (Centre Points) Let I = (p0, . . . , pn) be an envelope polygon.

I.CentrePoint(k, m)=def







undefined if I = () or I.isInfinite()
p0.x if k = 0
pn.x if k = m
pi−1.Area2X(pi,

s2·k
m − I.Size2(0, i− 1)) otherwise

where s2=defI.Size2(0, n) and
i = min{i | m · I.Size2(0, i) > s2 · k}

I.MiddlePoint(n, m)=defI.CentrePoint(2n + 1, 2m).

Both functions return a (rounded) x-integer.

The search for the index i in CentrePoint causes linear complexity for both methods.

The CentrePoint method needs to locate the x-coordinate such that |I |x−∞ = k
m |I |. To this end it first

locates the index i with pi−1 ≤ x ≤ pi. Then it calls the Area2X-method to calculate the x-coordinate
x with |I |pi−1.x

−∞ + |I |xpi−1.x = k
m |I |.

Example 3.30 (Centre Point Computation)
Let I = (0, 0)

︸ ︷︷ ︸

p0

(0, 500)
︸ ︷︷ ︸

p1

(4, 500)
︸ ︷︷ ︸

p2

(4, 1000)
︸ ︷︷ ︸

p3

(6, 1000)
︸ ︷︷ ︸

p4

(6, 0)
︸ ︷︷ ︸

p5

-

6

x

>

0

y

Centre Point Computation

04 14 24 34 44

We have |I | = 4000, i.e. s2 = 8000, and we want to compute CentrePoint(1, 4). The search for
i = min{i | 4 · I.Size2(0, i) > 8000 · 1} yields i = 2 because 4 · 4000 > 8000 · 1.

Since |I |p1.x
−∞ = 0 there is still an area the size of 2000 to be covered by |I |xp1.x.

The call to p1.Area2X(p2,
8000·1

4 − 0) = p1.Area2X(p2, 2000) yields 2, such that x = 2 is in fact the
correct result for I1,4.

Components of Fuzzy Intervals
The nComponents-method can be used to count the number of components of an interval. It counts the
number of times the envelope polygon drops down to an y-value 0 and adds 1 if it is positively infinite.

Definition 3.31 (Number of Components) Let I = (p0, . . . , pn) be an envelope polygon.

I.nComponents()=def







0 if I = () or n = 0 and p0.y = 0
1 if n = 0 and p0.y > 0

Σn
i=1

{
1 if pi.y = 0 and pi−1.y > 0
0 otherwise

+

{
1 if pn.y > 0
0 otherwise

The method Component(k) below extracts from an envelope polygon the kth component as a new
envelope polygon.

Definition 3.32 (Component) Let I = (p0, . . . , pn) be an envelope polygon.

I.Component(k)=def







() if I = ()

V n
i=I.skipComponent(k−1)

{
(pi) and break if pi.y = 0 and pi−1.y > 0
(pi) otherwise

where I.skipComponent(k) returns the first index of the k + 1st component.
It is described procedurally.

If k = 0 return 0.
If n = 0 return 1.
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Let l=def0.
Forn

i=1 {if(pi.y = 0 and pi−1.y > 0) l = l + 1; // next component
if(l = k){ if(i = n) return n + 1 // last component skipped

if(pi+1.y > 0) return i // the two components meet at pi.x
else return i + 1.}}

return n + 1 // last component skipped

Core, Support, Kernel and MaxRegion (Def. 2.5)
The FuTI–library provides for each of these four concepts the following 5 methods:

1. Size() measures the size in x-coordinates;

2. List() yields an ordered list ((i0, j0), . . .) of indices of start and endpoints of the components;

3. Crisp() yields a new envelope polygon with the crisp versions of the components.

4. First() returns the first x-coordinate of the concept

5. Last() returns the last x-coordinate of the concept.

Size(), First() and Last() return x-coordinates, Crisp() returns an envelope polygon and List()
returns a list of index pairs.

Definition 3.33 (Algorithms for the Core) Let I = (p0, . . . , pn) be an envelope polygon.

I.CSize() =def







0 if I = ()
+∞ if p0.y = > or pn.y = >
Σn−1

i=0

{
pi+1.x − pi.x if pi.y = pi+1.y = >
0 otherwise

otherwise

I.CList() =def







() if I = ()

V n
i=0







((0, 0)) if i = 0 and p0.y = >
((n, n)) if i = n and pn.y = >
(i, i + 1) if i < n and pi.y = pi+1.y = >
() otherwise

otherwise

I.CCrisp() =def







() if I = ()

V n
i=0







((p0.x,>)(p0.x, 0)) if i = 0 and p0.y = >
((pn.x, 0)(pn.x,>)) if i = n and pn.y = >
((pi.x, 0)(pi.x,>)(pi+1.x,>)(pi+1.x, 0)) if i < n and pi.y = pi+1.y = >
() otherwise

I.CF irst() =def







undefined if I = ()
−∞ if p0.y = >
min{pi.x | pi.y = >} if this is defined
undefined otherwise

I.CLast() =def







undefined if I = ()
+∞ if pn.y = >
max{pi.x | pi.y = >} if this is defined
undefined otherwise

Definition 3.34 (Algorithms for the Support) Let I = (p0, . . . , pn) be an envelope polygon.

