
Expressing Knowledge about Protein
Interactions in Attempto Controlled

English

Diploma Thesis in Computer Science

submitted by
Tobias Kuhn

Zurich, Switzerland
t.kuhn@gmx.ch

Student ID: 01-711-332

Department of Informatics
University of Zurich, Switzerland

Prof. Dr. Michael Hess

Advisors:
Dr. Norbert E. Fuchs (Zurich, Switzerland)

Prof. Dr. Michael Schroeder (Dresden, Germany)

Date of submission: 5 January 2006

Abstract

Scientists are challenged by an ever-increasing number of scientific papers which
makes it hard for them to keep track of the relevant literature. A promising
solution of this problem is to provide scientists with computational support
accessing and evaluating scientific results. A well-known approach is to use
natural language processing (NLP) together with the techniques of text mining
and summarizing. In this thesis we suggest another approach: the results of
scientific papers are summarized by its authors in a formal language, and these
formal summaries are added to the papers. In this way we make the results of
scientific papers readable and – to some degree – understandable by computers.

As formal language we use Attempto Controlled English (ACE) that is a con-
trolled natural language [7]. Controlled natural languages combine the natural
look and feel of natural languages with the processability of formal languages.
This makes them to prime candidates for the formal representation of scientific
results. Since they are easy to learn and understand, a researcher has not to
spend a lot of time learning a complicated formal language.

To demonstrate the practicality of our approach, we build an ontology for
protein interactions in ACE and show how scientific results can be expressed
using this ontology.

Acknowledgements

First of all, I would like to thank Norbert E. Fuchs who brought me into the
fields of logic and controlled natural languages. He made it possible for me to
do my diploma thesis on this interesting topic. His support during the four
months was indispensable. Furthermore I thank Kaarel Kaljurand for his help
on the parser and his general comments to the thesis.

Next, I would like to thank Michael Schroeder who suggested the cooperation
between Zurich and Dresden which allowed me to spend one exciting month in
Dresden. A big thank goes to Loic Royer who supported me during the time
in Dresden and who was a big help in digging into the field of bioinformatics,
which was a completely new field for me.

I have to thank all the people of the Attempto group in Zurich and of the
bioinformatics group in Dresden. They made my four months of hard work
exciting, pleasant, and fruitful.

Last but not least, I would like to thank Michael Hess who was the respon-
sible professor and made it all possible.

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Ontologies . 8
1.3 Knowledge Representation . 8

1.3.1 First-Order Logic . 9
1.3.2 Description Logics . 9
1.3.3 Web Ontology Language (OWL) 10
1.3.4 Attempto Controlled English 11
1.3.5 Comparison of KR Technologies 11

2 ACE as Ontology Language 13
2.1 Ontology Lexicon Format . 14

2.1.1 Ontology Elements in Natural English 14
2.1.2 Ontology Elements in ACE 15
2.1.3 Context Information for Roles 22
2.1.4 The Verb be . 23
2.1.5 Notation . 24

2.2 Ontology Lexicon Converter . 25
2.3 Writing Assistance Tool . 26

3 ACE Ontology Architecture 28
3.1 Four Tier Architecture . 28

3.1.1 The Terminology Tiers . 28
3.1.2 The Knowledge Tiers . 29

3.2 Graph Structure of the Ontology 29
3.2.1 T-Nodes . 30
3.2.2 K-Nodes . 31
3.2.3 The Edges of the Graph 32

4 Building a Terminology 33
4.1 An Exemplary Base Terminology 33

4.1.1 The Node Base . 33
4.1.2 The Node Types . 34
4.1.3 The Node ConPro . 35

4.2 A Terminology for Protein Interactions 35
4.2.1 The Node Prot . 36
4.2.2 The Node Go . 37
4.2.3 The Node Inter . 37

3

4 LIST OF FIGURES

4.2.4 The Node ProtGo . 38
4.2.5 The Node Region . 38
4.2.6 The Node Prot2 . 38
4.2.7 The Stub Nodes . 40

5 Expressing Knowledge 42
5.1 Accumulation of Knowledge . 42

5.1.1 State of Additional Knowledge 42
5.1.2 The Paths of Knowledge 43

5.2 ACE Summaries . 45
5.2.1 ACE Summaries for 89 Selected Articles 45
5.2.2 ACE Summary as an Integral Part of an Article 46

6 Conclusions 48
6.1 The Benefits of our Approach . 48
6.2 Summary . 50
6.3 Future Work . 50

A Terminology Definitions 52
A.1 Definition of the Base Terminology 52
A.2 Definition of the Terminology for Protein Interactions 54

B Cell Headings 65

C Ontology Lexicon Converter 91

List of Figures

1.1 Basic Elements of DL . 9
1.2 Example in FOL, DL, OWL, and ACE 12
1.3 Comparison of FOL, DL, OWL, and ACE 12

2.1 Data Flow . 14
2.2 Ontology Elements in Natural English 16
2.3 Normal Roles and Roles with Context Information 22

3.1 The Architecture of an Ontology in ACE 28
3.2 The Structure of a T-Node . 30
3.3 Example of a T-Node . 30
3.4 The Structure of a K-Node . 31
3.5 Example of a K-Node . 31
3.6 Four Tiers and Graph Structure of the ACE Ontology Architecture 32

4.1 The Structure of the Base Terminology 33
4.2 Structure of Base . 34
4.3 Structure of Types . 34
4.4 Structure of ConPro . 35
4.5 Structure of the Terminology for Protein Interactions 36
4.6 Structure of Prot . 36
4.7 Structure of Go . 37
4.8 Structure of Inter . 37
4.9 Structure of ProtGo . 38
4.10 Structure of Region . 39
4.11 Structure of Prot2 . 39
4.12 The Big Picture of the Terminology 41

5.1 The Paths of Knowledge . 44
5.2 Article with ACE Summary . 47

5

List of Abbreviations

ACE Attempto Controlled English
APE Attempto Parsing Engine
DAG Directed Acyclic Graph
DL Description Logics
DRS Discourse Representation Structure
FOL First-Order Logic
GO Gene Ontology
KR Knowledge Representation
MeSH Medical Subject Headings
NLP Natural Language Processing
OLF Ontology Lexicon Format
OWL Web Ontology Language
RDF Resource Description Framework
W3C World Wide Web Consortium
XML Extensible Markup Language

6

Chapter 1

Introduction

In this thesis we examine how the language Attempto Controlled English (ACE)
can be used to summarize the results of scientific papers. To demonstrate the
practicality of our approach, we build an ontology for protein interactions in
ACE and we show how it can be used to express scientific results.