I.SSize() =def







0 if I = ()
+∞ if I.isInfinite()
Σn−1

i=0 (pi+1.x − pi.x) if pi.y > 0 or pi+1.y > 0
0 otherwise
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I.SList() =def







() if I = ()

(V n−1
i=1

{
((s, i)) and s := i + 1 if pi.y = pi+1.y = 0 and pi−1.y > 0
() otherwise

(s, n)) otherwise
where s := 0 initially

I.SCrisp() =def







() if I = ()












{
((p0.x, 0)(p0.x,>)) if p0.y = 0
((p0.x,>)) otherwise

,

V n−1
i=1







((pi.x,>)(pi.x, 0)) if pi.y = pi+1.y = 0 and pi−1.y > 0
((pi.x, 0)(pi.x,>)) if pi.y = pi−1.y = 0 and pi+1.y > 0
() otherwise

,

{
((pn.x,>)(pn.x, 0)) if pn.y = 0
((pn.x,>)) otherwise













otherwise

I.SF irst() =def







undefined if I = ()
−∞ if p0.y > 0
p0.x otherwise

I.SLast() =def







undefined if I = ()
+∞ if pn.y > 0
pn.x otherwise

Definition 3.35 (Algorithms for the Kernel) Let I = (p0, . . . , pn) be an envelope polygon.

I.KSize() =def

{
0 if I = ()
pn.x − p0.x otherwise

I.KList() =def

{
() if I = () or p0.x = pn.x
(0, n) otherwise

I.KCrisp() =def

{
() if I = () or p0.x = pn.x;
((p0.x, 0)(p0.x,>)(pn.x,>)(pn.x, 0)) otherwise

I.KFirst() =def

{
undefined if I = ()
p0.x otherwise

I.KLast() =def

{
undefined if I = ()
pn.x otherwise

Definition 3.36 (Algorithms for maxRegion) Let I = (p0, . . . , pn) be an envelope polygon. Let f =
I.MaxIndex(true) be the first maximal point (if it exists) and l = I.MaxIndex(false) be the last maximal
point (if it exists).

I.MSize() =def







0 if I = ()
+∞ if p0.y = 1 or pn.y = 1
pl.x − pf .x otherwise

I.MList() =def

{
() if I = () or pf .x = pl.x
(f, l) otherwise

I.MCrisp() =def

{
() if I = () or pf .x = pl.x;
((pf .x, 0)(pf .x,>)(pl.x,>)(pn.l, 0)) otherwise

I.MFirst() =def







undefined if I = ()
−∞ if f = 0 and p0.y > 0
pf .x otherwise

I.MLast() =def







undefined if I = ()
+∞ if f = n and pn.y > 0
pl.x otherwise
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3.2.3 Hull Operators

The method I.CrispHull() implements the CrH()-function (Def. 2.28).

Definition 3.37 (Crisp Hull) Let I = (p0, . . . , pn) be an envelope polygon.

I.CrispHull()=def







() if I = ()
({

((p0.x,>)) if p0.y > 0
((p0.x, 0)(p0.x,>)) otherwise

,

{
((pn.x,>)) if pn.y > 0
((pn.x,>)(pn.x, 0)) otherwise

)

otherwise

The method I.MonotoneHull() implements the MoH()-function (Def. 2.30). The algorithm scans the
envelope polygon first from 0 to the first maximal element and skips all vertices which destroy mono-
tonicity. Then it scans the envelope polygon from the last element to the last maximal element and skips
again all vertices which destroy monotonicity. Finally it appends the first lists with the reversed second
list.

Definition 3.38 (Monotone Hull) Let I = (p0, . . . , pn) be an envelope polygon. We describe the algo-
rithm I.MonotoneHull() procedurally:

If I = () return ();

Let newI1=def(p0, V
I.MaxIndex(true)
i=0







((pi−1.LineX(pi, max), max), pi)
if i > 0 and pi.y ≥ max and pi−1.y < max

(pi) if pi.y ≥ max
() otherwise

)

where max is the current largest y-coordinate in newI1:

Let newI2=def(pn, V
I.MaxIndex(false)
i=n







((pi−1.LineX(pi, max), max), pi)
if i < n and pi.y ≥ max and pi−1.y < max

(pi) if pi.y ≥ max
() otherwise

)

where max is now the current largest y-coordinate in newI2:
Let newI2 = (q0, . . . , qm);
For0

i=m newI1.push back(qi).
return newI1.

Finally we implement the convex hull function CoH (Def. 2.29). The algorithm is a special version of the
Graham Scan algorithm for arbitrary polygons. It goes from left to right through the envelope polygon
and pushes all candidates for the convex hull on a stack. Wrong candidates are later popped from the
stack. Since the points are already sorted, its complexity is linear.

Definition 3.39 (Convex Hull) Let I = (p0, . . . , pn) be an envelope polygon. We describe the algo-
rithm I.ConvexHull() procedurally:

If I = () return ().

Let f =def

{
I.MaxIndex(true) if p0.y > 0
0 otherwise

Let l=def

{
I.MaxIndex(false) if pn.y > 0
n otherwise

Let newI =def(pif
).

Forl
i=f while(m ≥ 1 and qm−1.leftturn(qm, pi)) newI.pop back();

newI.push back(pi);
where qm is the current last element of newI.
return newI.
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3.2.4 Basic Unary Transformations

A number of basic unary transformations (Def. 2.31) can be implemented by just manipulating the
vertices of the envelope polygons.

Definition 3.40 (Extend, Scaleup, Shift) Let I = (p0, . . . , pn) be an envelope polygon. The three
functions return () if I = (). Let M =def(q0, . . . , qk)=defI.MontoneHull().

I.Extend(true) =def (V j
i=0(qi), (qj .x,>))

where j = I.MaxIndex(true)

I.Extend(false) =def ((qj .x,>), V k
i=j (qi))

where j = I.MaxIndex(false)

I.ScaleUp() =def V n
i=0(pi.x, roundY ((pi.y · >/I.Sup())))

I.Shift(a) =def V n
i=0(pi.x + a, pi.y)

Extend(true) implements extend+, Extend(false) implements extend−, ScaleUp implements scaleup
and Shift implements shift (Def. 2.31). ScaleUpD is a destructive version of ScaleUp and ShiftD is a
destructive version of Shift.

Cut
We provide three Cut-methods. The first one cuts an envelope polygon between two given x-coordinates
x1 and x2. The second one cuts it between the x-coordinates of two given vertices. The third one cuts
the interval after or before an x-coordinate.

Definition 3.41 (Cut) Let I = (p0, . . . , pn) be an envelope polygon. x, x1 and x2 are x-coordinates.

I.Cut(x1, x2)=
def







() if x2 ≤ x1

((x1, 0), (x1, I.Member(x1)), (V
I.Index(x2)

i=I.Index(x1)pi), (x2, I.Member(x2)), (x2, 0))

otherwise
where the list is formed with the push back operator (Def. 3.18). This removes certain redundancies.

Let i1 and i2 be two indices.

I.CutI(i1, i2)=
def

{
() if i2 ≤ i1
V i2

i=i1
(pi) otherwise.

I.Cut(x, true) =def ((x, 0), (x, roundY (I.Member(x))), V n
i=I.Index(x)pi)

I.Cut(x, false) =def (V
i=I.Index(x)
0 pi, (x, roundY (I.Member(x))), (x, 0))

Times
The times operator, which multiplies the membership function with a constant, is not so easy to imple-
ment. Since y · a > > is possible, one has to cut the multiplied envelope polygon at y = >. The picture
below illustrates the problem.

-

6

x

>

0

y

Times

In order to cut the multiplied polygon at y = > the intersection points between the dotted and
dashed lines have to be computed. The T imes function defined below follows the line segments of the
envelope polygon I and checks whether the multiplied line segments cross the y = > line. In this case
the intersection points are computed and inserted into the transformed polygon.
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Definition 3.42 (Times) Let I = (p0, . . . , pn) be an envelope polygon and a a non-negative floating
point number.

I.T imes(a)=def







() if I = ()










(p0.x, min(1, p0.y · a)),

V n
i=1







() if pi−1.y · a ≥ > and pi.y · a > >
((x,>)) if pi.y · a < > and pi−1.y · a > >
((x,>), (pi.x, pi.y · a)) if pi.y · a > > and pi−1.y · a < >

where x = pi−1.LineX(pi,>)
((pi.x, pi.y · a)) otherwise











otherwise

Interpolation
Some of the transformations of fuzzy time intervals are non-linear in the sense that they transform straight
lines into curved lines. These transformations cannot be implemented by simply transforming the vertices
of the envelope polygons. Since the result of the transformations must be envelope polygons, we need to
approximate curved lines by polygons. To this end we define a method Interpolate which interpolates
curved lines between vertices of polygons.

Definition 3.43 (Interpolation) Let I = (p0, . . . , pn) be a non-empty envelope polygon, x an x-coordinate,
f a function from x-coordinate 7→ y-coordinate and ∆ a threshold value (e.g. ∆ = 0.1).
I.Interpolate(x, f, ∆) =def







I if x ≤ pn.x
I.Interpolate(roundX((pn.x + x)/2), f, ∆).Interpolate(x, f, ∆)

if |2y1 − y2| > ∆′y2

where y1 = f(roundX((pn.x + x)/2)) and y2 = pn.y + f(x) and ∆′ = ∆/(1 + 2y2/>)
I.push back((x, f(x))) otherwise

The Interpolate-method starts with an envelope polygon I = ((x0, y0)) and fills up I with interpolated
values. Suppose I = (p0, . . . , pn). For a given x > pn.x it checks whether the relative difference between
the middle point (pn.x + x)/2 of the straight line between pn and (x, f(x)), and f((pn.x + x)/2) is larger
than ∆. If this is not the case then the approximation is good enough and the point (x, f(x)) is pushed
onto I . If this is the case, better interpolation is necessary. Therefore it calls itself recursively with x =
middle point to fill up I until the middle point, and then with x itself to fill up I from the middle point
until the actual x. The threshold ∆ is only a basic threshold for very small y-values. The threshold ∆’
causes that the interpolation becomes denser for larger y-values.
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Interpolation

pn.x

pn.y

x(pn.x + x)/2

f(x)
f((pn.x + x)/2)

} > ∆′?

Integration
The integrate+-function (Def. 2.31) is implemented by the Integrate(true)-method below and the
integrate−-function is implemented by the Integrate(false)-method. Integrate(true) goes from left
to right through the envelope polygon I and calls for each line segment the Area2-function for points
(Def. 3.9). Integrate(false) goes from right to left through the polygon. Therefore the resulting list
has to be reversed. Since line segments are linear, their integration yields a quadratic curve. Therefore
interpolation is necessary.
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Definition 3.44 (Integration) Let I = (p0, . . . , pn) be an envelope polygon and ∆ the threshold. We
write the function again in a procedural style.

I.Integrate(true):
if I = () then return ()
Let newI =def(p0.x, 0)
Forn

i=1 newI.Interpolate(pi.x, λ(x)(qm.y + pi−1.Area2(pi, x, true)/2), ∆)
where newI = (q0, . . . , qm)

return newI.

I.Integrate(false):
if I = () then return ()
Let newI =def(pn.x, 0)
For1

i=n newI.Interpolate(pi−1.x, λ(x)(qm.y + pi−1.Area2(pi, x, false)/2), ∆)
where newI = (q0, . . . , qm)

return newI reversed.

3.2.5 Y-Function Based Unary Transformations

For unary transformations of fuzzy intervals which can be generated by applying a y-function to the
membership values, there is a simple algorithm scheme: if the y-function is linear, apply it to the y-
coordinates of the envelope polygon; if the function is not linear, use the Interpolate method.