This chapter explains the motivation, gives a short introduction into the
language ACE and into ontologies, takes a look at the common technologies
for knowledge representation, and shows some major problems with them. In
chapter 2 we introduce the basic formalisms and tools for using ACE as an
ontology language. Chapter 3 defines an ontology architecture and chapter 4
shows the creation of an ontology for protein interactions. Chapter 5 describes
the dynamic management of knowledge and shows how the results of scientific
papers on protein interactions can be summarized in ACE. Chapter 6, finally,
reviews the results and draws the conclusions.

1.1 Motivation

Scientists in general and especially biologists are challenged by the increasing
amount of scientific papers. PubMed is an indexing service for biomedical ar-
ticles1 that shows the huge quantity of literature that scientists have to face.
PubMed contains at the moment 16 million articles and grows by about 600’000
articles per year.

All these articles are written in natural language. That means that we cannot
process them directly by computers. But, facing the quantity of papers, it is
clear that we need computational support in order to manage the knowledge
contained in these papers. There are basically two ways to solve this problem.

First we can try to extract automatically a formal representation from nat-
ural language texts. Such attempts are known as text mining or summarizing
and they build upon natural language processing (NLP). These techniques are
already widely used in different fields of research and there has been a notable
progress in the last years, but we will never be able to extract all the informa-
tion correctly. There is inherent ambiguity and vagueness in natural language
that prevents its perfect processing by computers.

1http://www.pubmed.gov

7

8 CHAPTER 1. INTRODUCTION

The second possibility is to force the authors of scientific papers to express
their results in a formal language. This allows us to collect the information
automatically without any uncertainty. Authors are responsible for the correct
formal representation of their results. This requires a lot from the needed formal
language which is used for that purpose. On the one hand it has to be easy to
learn and easy to understand, since scientists should not have to waste their time
on learning a complicated language. On the other hand it has to be expressive
enough to represent even complicated scientific results.

It is clear that the second approach is not applicable for papers that are
already written without the formal specification. For this reason it is rather a
concept for the future than a solution for the today’s problem. In this thesis we
explore this second approach.

1.2 Ontologies

The term ontology is adopted from philosophy and denotes the study of existence
and its basic categories. In computer science the term is used for the formal
representation of a certain domain of the real world. We adopt the definitions
for the terms conceptualization and ontology from [10].

Conceptualization. A conceptualization describes the basic elements for a for-
mal representation of knowledge: the objects, concepts, and other entities
that are assumed to exist in some area of interest and the relationships
that hold among them. A conceptualization is an abstract, simplified view
of the world that we wish to represent for some purpose.

Ontology. An ontology is an explicit specification of a conceptualization.

The main goal of an ontology is to provide a shared understanding of a
certain domain. This shared understanding can serve as basis for the com-
munication between people, for the inter-operability between systems, for the
improvement of re-usability and reliability of software systems, and for the spec-
ification of software [19]. Furthermore ontologies are an excellent basis for the
formal representation of knowledge [10].

In this thesis we will use ontologies for knowledge representation. They will
give us the foundation for the formal representation of knowledge about protein
interactions.

1.3 Knowledge Representation

Knowledge representation (KR) is a multidisciplinary subject that applies the-
ories and techniques from the fields of logic, ontology (in the philosophical
reading), and computation theory [18]. We will take a look at four different
technologies of knowledge representation: first-order logic (FOL), Description
Logics (DL), Web Ontology Language (OWL), and Attempto Controlled Eng-
lish (ACE). At the end we compare these four technologies and explain the
advantages of ACE for representing scientific results.

CHAPTER 1. INTRODUCTION 9

1.3.1 First-Order Logic

Logic is a very old discipline which originated in philosophy. First-order logic
(FOL)2 is by far the most widely used, studied, and implemented version of
logic [18]. There exists a lot of theoretical research, e.g. about the decidability
and complexity of FOL. Thus FOL is a good basis for any kind of knowledge
representation.

The notation of FOL consists of constants, functions, variables, predicates,
logical operators, and (existential and universal) quantifiers. The constants,
functions, and predicates are mapped to the real world and this mapping is
called interpretation. Constants, functions, and variables stand for objects of
the real world. Predicates state relations among such objects and have a truth-
value, which is either true or false. With logical operators we can connect simple
statements to build complex ones. Quantifiers, finally, allow to make statements
about single – possibly unknown – objects (existential quantification) or about
all objects that exist (universal quantification).

The main advantages of FOL are its expressiveness, its thorough formal
foundation, and the huge amount of theoretical results.

1.3.2 Description Logics

Description Logics (DL) are a family of knowledge representation languages
[4, 14]. As the name suggests, DL builds upon classical logic (i.e. the semantics
of the DL notation are founded in logic).

The basic elements of DL are individuals, concepts, and roles. Individuals
stand for single objects, concepts for classes of objects, and roles for binary
relations between objects. Figure 1.1 shows the basic elements of DL with their
FOL representation and their common notation. We will use these three types
of elements later as foundation for an ontology in ACE.

DL Element FOL Examples
individual constant JOHN , GERMANY
concept unary predicate Human, Protein
role binary predicate uses, brother of

Figure 1.1: Basic Elements of DL

For DL expressions a variable-free notation is used, that is closely related
to the notation of set theory. We give some examples now; for a comprehensive
formal definition consult [3]. The concept “a man that is not a manager and
has a car” is expressed in DL as

Man u ¬Manager u ∃has.Car

where the constructors u, ¬, and ∃ are used to build a new concept on the
basis of the concepts Man, Manager, and Car and the role has.

The ontological knowledge in DL is strictly divided into two sections: the
TBox and the ABox. The TBox contains statements that define the terminology,
while the ABox contains statements that make assertions about the world by

2sometimes also called first-order predicate calculus

10 CHAPTER 1. INTRODUCTION

using the definitions from the TBox. Terminological statements from the TBox
look like

Human uMale ≡ Man

Human v Mammal

The first statement defines that the intersection of the concepts Human
and Male is equivalent to the concept Man. The second statement defines that
every individual that belongs to the concept Human belongs as well to the
concept Mammal.

Assertional statements from the ABox look like

Man(JOHN)
brother of(JOHN,BILL)

The first statement is a concept assertions and declares that the individual
JOHN belongs to the concept Man. The second statement is a role assertion
and declares that the individuals JOHN and BILL participate in the role
brother of .

In the development of DL, the complexity of reasoning has been one of the
major issues [6]. There is a trade-off between the expressiveness of a representa-
tion language and the difficulty of reasoning in that language. Thus DL makes
restrictions on the expressiveness in order to allow efficient reasoning. There
are different DL languages with different degrees of complexity, but all of them
– at least all of the DL languages considered in common DL literature – are less
expressive than first-order logic [5].