Definition 3.45 (Unary Transformation) Let I = (p0, . . . , pn) be an envelope polygon and let f be
a unary y-function and ∆ a threshold value. We describe the method I.UnaryTransformation(f, ∆)
procedurally:

If I = () return ();
If f is linear then return V n

i=0(pi.x, f(pi.y)).
Otherwise:
Let newI =def(p0.x, f(p0.y));
Forn

i=1 newI.Interpolate(pi.x, λ(x)f(pi−1.LineY (pi, x)), ∆);
return newI;

Exponentiation
The exponentiation operator expe(i) (Def. 2.31) is the first non-linear transformation we consider here.

Definition 3.46 (Exponentiation) Let I = (p0, . . . , pn) be an envelope polygon, e a non-negative num-
ber (the exponent) and ∆ the threshold.

I.Exp(e)=defI.UnaryTransformation(λ(y)ye, ∆).
λ(y)ye is not linear.

Complement Operator
Another point-based transformation is the complement operator.

Definition 3.47 (Complement) Let I = (p0, . . . , pn) be an envelope polygon, n a negation function
(Def. 2.18) and ∆ the threshold.

I.Complement(n)=defI.UnaryTransformation(n, ∆).

3.2.6 Y-Function Based Binary Transformations

Y-Function based binary transformations of fuzzy intervals are more complicated to implement because
besides the vertices of the two envelope polygons their intersection points are relevant for the transfor-
mation. The intersection points my become vertices of the transformed envelope polygons. Therefore the
first thing the binary transformation algorithm must do is to compute the intersection points of the two
polygons. Fortunately, since the two polygons are unimonotone, this can be done with a sweep line algo-
rithm in linear time. The result of the IntersectionPoints-algorithm defined below is a list ((p0, q0), . . .)
of pairs of points. The pi are the vertices of I1 and the intersection points between I1 and I2. The qi are
the vertices of I2 and also the intersection points between I1 and I2. pi.x = qi.x holds for all i.

In order to simplify the presentation of the algorithm a little bit we assume that I1 and I2 start at
the same x-coordinates, and that both polygons have a redundant extra point pn+1 and qm+1 at the end.
This saves some case distinctions at the beginning and at the end of the sweep.
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Definition 3.48 (Intersection Points) Let I1 = (p0, . . . , pn+1) and I2 = (q0, . . . , qm+1) be two en-
velope polygons such that p0.x = q0.x and pn.y = pn+1.y and qm.y = qm+1.y. We define the method
I1.IntersectionPoints(I2). It returns a list of pairs ((p0, q0), . . .).

Let IntP =def().
Let i=def0 and j=def0
Let x=defp0.x (x is the position of the sweep line).

while(x ≤ max(pn.x, qm.x)){
if(i < n and pi.x = pi+1.x)

if(x = qj .x){
IntP.push back(pi, qj); i := i + 1; }
if(j < m and qj .x = qj+1.x)j := j + 1; }

else{IntP.push back(pi, (x, roundY (qj .LineY (qj+1, x)))); i := i + 1; }
continue; }

if(j < m and qj .x = qj+1.x){
IntP.push back(pi, qj);
IntP.push back(pi, qj+1); j := j + 1
continue; }

if(x = qj .x)IntP.push back(pi, pj)
else IntP.push back(pi, (x, roundY (qj .LineY (qj+1, x))));

if(i < n){
if(j < m){

if(pi.intersectsProper(pi+1, qj , qj+1)){
xint := pi.intersection(pi+1, qj , qj+1);
IntP.push back((xint, roundY (pi.LineY (pi+1, xint))),

(xint, roundY (qj .LineY (qj+1, xint))); }

if(pi.x < qj .x){x = pi+1.x; i := i + 1; continue; }
if(pi.x = qj .x){x = pi+1.x; j := j + 1; continue; }
x = qj+1.x; continue; }

x = pi+1.x; continue; }

if(j < m){x := qj+1.x; continue; }
x := x + 1; }

return IntP.

We can now define the BinaryTransformation-method. It works much like the UnaryTransformation-
method. The differences are that BinaryTransformation first needs to compute the intersection points,
and that the call to the Interpolate-method gets as input a function which is parameterised with two
line segments instead of one.

Definition 3.49 (Binary Transformation) Let I1 = (p0, . . . , pn1
) and I2 = (q0, . . . , qn2

) be envelope
polygons. Let f be a binary y-function and ∆ a threshold value.
We describe the method I1.BinaryTransformation(I2, f, ∆) procedurally:

Let I =def((p0, q0), . . . , (pn, qn)) = I1.IntersectionPoints(I2)
If I = () return ();
If f is linear then return V n

i=0(pi.x, f(pi.y, qi.y)).
Otherwise:
Let newI =def(p0.x, f(p0.y, q0.y));
Forn

i=1 newI.Interpolate(pi.x, λ(x)f(pi−1.LineY ((pi, x), qi−1.LineY ((qi, x)), ∆);
return newI;

3.3 Integration over Multiplied Intervals

The motivation for the operators in this section come from certain fuzzy relations between fuzzy in-
tervals. There is no unique generalisation of interval–interval relations like ‘before’ to fuzzy inter-
vals. One idea for the generalisation works in two steps. The first step is to define a point–interval
‘before’-relation: PIbefore(x, I). This can also be done in different ways. Regardless how the concrete
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definition is, it is always possible to define this as an operator which maps an interval to an inter-
val: PIbefore′(I)(x)=defPIbefore(x, I). We can now generalise the point–interval ‘before’ relation to an
interval–interval ‘before’-relation IIbefore(I, J) by averaging the point–interval ‘before’ relation over J :
IIbefore(I, J)=def

∫
I(x) · PIbefore′(J)(x) dx/N(I, J). N(I, J) is a normalisation factor which forces the

result to be a fuzzy value between 0 and 1. More details about fuzzy point–interval and interval–interval
relations can be found in [6].

FuTI provides two different integration operations which can be used for these purposes. We start
with an auxiliary definition, a parameterised integration over multiplied membership functions.

Definition 3.50 (Integration over Multiplied Intervals) Let I = (p0, . . . , pn) and J = (q0, . . . , qm)
be envelope polygons. The integral I.Integrate(J, a)=def

∫
I(x − a)J(x) dx is computed as follows:

If I = () or J = () then return 0;
If (I.isInfinite() and J.isInfinite()) then undefined;
Let Int = 0;
If (p0.x + a ≤ q0.x) then {j = 0; i = I.Index(q0.x − a); x = q0.x;

Int = q0.y · I.Size2(p0.x, q0.x − a)/2;}
else {i = 0; j = J.Index(p0.x); x = p0.x + a;

Int = p0.y · J.Size2(q0.x, p0.x + a)/2;} }
while (i < n and j < m){

Int = Int + p′i.Integrate(p′i+1, qj , qj+1, x, min(pi+1.x + a, qj+1.x)); //Def.3.12
where p′i =

def(pi.x + a, pi.y) and p′i+1=def(pi+1.x + a, pi+1.y)
x = min(pi+1.x + a, qj+1.x);
if(x = pi+1.x + a) i = i + 1;
if(x = qj+1.x) j = j + 1; }

if(pn.x + a ≤ qm.x)Int = Int + pn.y · J.Size2(pn.x + a, qm.x)/2;
else Int = Int + qm.y · I.Size2(qm.x − a, pn.x)/2;
return Int;

Asymmetric integration integrates over the multiplied membership functions of I and J and normalises
the result with the size of I .

Definition 3.51 (Asymmetric Integration) Let I and J be two fuzzy polygons. I must be finite. The
method

I.IntegrateAsymmetric(J)=def roundY (
2 · I.Integrate(J, 0)

I.Size2()
)

computes
∫

I(x) · J(x) dx/|I |.

The ‘symmetric integration’ over multiplied envelope polygons differs from the asymmetric integration
by the normalisation factor. The normalisation factor maximizeOverlap(I, J) below causes that there
is a position of the interval I relative to the interval J such that the value of the normalised integral is
1. This is a useful operation for defining a fuzzy interval–interval ‘meets’ relation. It guarantees that if
(a finite) I is shifted along the time axis, eventually it meets (a finite) J with resulting fuzzy value 1.

Definition 3.52 (Symmetric Integration) Let I and J be two envelope polygons.
The function I.IntegrateSymmetric(J, simple) computes

∫
I(x) · J(x) dx/N

where N =

{
min(|I |, |J |) if simple = true
maxa(

∫
I(x − a) · J(x) dx) otherwise

I.IntegrateSymmetric(J, simple)

=def







undefined if I.isInfinite() or J.isInfinite()

roundY (
2 · I.Integrate(J, 0)

min(I.Size2(), J.Size2)
) if simple = true

roundY (
> · I.Integrate(J, 0)

maximizeOverlap(I, J)
otherwise (Def. 3.55 below)

The normalisation factor maximizeOverlap(I, J) = maxa

∫
I(x − a) · J(x) dx, where I is finite,

amounts in general to a nontrivial search problem with unpredictable solutions. Consider the following
example:
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If we move I into the left component of J we get maximal overlap as long as I is completely contained
in this part of J . The same holds for the right part of J .

For the parameter a to be maximised in the integral we get two plateaux as solutions.
There seems to be no easy analytical solution to this problem. Fortunately there are important classes

of fuzzy time intervals, where this problem is extremely easy to solve.
The first class is when J is infinite and J(−∞) = > or J(+∞) = >, and, of course J has a finite

kernel. In this case one can move I to the infinite part where J is constant 1.
∫

I(x− a)J(x) dx = |I | in
this case, i.e. maxa

∫
I(x − a) · J(x) dx = |I |,

The other class are the the symmetric and monotone fuzzy intervals.

Definition 3.53 (Symmetric and Monotone Intervals) A fuzzy time interval I is symmetric if there
is a time point t such that I(t − x) = I(t + x) for all x holds. t is the symmetry axis.

A fuzzy time interval I is monotone if with increasing time coordinate x, I(x) is monotonically in-
creasing until a maximal value and then it is monotonically decreasing again.

Crisp intervals are in particular monotone and symmetric. Maximal overlap is achieved for monotone
and symmetric intervals if the symmetry axes of both intervals coincide.
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Proposition 3.54 If I and J are two monotone and symmetric fuzzy intervals then
∫

I(x)J(x) dx is
maximal if the symmetry axis of I and J coincide.

The proof is very technical. We therefore sketch only the basic idea. First I and J are discretised into
step functions with finite step size. The limit ‘step size 7→ 0’ is then the original problem. The discretised
integral then becomes a sum stepsize · ΣkIk · Jk

One must show that moving the interval I away from the position where the two symmetry axes
coincide, decreases the sum.
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As one can see in this picture, shifting I to the right hand side, decreases the parts of the sum Ik · Jk

on the left side of the symmetry axis of J , and increases the parts of the sum on the right side of the
symmetry axis. The important observation is, that because J is monotone falling at the right hand side,
the parts Ik on the right side, which cause the sum to increase again, are multiplied with smaller Jk than
the corresponding parts on the left hand side. Therefore the sum gains less on the right hand side than
it looses on the left hand side. The overall sum therefore decreases or remains constant.

A General Search Procedure
We want to find a value for a such that

∫
I(x − a)J(x) dx is maximal. If I or J are not monotone and
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symmetric a general search procedure has to be applied. The search procedure which is implemented in
FuTI is a combination of an iterated binary local search with a randomised global search. It is optimised
for search spaces with little structure and terminates quickly. 100% success, however, is not guaranteed.