In contrast to first-order logic, DL is decidable. That means that we can
find an algorithm that decides after finite time whether a certain statement is
the logical consequence of a set of axioms, or not.

1.3.3 Web Ontology Language (OWL)

Web Ontology Language (OWL) is a knowledge representation language de-
fined by the World Wide Web Consortium (W3C)3. OWL is based upon RDF
(Resource Description Framework) which is itself based upon the well-known
markup language XML. OWL provides three increasingly expressive sublan-
guages [13]:

OWL Lite is the least expressive sublanguage. It provides classification hier-
archies and simple constraints.

OWL DL is more expressive than OWL Lite, but less expressive than OWL
Full. It provides a considerable degree of expressiveness, while it retains
computational completeness (i.e. it is decidable). As the name suggests,
the structures of OWL DL correspond to the structures of DL.

OWL Full is the most expressive sublanguage with no guaranties on compu-
tational completeness.

3http://www.w3.org/2004/OWL/

CHAPTER 1. INTRODUCTION 11

Since OWL builds upon RDF and XML, it has a powerful but complicated
syntax. In order to be able to write OWL statements, one has to spend a lot
of time learning XML, RDF, and finally OWL. Furthermore XML is designed
to be readable by machines, not humans. Thus for a human it is very hard to
read OWL files.

1.3.4 Attempto Controlled English

Attempto Controlled English (ACE) is a controlled natural language, i.e. a
subset of natural English with a domain-specific vocabulary and a restricted
grammar [7]. ACE looks like English, but due to the restrictions it is a formal
language. Sentences in ACE can be translated unambiguously into first-order
logic.

ACE provides interpretation rules that define the semantics of ACE sen-
tences. Some ACE sentences would be ambiguous in natural English, but the
interpretation rules of ACE allow only one of the possible interpretations.

In order to be able to write sentences in ACE, one has to learn the restrictions
on the grammar and on the vocabulary. Thus, like every formal language, ACE
has to be learned. However, since it looks like natural English, everyone is
able to understand sentences in ACE with almost no training. This is a big
advantage over other formal languages.

Every ACE sentence can be translated into a representation of first-order
logic. This is done by the Attempto Parsing Engine (APE)4. APE generates
a logical representation of ACE sentences and uses for this representation Dis-
course Representation Structures (DRS) [8]. A DRS is equivalent to an expres-
sion in common first-order logic.

ACE is designed to achieve a high degree of expressiveness and thus it has
to make concessions on the reasoning part. Since ACE has the expressiveness
of first-order logic, it is more expressive than DL. But, as consequence, it is
harder to reason in ACE than in DL.

1.3.5 Comparison of KR Technologies

We can now compare the four introduced technologies for knowledge represen-
tation: first-order logic, Description Logics, OWL, and Attempto Controlled
English. Note that these four technologies are not independent. DL and ACE
build upon first-order logic, and OWL is inspired by DL. While FOL and DL
focus on the theoretical concepts of knowledge, OWL and ACE concentrate on
the implementation and application of knowledge representation. Nevertheless
we dare to give a direct comparison between these four technologies.

Figure 1.2 shows how the fact ‘everyone who is a manager has a car’ is
expressed in the four different KR technologies. The OWL representation is
the most verbose and – from the human perspective – least readable one. The
representations in FOL and DL are more concise, but they are still not un-
derstandable for people that are not familiar with formal notations. The ACE
representation, in contrast, should be immediately understandable for any Eng-
lish speaking person. It looks perfectly like natural English and thus the reader
might not even recognize that it is a formal language.

4see [2] and http://www.ifi.unizh.ch/attempto/tools/cape.html

12 CHAPTER 1. INTRODUCTION

FOL: ∀X(manager(X) → ∃Y (car(Y) ∧ has(X, Y)))

DL: Manager v ∃has.Car

OWL:

<owl:Class rdf:ID="Manager">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#has"/>

<owl:someValuesFrom rdf:resource="#Car"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

ACE: Every manager has a car.

Figure 1.2: Example in FOL, DL, OWL, and ACE

As already mentioned, there is a trade-off between the expressiveness of a
language and the difficulty of reasoning in it. A language with a high degree of
expressiveness has to make concessions to the reasoning, and vice versa.

DL concentrates on a good reasoning performance, whereas ACE has its
focus on the expressiveness. OWL does not commit to the one or the other,
but provides three sublanguages that allow to choose the right balance between
reasoning and expressiveness.

Figure 1.3 gives an overview over the properties of the four knowledge rep-
resentation technologies. We can state that controlled natural languages like
ACE minimize the gap between machines and humans. A reader is able to
understand such languages with almost no training. Writing sentences in a con-
trolled natural language is possible with only little effort, especially if the writer
is supported by a writing tool (see section 2.3).

FOL DL OWL (Lite/DL) (Full) ACE
conceptual focus + + – –
focus on application – – + +
formal definition + + + +
expressiveness + – – + +
reasoning performance – + + – –
decidable – + + – –
readable by non-specialists – – – +
easy to learn –/+ –/+ – +
practical usage + + + –

Figure 1.3: Comparison of FOL, DL, OWL, and ACE

Chapter 2

ACE as Ontology Language

This chapter shows how ACE can be used as an ontology language. Concerning
the trade-off between expressiveness and efficient reasoning, we focus on maxi-
mal expressiveness and, at least for the time being, disregard reasoning issues.
Our goal is to make the results of scientific papers accessible by computers as
good as possible. We want to minimize the remaining part of the results that
cannot be captured. That means that we need a high degree of expressiveness
and thus we will get a lower reasoning performance. We want to be able to
catch even complicated results without thinking about reasoning at this point,
rather than disregard the complicated results just to get a better reasoning per-
formance. Afterwards we are free to reason over only a subset of the results in
order to make it more efficient.

For the ontology in ACE we need some basic elements on which we can
build. For that reason we adopt the elements of DL: individuals, concepts, and
roles1. We call them ontology elements and use them as the basic elements of
ontologies in ACE.

In a first step we will show how the ontology elements are expressed in
ACE. For that reason we need to create a lexicon that defines the words. We
introduce a new lexicon format that we call Ontology Lexicon Format (OLF)
and that allows us to define individuals, concepts, and roles as well as their
representations in ACE. In addition, it allows us to specify the hierarchy of
concepts and roles, and to define the domain and range for each role. Altogether
an OLF lexicon defines the basic structure of the ontology.2

For the parsing of an ACE text we use the Attempto parser APE. In order
to parse an ontology description, we need a lexicon that is compliant to the ACE
Lexicon Format [1]. For the translation from the Ontology Lexicon Format into
the ACE Lexicon Format we need a new tool which we call Ontology Lexicon
Converter. It allows us to parse an ACE text on the basis of an OLF lexicon.

The user does not need to interact directly with APE or with the Ontology
Lexicon Converter. He is supported by a writing assistance tool that hides the
technical details. It helps him to use the right words from the lexicon, to use

1Note that we adopt only these three basic elements, but not the other parts of DL like
the constructors, the syntax of terminology definitions, or the syntax of assertions.

2[15] suggests to express terminological structures – like concept-hierarchies, role-hier-
archies, domains, and ranges – in a controlled natural language as well. We go the other way
and express this information in the lexicon.

13

14 CHAPTER 2. ACE AS ONTOLOGY LANGUAGE

them as intended by the ontology, and to write sentences that are compliant
to the ACE syntax. The user does not need to know about the ACE Lexicon
Format and possibly – this depends on the experience of the user – does not
need to see the resulting DRS. Figure 2.1 sketches the data flow between the
software components and the user.

Ontology
Lexicon

ACE
Lexicon

ACE
Text DRS

APEOntology Lexicon
Converter

User

Writing Assistance Tool

Figure 2.1: Data Flow

In the next sections we describe the Ontology Lexicon Format, the Ontology
Lexicon Converter, and we sketch how a writing assistance tool could look like.

2.1 Ontology Lexicon Format

We have now to map the ontology elements – individuals, concepts, and roles
– to ACE. For that reason we take first a look at how these elements could
be expressed in natural English. In a second step we show how the ontology
elements are expressed in ACE and we define the syntax for the entries of the
OLF lexicon. After that we will introduce an extended version of roles, which
allows us to express context information. Finally we introduce a graphical
notation for the basic structure of an ontology in ACE.

2.1.1 Ontology Elements in Natural English

Natural languages are the most common way to describe the real world. In
order to find out how we can express the ontology elements in ACE, we take
first a look at natural English. Since ACE is a subset of a natural English, we
can use the results later for the expression of the ontology elements in ACE.

Individuals in Natural English

Individuals are one of the ontology elements and they represent single entities of
the real world. In natural language we can express them with propernames like
‘John’ or ‘Germany’. But sometimes also common nouns are used to express
individuals. In the sentence ‘everyone knows the king’, for example, ‘the king’

CHAPTER 2. ACE AS ONTOLOGY LANGUAGE 15

can stand for an individual. In this case the definite article ‘the’ is used to
indicate that there is just one single entity3.

Concepts in Natural English

Concepts are the second ontology element. A concept represents a set of entities
of the real world that are similar in some way. In natural language we have
several possibilities to express such concepts. The most obvious one are common
nouns. The noun ‘human’, for example, could represent the set of all human
beings.

But, as a second possibility, we can also use adjectives to represent concepts.
Formally spoken they do the same as common nouns: they define a set of entities
of the real world. We can express, for example, the set of all men with the
adjective ‘male’.

Finally we can use intransitive4 verbs for representing concepts. The set of
smokers, for example, can be expressed with the verb ‘smokes’.

Roles in Natural English

The third ontology element are roles. They allow us to express binary relations
as pairs of individuals. Obviously we can use transitive verbs for that purpose in
natural languages. The verb ‘knows’, for example, can stand for a relationship
between two humans.

In natural language we often have sentences like ‘a giraffe is an animal from
Africa’ or ‘John is a brother of Bill’ where ‘is an animal from’ or ‘is a brother
of’ represent roles. Such constructs are another important way how roles are
represented in natural English.

Furthermore, adverbs are sometimes used to represent roles. If there is a
role ‘writes’, for example, that maps between a human and a text, then the
adverb ‘manually’ might be used to express the role ‘writes manually’ which is
a subrole of ‘writes’.

Finally there is the possibility to express a role as a construct with a compar-
ative form of an adjective, like ‘is older than’. Such constructs stand typically
for roles that represent transitive relationships.

Figure 2.2 shows an overview of how individuals, concepts, and roles can be
expressed in natural English.

2.1.2 Ontology Elements in ACE

We show now, how the ontology elements are mapped to ACE and to the DRS,
and we specify the syntax of the Ontology Lexicon Format OLF.

An OLF-file is a valid Prolog-file5, that contains only facts. For these facts
only the three predicates individual, concept, and role are used. The detailed
syntax of these predicates is shown in the next subsections.

3Note that ‘the’ is also used for other purposes. Not every occurrence of ‘the’ in natural
English denotes an individual.

4Intransitive verbs need a subject (like every verb) but no object. For that reason only
intransitive verbs are allowed to express concepts.

5For this thesis SWI Prolog is used. Consult http://www.swi-prolog.org/ and [20] for
further information.

16 CHAPTER 2. ACE AS ONTOLOGY LANGUAGE

Element Natural English
individual propername;

the + common noun
concept common noun;

positive form of adjective;
intransitive verb

role transitive verb;
transitive verb + adverb;
is a + noun + preposition;
is + comparative form of adjective + than

Figure 2.2: Ontology Elements in Natural English

Individuals in ACE

In ACE we allow only propernames to stand for individuals. The usage of com-
mon nouns with the definite article ‘the’ for individuals may lead to ambiguity
and does not correspond with the ACE interpretation of common nouns. Thus
we will not express individuals as common nouns.

Propernames

Propernames that represent individuals in ACE need an OLF lexicon entry that
looks like

individual(id(ID),
pn(singular(Singular),

type(ObjectType),
gender(Gender))).

ID is a unique identifier. Singular stands for the propername and we have
to specify the object type and the gender6. We do not allow any form of plural,
and thus we can define only singular propernames. As identifier we can simply
use the name of the individual, e.g. ’John’ or ’Germany’.

After the translation into the ACE Lexicon Format (that we will discuss
later) we can use the individual as a propername in ACE. Let us take a look at
the logical representation (i.e. the DRS). A propername is represented by the
following four predicates.

object(A,named entity,ObjectType)
quantity(A, cardinality, count unit, B, eq, 1)
structure(A, atomic)
named(A,Singular)

Singular and ObjectType stand again for the propername and the object
type. The first line declares, that there is an object which is named. This name
is indicated in the last line. The two lines in between specify the quantity and
the structure of this object. Since we allow only singular forms and no mass

6ObjectType is one of {unspecified, person, object, time} and Gender is one of {human,
neutr, masc, fem}. See [1] for further information.

CHAPTER 2. ACE AS ONTOLOGY LANGUAGE 17

nouns, we use the predicates quantity and structure only in the form that is
introduced above.