The first problem to be solved is to find good starting points for the search. Reasonable choices are
the middle points of the local maxima of I and J . For the examples in the picture below the search starts
by matching the four combinations of ak with bl.
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Starting Points for the Local Search
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a1 a2 b1 b2

Since all these combinations may miss the global maximum, random start points are also generated.
The second problem is to choose an initial step size for the search. The initial step size is ∆ =

min(J lS − b0, b0 − JfS)/2, i.e. half way between the start point b0 of the search in the interval J and the
closest end of J .

If, for example, the value for the integral increases for a0 +∆ then the local search procedure is called
recursively for the initial value a0 + ∆ and step size ∆/2. The other cases are similar. This way ∆ is
decreased exponentially until it reaches a certain threshold. The new value for a is now the start point
of another local search with the same ∆ as before. This is iterated until the changes in the integral falls
under another threshold (1% seemed to be a good choice).

Definition 3.55 (The Search for Maximising the Overlap) Let I and J be two finite fuzzy inter-
vals. We define a local search function and then a global search procedure for maximising the integral

Int(a)=def

∫

I(x − a)J(x) dx.

Let a be the start value for the search and ∆ the step size. ‘threshold’ is threshold for ∆.

localSearch(a, ∆)

=def







(a, Int(a)) if ∆ ≤ threshold
localSearch(a + ∆, ∆/2) if Int(a + ∆) > Int(a) and Int(a + ∆) ≥ Int(a − ∆)
localSearch(a − ∆, ∆/2) if Int(a − ∆) > Int(a) and Int(a − ∆) ≥ Int(a + ∆)
localSearch(a, ∆/2) otherwise

iteratedLocalSearch(a, ∆): iterate (a, Int) := localSearch(a, ∆) until the changes in Int falls under a
threshold. return Int.

The global search procedure maximizeOverlap(I, J) is described procedurally:

For all combinations mi and nj of middle points of local maxima of I and J :
let ∆ = min(J lS − nj , nj − JfS)/2, call Int = iteratedLocalSearch(nj −mi, ∆) and choose the maximal
Int-value.

Repeat this k times with randomly chosen mi and nj and choose again the maximal Int-value. (k = 5
seemed to be enough.)

return the maximal Int-value.

4 Summary

This report is a detailed description of the FuTI–library. This library is a C++-package for representing
and manipulating fuzzy time intervals. The mathematical background, the concrete data structures and
algorithms, and the interface to the library are described. The FuTI–library is used in the GeTS language
[4]. This language in turn is then used to define point–interval and interval–interval relations for fuzzy
intervals [6].
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Appendix

A The FuTI Interface

The FuTI interface consists of the classes Point, Interval, Operation and YFunction. For each of these
classes we list the constructor methods, the main public methods and explain briefly what they do.
The syntax we use in this section is simplified C++ or Java. The precise syntax is of course in the
corresponding header or class files.

CX is the datatype of the x-coordinates (for example, long long integers) and CY is the datatype of
the y-coordinates (typically unsigned short integers). CX and CY are compiler options.

Many of the methods represent partial functions. FuTI has a DEBUG mode (compiler option) where
the necessary preconditions are checked and an error is thrown when the preconditions are not met. If
the DEBUG mode is turned off, only the errors which can be caused by data and not by program errors
are still caught.

A.1 Points

This class represents 2-dimensional points with coordinates of type CX and CY.

Constructors

Point(CX x, CY y)

constructs a point from x and y-coordinates.

Point(string s)

reconstructs a point from a string representation ”x,y”.

Predicates

bool p.leftturn(Point q, Point r)

true if p → q → r is a left turn or collinear. (Def. 3.4)

bool p.leftturnProper(Point q, Point r)

true if p → q → r is a proper left turn.

bool p.rightturn(Point q, Point r)

true if p → q → r is a right turn or collinear.

bool p.rightturnProper(Point q, Point r)

true if p → q → r is a proper right turn.

bool p.collinear(Point q, Point r)

true if p → q → r is collinear (Def. 3.3)

bool p.collinear(Point q, Point r, Point s)

true if the line segment (p, q) is collinear with the line segment (r, s).

bool p.between(Point q, Point r)

true if p is between q and r.

bool p.betweenProper(Point q, Point r)

true if p is between q and r, but different to q and r.

bool p.intersects(Point q, Point r, Point s)

true if the line (p, q) intersects the line (r, s).

bool p.intersectsProper(Point q, Point r, Point d)

true if the line (p, q) intersects the line (r, s), but does not only touch it. (Def. 3.5)

Computations

CX p.intersection(Point q, Point r, Point s)

computes the intersection point for the line segments (p, q) and (r, s). An error is thrown if the
line segments do not intersect! (Def. 3.6)

float p.LineY(Point q, CX x)

computes for the line crossing p and q the y-value at point x. An error is thrown if the line is
vertical. (Def. 3.7)

CX p.LineX(Point q, CY y)

computes for the line crossing p and q the x-value at point y. An error is thrown if the line is
horizontal. (Def. 3.8)
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CX p.Area2(Point q)

computes the area below the line segment (p, q). (Def. 3.9)

float p.Area2(Point q, CX x1, CX x2)

computes the area below the line segment (p, q) from x1 until x2. It throws an error of the line is
vertical and x1 6= x2 (Def. 3.9)

CX p.Area2X(Point q, float a)

computes the x-coordinate x such that the area below the line segment (p, q) from p until x is just
a. An error is thrown if there is not enough area below the line segment. (Def. 3.10)

float p1.Integrate(Point p2, Point q1, Point q2, CX x1, CX x2)

computes
∫ x2
x1 l1(x) · l2(x) dx where l1 is the line crossing p1 and p2 and l2 is the line crossing q1

and q2. It throws an error if one of the lines is vertical. (Def. 3.12)

A.2 Intervals

The Interval class manages and manipulates fuzzy temporal intervals (Sec. 3.2). The intervals are
represented by their envelope polygons (Def. 3.15).