Example

Let us have an example how an individual is expressed in OLF. If there is a
man called ‘John’ who we want to express as an individual, then the OLF entry
might look like

individual(id(’John’),
pn(singular(’John’),

type(person),
gender(male))).

Note that we have to put the name John into apostrophes due to the Prolog
syntax. Otherwise it would be considered a variable.

Concepts in ACE

To express concepts in ACE we can use all of the three possibilities that we have
in natural language: countable common nouns, positive forms of adjectives, and
intransitive verbs. We show in this section which lexicon entries we need to
create and how the concepts are represented in the DRS. The OLF lexicon
entry for concepts looks like

concept(id(ID),
Term,
superconcepts(SuperconceptList)).

where ID stands again for a unique identifier that is used for references, Term
describes the word that is used to represent the concept, and SuperconceptList
is a list of references to other entries that specify the superconcepts.

As identifier we can again use the name of the concepts, like human or
protein. The list SuperconceptList is a list of references to other concepts.
The unique identifiers are used for these references. There is no limit on the
number of superconcepts; and we can put the empty list [], if we do not want to
define a superconcept at all. With such superconcept-definitions we can build
hierarchies of concepts.

The exact syntax of the argument Term depends on the way how we express
the concept. In the following subsections we explain how the different kinds of
concepts are expressed in OLF and how they will appear in the DRS.

Countable Common Nouns

The most straightforward way to express concepts in ACE are countable com-
mon nouns. In this case the Term-Argument for the OLF entry looks like

Term = cn(singular(Singular),
type(ObjectType),
gender(Gender))

18 CHAPTER 2. ACE AS ONTOLOGY LANGUAGE

where Singular is the singular form of the noun that represents our concept.
ObjectType and Gender specify again the object type and gender and again we
are not allowed to define a plural form.

Every occurrence of such a countable common noun in an ACE text is rep-
resented in the DRS by the three predicates

object(A,Singular, ObjectType)
quantity(A, cardinality, count unit, B, eq, 1)
structure(A, atomic)

where Singular is again the singular form and ObjectType the object type
of the corresponding noun. The predicate object is the most important one.
It introduces an object and assigns it to the specified noun. This object is
referenced by the logical variable A. The lines 2 and 3 are exactly the same as
for propernames.

Positive Forms of Adjectives

The second possibility to represent a concept in ACE are positive forms of
adjectives. In this case the Term-argument of the OLF entry looks like

Term = adj(positive(Positive))

where Positive is the positive form of the adjective that represents our
concept. Note that we do not specify a comparative and superlative form. We
can use this adjective only in its positive form.

Let us again look at the logical representation. If we use an adjective in
ACE then it is represented in the DRS as

property(A,Positive)

where Positive is again the positive form of our adjective. The meaning of
the predicate property is, that the object A has the property that is represented
by the adjective Positive. Or, from an ontological point of view, the object A
belongs to the concept that is represented by Positive.

Intransitive Verbs

Finally there are intransitive verbs that are used for representing concepts in
ACE. In order to do so, we have to create a lexicon entry that has the argument

Term = iv(third_singular(ThirdSingular),
third_plural(ThirdPlural),
phrasal_particle(PhrasalParticle))

where ThirdSingular is the third-singular form of the verb and Phrasal-
Particle is its phrasal particle, if there is any. Since the plural form of verbs
is not only used for plural, but also for negation (like ‘a man does not smoke’),
we need to specify a plural form. Thus Plural specifies the plural form, which
is only used for negation but not for plural.7

An intransitive verb is represented in the DRS as
7To be more precise: For the negation in English the ‘bare infinitive’ of a verb is used,

which is homonymous to the plural form.

CHAPTER 2. ACE AS ONTOLOGY LANGUAGE 19

predicate(A, unspecified, ThirdSingular,B)

where ThirdSingular denotes again the verb. It states that the object B
participates in the predicate ThirdSingular, and the variable A stands for this
participation.

Example

Let us again take a look at an example, that shows how to express concepts in
OLF. We consider the three concepts ‘protein’, ‘molecule’, and ‘organic’. We
express ‘protein’ and ‘molecule’ as common nouns and ‘organic’ as an adjective.
Furthermore the concept ‘protein’ should be a subconcept of the other two
concepts. This could be expressed in OLF as follows.

concept(id(molecule),
cn(singular(molecule),

type(object),
gender(neutr)),

superconcepts([])).

concept(id(organic),
adj(positive(organic)),
superconcepts([])).

concept(id(protein),
cn(singular(protein),

type(object),
gender(neutr)),

superconcepts([molecule, organic])).

Roles in ACE

We allow four different possibilities to express roles in ACE. Of the four possi-
bilities that are introduced for natural language, we allow three to be used in
ACE without restrictions: transitive verbs, adverbs, and constructs with com-
parative forms of adjectives. The fourth possibility – constructs with a noun
and a predicate – we allow only in a restricted form. The only predicate allowed
is ‘of’ and thus we call them of -constructs. This restriction is due to the syntax
of ACE. Lexicon entries for roles look like8

role(id(ID),
Term,
superroles(SuperroleList),
domain(Domain),
range(Range)).

where ID is again a unique identifier. SuperroleList defines the superroles,
in the same way as it is done for concepts. Domain indicates the domain of the
role. A domain of a role is a concept that contains all left-side participants
of that role. In contrast, Range stands for the range of the role, which is the

8we will extend this syntax later

20 CHAPTER 2. ACE AS ONTOLOGY LANGUAGE

concept that contains all right-side participants of the role. If we have a role
‘writes’, for example, then the domain might be ‘person’ and the range ‘text’.
If we do not want to declare a domain or range, we can simply put the empty
atom ’’.

The declarations of domain and range are inherited through the role hierar-
chy. That means that such a declaration is not only valid for the corresponding
role, but also for all its subroles. Thus the effective domain (or range) of a role
is defined by the intersection of all domains (or ranges) that are declared for a
– direct or indirect – superrole.

The next subsections show the syntax of the argument Term for the four
possible ways to express a role.

Transitive Verbs

Transitive verbs seem to be the most straightforward way to express roles. For
each role that is expressed as a transitive verb we need a lexicon entry with the
argument

Term = tv(third_singular(ThirdSingular),
third_plural(ThirdPlural),
phrasal_particle(PhrasalParticle),
direct_preposition(DirectPreposition))

where ThirdSingular and ThirdPlural are the third-singular and third-
plural form of the verb. Furthermore we can specify a phrasal particle and a
direct preposition. Again the plural form is only needed to express negative
statements. In the DRS a transitive verb is represented as follows.

predicate(A, unspecified, ThirdSingular,B, C)

It states that the objects, denoted by the variables B and C, participate in
the predicate that is represented by ThirdSingular; and the variable A stands
for this participation. It is the same syntax as for intransitive verbs, but with
an additional argument.

Adverbs

Let us take a look at the second possibility to express roles in ACE: adverbs.
In this case the Term-argument of the OLF entry has to look like

Term = adv(adverb(Adverb),
type(ModifierType))

where Adverb denotes the positive form of the adverb and ModifierType
stands for its modifier type9.

Adverbs need to be attached to a transitive verb and thus the logical repre-
sentation in the DRS looks like

predicate(A, state, V erb, B, C)
modifier(A,ModifierType, none,Adverb)

9ModifierType is one of {unspecified, manner, time, location, duration, frequency, instru-
ment, destination, comitative}. See [1] for further information.

CHAPTER 2. ACE AS ONTOLOGY LANGUAGE 21

where Adverb and ModifierType are again the positive form of the adverb
and the modifier type. V erb stands for the transitive verb that belongs to
the adverb. Since an adverb can only be expressed together with a transitive
verb, we can use adverbs only if there exists a superrole that is expressed as a
transitive verb (e.g. ‘writes manually’ and ‘writes’).

Of-Constructs

In order to express a role as an of -construct like ‘brother of’ or ‘part of’ we
need to declare a noun for the OLF entry. This declaration looks exactly the
same as for concepts that are expressed as countable common nouns.

Term = cn(singular(Singular),
type(ObjectType),
gender(Gender))

We can use nouns, that are already used for concepts. In this case we do
not define the noun, but we just refer to the concept where the noun is defined.

Term = cn(ref(RefID))

This notation works as well in the other direction, i.e. for concepts that use
a noun which is already defined by a role.

The logical representation of an of -construct looks like

object(A,Singular, ObjectType)
quantity(A, cardinality, count unit, B, eq, 1)
structure(A, atomic)
relation(A,Singular, of, C)

where Singular stands for the singular form of the noun and ObjectType for
its object type. Since we use a noun, the role is represented as an object. The
first three lines define this object. The fourth line declares the of -relationship.
The variables A and C stand for the two objects that participate in our role.

Constructs with Comparative Forms of Adjectives

Last but not least, we can express roles as constructs with comparative forms
of adjectives like ‘is larger than’ or ‘is earlier than’. The Term-argument has to
look like

Term = adj(comparative(Comparative))

where Comparative stands for the comparative form of the adjective. In the
DRS such a role is represented as

property(A,Comparative, B)
predicate(C, state, be, D,A)

where the variables D and B stand for the objects that participate in our
role.

22 CHAPTER 2. ACE AS ONTOLOGY LANGUAGE

Example

As an example, we pick again the role ‘writes’ that describes relationships be-
tween persons and texts. We assume that there is a superrole which is called
‘creates’. The corresponding OLF entry could look like

role(id(writes),
tv(third_singular(writes),

third_plural(write),
phrasal_particle(’’),
direct_preposition(’’)),

superroles([creates]),
domain(person),
range(text)).

2.1.3 Context Information for Roles

The examination of the results of scientific papers on protein interactions showed
that normal roles are often not sufficient to express the needed information. We
can express simple statements like ‘P1 interacts-with P2’, but we cannot express
statements with contextual information like ‘P1 interacts-with P2 in Yeast’ or
‘P1 interacts-with P2 in Microfilament for Motor-Activity’. In order to be able
to express such results, we want to allow roles to have such additional informa-
tion. In natural English we usually express such information with prepositional
phrases, and this is exactly the way we will do it in ACE. Figure 2.3 illustrates
the examples with context information for roles.

P1

interacts-with

in

Normal Roles Roles with Context Information

P2

P1

P2
interacts-with

interacts-with

Yeast

Microfilament
Motor-Activity

in
for

Figure 2.3: Normal Roles and Roles with Context Information

We extend the syntax for role definitions of the Ontology Lexicon Format
with an additional argument to specify the allowed prepositions for describing
context. The extended syntax looks like

role(id(ID),
Term,
superroles(SuperroleList),

CHAPTER 2. ACE AS ONTOLOGY LANGUAGE 23

domain(Domain),
range(Range),
context(ContextList)).

where the list ContextList contains pairs of prepositions and corresponding
concepts. These concepts define the range of the context-relations for each
preposition. The elements of the list look like

prep(Preposition, Concept)

where Preposition stands for the preposition that induces the context, and
Concept stands for the range of the context-relation. For the role ‘interacts-
with’, as it is shown in the examples above, the context-argument might look
like

context(prep(in, organism),
prep(in, cellular-component),
prep(for, molecular-function))

where organism, cellular-component, and molecular-function are the
IDs of three concepts. The DRS representation of context information looks
like

predicate(A, unspecified, V erb, B, C)
modifier(A, unspecified, Preposition,D)

where V erb stands for the name of the verb, Preposition for the name of
the preposition, and the variable D references the context object. If we do not
want to express any context information then we can still use the old version
with no context-argument.

As for the declaration of domain and range, the declaration of context is
inherited through the role hierarchy. That means, if a role declares a preposition
for context information then this can be used as well for all its subroles.

2.1.4 The Verb be

We have to take a look at the special state of the verb be. Generally the verb be
is handled in ACE in the same way as any other verb, with the only difference
that it needs no lexicon entry10. In natural English it can be used in three
different ways [11]:

Identity. It is used to express identity, e.g. in the sentence ‘John is the manager
of the pub’.

Predication. Second, it is used for the assignment of properties, like in ‘John
is unhappy’.

Auxiliary Verb. And third, it is used as an auxiliary verb, e.g. in ‘it is raining’.

10I.e. it is defined in the built-in lexicon of the parser.

24 CHAPTER 2. ACE AS ONTOLOGY LANGUAGE

For our ontology in ACE, we use the first two possibilities: identity and
predication. In the case of predication, we use the verb be for the assignment
of concepts and to express roles. Concepts that are represented as nouns or
adjectives can be assigned by using the verb be. For roles that are represented
as of -constructs or with comparative forms of adjectives, we need the verb be
as well.

John is a man. Every man is male.

John is a customer of Bill. Bill is older than John.

Besides that, we use the verb be to express identity. It allows us to express
statements as follows.

A man X is a customer of Bill. A manager Y has a car. The man X is
the manager Y.

The occurrence of be in the first sentence stands for predication, but in the
third sentence it stands for identity.

2.1.5 Notation

This section introduces a graphical notation for the basic structure of an on-
tology as it is expressed in OLF. We show how superconcept- and superrole-
relationships are graphically displayed as well as domains and ranges of roles.