Constructors

Interval()

constructs an empty interval.

Interval(Point p)

constructs an interval with a single point p.

Interval(CX x, CY y)

constructs an interval with a single point (x, y).

Interval(CX a, CX b)

constructs a crisp interval [a, b[.

Interval(vector<Point> points)

constructs an interval with a vector of points.

Interval(string s)

constructs an interval from a string representation [x1, y1 x2, y2 ...[.

Adding and Removing Points.

void I.push back(Point p)

adds the point p to the end of the polygon. It throws an error if p.x is before the last point in the
polygon. (Def. 3.18)

void I.push back(CX x, CY y)

adds the point x, y to the end of the polygon. It throws an error if x is before the last point in the
polygon. (Def. 3.18)

void I.pop back()

removes the last point from the polygon. It does nothing on empty polygons. (Def. 3.18)

Simple Properties of the Intervals

Point I.front()

returns the leftmost point and throws an error if I = ().

Point I.back()

returns the rightmost point and throws an error if I = ().

CX I.frontX()

returns the leftmost x-coordinate and throws an error if I = ().

CX I.backX()

returns the rightmost x-coordinate and throws an error if I = ().

CY I.frontY()

returns the leftmost y-coordinate and throws an error if I = ().

CY I.backY()

returns the rightmost y-coordinate and throws an error if I = ().

bool I.isNegInfinite()

returns true if the interval is negative infinite.
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bool I.isPosInfinite()

returns true if the interval is positive infinite.

bool I.isInfinite()

returns true if the interval is infinite.

bool I.isEmpty()

return true if the polygon is empty.

bool I.isNonempty()

returns true if the polygon is not empty.

int I.nPoints()

returns the number of points in the polygon.

bool I.isConvex()

returns true if the polygon is convex.

bool I.isMonotone()

returns true if the polygon is monotone. (Def. 3.53)

bool I.isSymmetric()

returns true if the polygon is symmetric. (Def. 3.53)

CX I.SymmetryAxis()

returns the x-coordinate of the symmetry axis and throws an error if I is not symmetric.

int I.Index(CX x)

returns the index of the rightmost polygon point that is left of x, or -1 if there is no such point.
(Def. 3.20)

int I.MaxIndex(bool front)

if front = true it returns the index of the leftmost point with maximal y-value, otherwise it
returns the index of the rightmost point with maximal y-value. If the polygon is empty it returns
-1. (Def. 3.20)

CY I.Inf()

returns the smallest y-value of the polygon. (Def. 3.27)

CY I.Sup()

returns the hight sup(I) of the polygon. (Def. 3.27)

float I.Member(CX x)

returns the membership value for the x-coordinate x. (Def. 3.22)

CX I.Size2I(int k, int l)

returns 2 * the area below the polygon from vertex k to vertex l. (Def. 3.28)

CX I.Size2()

returns 2 * the area below the polygon. (Def. 3.28)

CX I.Size2(CX a, CX b)

returns 2* the area below the polygon from x-coordinate a to x-coordinate b. (Def. 3.28)

CX I.CentrePoint(int k, int m)

returns the x-coordinates of the k, m-center point. (Def. 3.29)

int I.nComponents()

returns the number of components of the interval. (Def. 3.31)

Interval I.Component(int k)

returns the kth component of I. It throws an error if k < 0. (Def. 3.32)

Core, Support, Kernel, MaxRegion
Besides methods like CSize() etc. (Def. 3.33, 3.34, 3.35, 3.36) there are corresponding parameterized
methods. Region is an enumeration type with values core, support, kernel, maximum.

CX I.Size(Region r)

returns the size of the core/support/kernel/maxRegion.

vector<<int,int>> I.List(Region r)

returns the list of indices of the core/support/kernel/maxRegion boundaries.

Interval I.Crisp(Region r)

returns the core/support/kernel/maxRegion as crisp interval.
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CX I.Side(Region r, bool front)

returns the x-coordinate of the left/rightmost point of the core/support/kernel/maxRegion.

Hull Calculations

Interval I.CrispHull()

returns the crisp hull of I. (Def. 3.37)

Interval I.MonotoneHull()

returns the monotone hull of I. (Def. 3.38)

Interval I.ConvexHull()

returns the convex hull of I. (Def. 3.39)

Simple Predicates
Region is an enumeration type with values support, core, kernel, maximum

bool I.subset(Interval J, Region region)

returns true if the corresponding region of I is a subset of the corresponding region of J.

bool I.isSubset(CX t1, CX t2, Region region)

returns true if [t1, t2[ is a subset of I’s region.

bool I.overlaps(Interval J, Region region)

returns true if the corresponding region of I overlaps the corresponding region of J: a front part
of I’s region must be before J’s region and the rest must be a non-empty subset of J’s region.

bool I.overlaps(CX t1, CX t2, Region region)

returns true if [t1, t2[ overlaps with I’s region.

bool I.contains(CX t, Region region)

returns true if t is in the corresponding region of I.

bool I.biggerPartInside(CX t1, CX t2, Region region)

returns true if the bigger part of [t1, t2[ is inside I’s support.

CX I.intersectionWith(CX t1, CX t2, Region region)

returns the length of subset of [t1, t2[ which intersects with the I’s region.