Superconcepts

We introduce now a graphical notation for superconcept-relationships. Con-
cepts are displayed by their names in normal font. Superconcept-relationships
are indicated by a connection-line with a small filled circle on the side of the
superconcept.

concept

superconcept

If the concept ‘man’, for example, has the superconcept ‘human’, then the
graphical notation would look like

man

human

Superroles

The graphical notation for superrole-relationships is similar to the one for su-
perconcepts. In contrast to concepts, roles are written in italicized font and the
connection-line has a diamond on the side of the superrole.

CHAPTER 2. ACE AS ONTOLOGY LANGUAGE 25

role

superrole

Let us again have an example. We might have a role ‘mother of’ that has
‘parent of’ as its superrole. In this case the graphical representation looks like

mother-of

parent-of

Domain and Range of Roles

Finally we show the graphical notation for domain and range of roles. The
domain of a role is represented as a simple connection-line between the concept
of the domain and the corresponding role. The range is represented as an arrow-
style connection-line that points from the role to the concept of the range.

domain range

role

The example we introduced before, where the role ‘writes’ has the domain
‘person’ and the range ‘text’, would look like

person text

writes

2.2 Ontology Lexicon Converter

The Ontology Lexicon Converter translates OLF lexica into the ACE Lexicon
Format. This is necessary to use them with APE. If we have, for example, a
role ‘writes’ that we want to express in ACE as a transitive verb then the OLF
representation might look like

role(id(writes),
tv(third_singular(writes), third_plural(write),

phrasal_particle(’’), direct_preposition(’’)),
superroles([creates]),
domain(person),
range(text),
context([pred(for, journal), pred(with, instrument)])).

and after the translation into the ACE Lexicon Format we would get

26 CHAPTER 2. ACE AS ONTOLOGY LANGUAGE

tv(third_singular(writes), third_plural(write),
third_singular_aliases([]), third_plural_aliases([]),
type(unspecified), phrasal_particle(’’),
direct_preposition(’’), comment(’’)).

Note that only the information about the verb is used for this translation.
The additional information about the superroles, the domain, the range and
the context is not considered. But this additional information is important for
other tools, like the writing assistance tool (see the next section).

For the Ontology Lexicon Converter there is an implementation in Prolog.
Appendix C contains the code.

2.3 Writing Assistance Tool

This section sketches a tool that assists to write sentences in ACE using an OLF
lexicon. Such a tool allows the user to write specifications in ACE with almost
no training. It is similar to the look-ahead editor ECOLE [16].

At the beginning there is just an empty sentence that might look like

...« »

where the quotes indicate the beginning and the end of the sentence and the
button in the middle is used to create the content. If the user clicks on it, then
a menu is displayed that looks like

...
“a”
“every”

Propername
“there is”

“it is not the case that”

►

« »

►

“if” – “then”

“no”

“for every”

This menu shows the different options how to begin a sentence. The user
does not have to know about the syntax of ACE. He sees step by step all the
possibilities to continue the sentence. If we choose an entry from this first menu
then we get something like

...
Noun ►
Adjective ► “item”

“process”
“person”
“animal” “dog”

“cat”
“bird”

...
Noun ►
Adjective ►

...
Noun ►
Adjective ►

...
Noun
Adjective

►

► ►

►

►

► ►

►

►

« a »
Search...

CHAPTER 2. ACE AS ONTOLOGY LANGUAGE 27

where the article ‘a’ is now fixed as the beginning of the sentence. Of course
there has to be a possibility to undo such decisions, but we will not discuss this
here. We have now a new menu with different entries. The menu shows always
the possible words at the current position in the sentence, and thus it changes
as we proceed.

We might want to insert the noun ‘cat’. For that purpose we have to navigate
through the noun hierarchy. Instead of navigating we could use the search-
option which allows us to find an entry, even if we do not know the position in
the hierarchy. In the next step we get

...

Adjective ►

...

Adjective ►

...

Adjective ►

...
“is”

Verb ►

« a cat »

“that”
“of”

“is not”

where we have the option to specify a verb or to extend the noun phrase
with ‘that’ or ‘of’. If we choose ‘of’ then we get

...
“a”
Propername

« a cat of »

►

item
process
person
animal

►

►

►

►

“Mary”
“John”
“Bill”New Propername...
“Sue”

Search...

where we might want to insert a propername. Like common nouns, proper-
names are structured in hierarchies. After some more steps we might get

...

“.” (finish sentence)

« a cat of John eats a bird »

“and”
“or”

“that”
“of”

where we can finish the sentence.
For the creation of this sentence we did not need any further knowledge

about ACE. We might not even have recognized that we used a controlled
natural language. Every person that is familiar with English and knows how to
handle a simple menu, is able to create sentences in ACE with this tool.

Chapter 3

ACE Ontology Architecture

This chapter introduces an architecture for ontologies in ACE. For that purpose,
we use the Ontology Lexicon Format OLF that is introduced in the previous
chapter. We could use the same architecture with any another description
language.

3.1 Four Tier Architecture

Figure 3.1 shows the basic structure of the ACE ontology architecture. It is
a four-tier-architecture with two terminology tiers (base terminology and do-
main terminology) and two knowledge tiers (common knowledge and additional
knowledge). The distinction of terminology and knowledge is similar to the
distinction of a TBox and an ABox in DL.

Base Terminology

Domain Terminology

Common Knowledge

Additional Knowledge

Figure 3.1: The Architecture of an Ontology in ACE

3.1.1 The Terminology Tiers

The two terminology tiers define a terminology for the ontology. A terminology
consists of definitions of terms. Furthermore there must exist an interpretation
that gives a meaning to the terms. This interpretation is usually expressed in
natural language or is implicitly given by the context. It is important to have
in mind that such an interpretation has to exist.

We divide the terminology into two tiers: the base terminology and the
domain terminology. The base terminology describes fundamental concepts of
our world that do not depend on any domain. Terms like ‘time’, ‘location’,

28

CHAPTER 3. ACE ONTOLOGY ARCHITECTURE 29

or ‘type’ are useful in every domain, and thus belong to the base terminology.
Because there are multiple ways to describe the fundamental concepts of our
world, there is more than one possible base terminology.

On the basis of a base terminology we can build domain terminologies. A
domain terminology describes the world of a certain domain and thus the terms
of the domain terminology are domain-specific. A term can be used in several
domain terminologies with several definitions and meanings. ‘Complex’, for
example, may refer to a structure of several proteins in biology, but the same
term may refer to a mental disease in psychology.