Basic Unary Transformations (Def. 2.31)

Interval I.Extend(true)

returns the rising part of I. (Def. 3.40)

Interval I.Extend(false)

returns the falling part of I. (Def. 3.40)

Interval I.ScaleUp()

scales the y-values of the interval up to >. (Def. 3.40)

Interval I.ScaleUpD()

is the destructive version of ScaleUp.

Interval I.Shift(CX a)

shifts the interval by a units. (Def. 3.40)

Interval I.ShiftD(CX a)

is the destructive version of Shift.

Interval I.Cut(CX x1, CX x2)

cuts the part of the interval between x1 and x2. (Def. 3.41)

Interval I.CutI(int i1, int i2)

cuts the part of the interval between the points with index i1 and i2. (Def. 3.41)

Interval I.Times(float a)

multiplies the y-values of the interval by a. (Def. 3.42)

Interval I.Exp(float e)

exponentiates the y-values of the interval with e. (Def. 3.46)

Interval I.Integrate(true)

computes J(x)=def
∫ x

−∞
I(y)dy/|I|. I may be infinite. (Def. 3.44)

Interval I.Integrate(false)

computes J(x)=def
∫ +∞

x I(y)dy/|I|. I may be infinite. (Def. 3.44)
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Interval I.Negate()

inverts the y-values. (Def. 2.31)

Interval I.Invert()

inverts the y-values of the gaps in the interval. (Def. 2.31)

CY I.IntegrateAsymmetric(Interval J)

computes
∫
I(x) · J(x) dx/|I|. I and J may be infinite. (Def. 3.50)

CY I.IntegrateSymmetric(Interval J,bool simple)

computes
∫
I(x) · J(x) dx/N(I, J). It throws an error if both I and J are infinite. (Def. 3.52)

Fuzzification

Interval I.FuzzifyLinear(bool front, CX x1, CX x2, CX offset)

linear fuzzification of the front/end part of the interval with absolute coordinates. (Def. 2.34)

Interval I.FuzzifyLinear(bool front, float percent, float offset)

linear fuzzification of the front/end part of the interval with relative coordinates. (Def. 2.37)

Interval I.FuzzifyLinear(float percent, float offset)

linear fuzzification of both sides of the interval with relative coordinates.

Interval I.FuzzifyGaussian(bool front, CX xh, CX x0, CX offset)

Gaussian fuzzification of the front/end part of the interval with absolute coordinates. (Def. 2.35)

Interval I.FuzzifyGaussian(bool front, float percent, float offset)

Gaussian fuzzification of the front/end part of the interval with relative coordinates. (Def. 2.37)

Interval I.FuzzifyGaussian(float percent, float offset)

Gaussian fuzzification of both sides of the interval with relative coordinates.

General Transformations

Interval I.UnaryTransformation(UnaryYFunction f)

applies the unary y-function f to I. (Def. 3.45)

Interval I.BinaryTransformation(Interval J, BinaryYFunction f)

applies the binary y-function f to I and J. (Def. 3.49)

A.3 Y-Functions

The unary and binary transformation methods (Def. 3.45, 3.49) expect a function f which is to be applied
to one or two y-coordinates. Some of these functions, however, depend on extra parameters. For example
the λ-Complement (Def. 2.19) nλ(y)=def 1−y

1+λy depends on the parameter λ. This would not be a problem

in most functional programming languages. One can define n(λ, x) and then get nλ through currying.
The solution in object oriented languages is a bit different. One defines a class “lambdaComplement”
with instance variable “lambda”. The class can be instantiated with a corresponding value for lambda.
This instance can now be used like any other data object in the language. The trick which allows one
to use the instance like a function depends on the programming language. In C++ one can define a ()
operator for this class, which realizes the function application. If the instance is bound to the variable
f , and x is another variable then f(x) is now a legal expression and yields the function value. In Java
one would define an apply-method and write f.apply(x). The class-approach has many advantages: the
parameters can be changed at any time, which is not so easy for curried functions; a class hierarchy can
structure the functions according to their semantics, and not their types; further methods can be defined
which do other kinds of computations and return meta-information, for example whether the function is
linear.

FuTI realizes y-functions with the class hierarchy in Fig. 1.
The top class, ‘Operation’, manages the mapping of function names to the functions (instances of the

other classes). Each instance can get a name, for example ‘myFavoriteLambdaComplement’, and one can
retrieve the corresponding instance with the method Operation::getByName(string name). The name
is optional. Instances without names are not accessible via getByName.

Constructors

NegationYFunction(string name)

constructs the standard negation function λ(y)(1 − y). (Def. 2.19)
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Operation

UnaryYFunction

NegationYFunction standard negation, linear

lambdaComplement Def.2.19

BinaryYFunction

TNorm min, linear

HamacherNorm Ex. 2.24

TCoNorm max, linear

HamacherCoNorm Ex. 2.24

SDLukasiewicz max(0, y1 − y2), linear Def. 2.25

SDGoedel if(y1 ≤ y2) then 0 else >− y2, linear, Def. 2.25

SDKleene min(x, 1 − y), linear, Def. 2.25

Figure 1: Class Hierarchy for Y-Functions

lambdaComplement(float lambda, string name)

constructs the lambda complement λ(y) 1−y
1+lambda y

. (Def. 2.19)

TNorm(string name)

Constructs the min t-norm.

HamacherNorm(float gamma, string name)

Constructs the Hamacher t-norm λ(x, y) xy
gamma+(1−gamma)(x+y−xy) . (Def. 2.24)

TCoNorm(string name)

Constructs the max t-conorm

HamacherCoNorm(float beta, string name)

Constructs the Hamacher t-conorm λ(x, y)x+y+(beta−1)xy
1+beta xy

. (Def. 2.24)

Parameter Modification
The parameters lambda, gamma, beta are public instance variables and can therefore be changed by direct
assignment.
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