It is important to notice that there is no knowledge contained in the termi-
nology tiers. They contain just definitions of terms. Such definitions cannot be
true or false; they can just be suitable or not for a particular task.

3.1.2 The Knowledge Tiers

The two knowledge tiers declare knowledge about the domain and they use the
terms of the underlying terminology tiers.

The common knowledge contains declarations that are widely considered to
be true. Since the declarations represent facts of the real world, we can never
be completely sure about the truth of these declarations. Thus, both knowl-
edge tiers may contain declarations that are wrong, but the common knowledge
should contain only declarations on which the majority of domain experts agree.

Knowledge that is uncertain or not validated belongs to the tier of additional
knowledge. This tier gives us the freedom to record declarations that are not
(yet) widely accepted. Scientific papers often contain information that belongs
to this category.

While the declarations of the common knowledge should always be consis-
tent, this has not to hold for the additional knowledge. We may have several
declarations with conflicting information, and we may not know which declara-
tions are true and which are false. Although we are not sure about the truth of
such declarations, we want to have them as a part of our ontology.

As we see, the knowledge tiers contain declarations, but not definitions.
Declarations may be true or not, and usually we are not able to decide this with
certainty.

3.2 Graph Structure of the Ontology

The ontology is structured into four tiers so far. This structure is very coarse
and we show in this section how we can structure it on a deeper level. This is
necessary for two reasons.

1. We want to be able to build very large ontologies. In order to handle the
complexity of such an ontology, we need to create encapsulated modules.
Furthermore this gives us the opportunity to improve the performance of
reasoning, because we do not have to consider the whole ontology for a
certain reasoning task.

2. The terminology and the knowledge of the ontology should be extensible.
We want to be able to add entities of terminology or entities of knowledge
to an existing ontology. This again requires a modular structure.

30 CHAPTER 3. ACE ONTOLOGY ARCHITECTURE

We model our ontology as a directed acyclic graph (DAG). The nodes of this
graph are small modules that represent a part of the terminology or a part of
the knowledge. If a module builds upon another module then there is a directed
edge from the first to the latter. If a module A, for example, builds upon the
modules B and C then there is an edge from A to B and from A to C.

We distinguish two kinds of nodes. Terminology-nodes (or T-nodes) con-
tain terminological information and belong to one of the terminology tiers.
Knowledge-nodes (or K-nodes) contain knowledge information and belong to
one of the knowledge tiers.

3.2.1 T-Nodes

Every T-node has a unique name and it defines new concepts, roles, and indi-
viduals. For that purpose it contains an OLF lexicon and possibly an ACE text
that states definitions on the new terms. A T-node may use the concepts, roles,
and individuals from other T-nodes.

T-Node

definitions

OLF Lexicon

ACE Text

Name

Figure 3.2: The Structure of a T-Node

The OLF lexicon contains only the entries for the introduced terms, but not
the entries for the terms that are imported from other T-nodes. Thus for the
parsing of the ACE text we need to merge the lexica from all the T-nodes that
are needed. Every new term that is introduced has to be defined and we are not
allowed to redefine terms from other T-nodes. Figure 3.2 shows the structure
of a T-node.

T-Node

HUMANS

OLF Lexicon:

concept(id(human),
 cn(singular(human), type(person), gender(human)),
 superconcepts([])).

concept(id(man),
 cn(singular(man), type(person), gender(masc)),
 superconcepts([human])).

concept(id(woman),
 cn(singular(woman), type(person), gender(fem)),
 superconcepts([human])).

No man is a woman.

ACE Text:ACE Text

OLF Lexicon

Figure 3.3: Example of a T-Node

CHAPTER 3. ACE ONTOLOGY ARCHITECTURE 31

If we want, for example, to create a T-node that defines the terms for repre-
senting humans then we first have to define a name for that node, e.g. Humans.
Next, we have to create an OLF lexicon, which in our case might contain the
concepts ‘human’, ‘man’, and ‘woman’. The fact that ‘man’ and ‘woman’ are
both subconcepts of ‘human’ can be expressed in the lexicon. If we want to
define that the concepts ‘man’ and ‘woman’ are disjoint then we have to express
it in ACE (e.g. ‘no man is a woman’). Figure 3.3 illustrates this example.

3.2.2 K-Nodes

Like T-nodes, K-nodes have unique names. A K-node contains declarations
about the domain. It can introduce new individuals, but it is not allowed to
introduce new concepts or roles. Thus, a K-node consists of an ACE text and
of an OLF lexicon that contains only individuals. This lexicon might be empty.
Figure 3.4 shows the structure of a K-node.

K-Node

declarations

OLF Lexicon
(only individuals)

ACE Text

Name

Figure 3.4: The Structure of a K-Node

Let us again have an example. We create a K-node that introduces two new
individuals, ‘John’ and ‘Mary’, and thus we call this node John&Mary. We
have to create an OLF lexicon that defines the two individuals and then we
can write ACE sentences that represent some knowledge about them. We use
our T-node from above to declare that ‘John is a man’ and ‘Mary is a woman’.
Furthermore we state that there is a relationship between them that we express
with ‘John is the husband of Mary’1. Figure 3.5 shows this example of a K-node.

K-Node

JOHN&MARY
individual(id('John'),
 pn(singular('John'), type(person), gender(male))).

individual(id('Mary'),
 pn(singular('Mary'), type(person), gender(fem))).

John is a man.
Mary is a woman.
John is the husband of Mary.

ACE Text

OLF Lexicon

Figure 3.5: Example of a K-Node

1We assume that there exists another T-node that defines the role ‘husband of’.

32 CHAPTER 3. ACE ONTOLOGY ARCHITECTURE

3.2.3 The Edges of the Graph

As already mentioned, the edges of the graph represent uses-relationships. That
means that if a node uses one or more terms of another node then there is an
edge pointing from the first to the latter. Every T-node belongs either to the
base terminology tier or to the domain terminology tier; and every K-node
belongs either to the common knowledge tier or to the additional knowledge
tier. The edges have to satisfy the following properties.

• There are no edges from a T-node to a K-node.

• There are no edges from a T-node that belongs to the base terminology
tier to a T-node that belongs to the domain terminology tier.

• There are no edges from a K-node that belongs to the common knowledge
tier to a K-node that belongs to the additional knowledge tier.

• The edges describe a transitive relationship. If there is an edge form a
node A to a node B and there is an edge from the node B to a node C
then there is an edge from A to C. For the sake of clarity, we usually omit
the edges that are implied by transitivity.

• The graph is a DAG, thus there are no cycles.

The graph structure is embedded in the four tier architecture. Figure 3.6
shows how the four tiers are related with the graph structure.

Base Terminology

Domain Terminology

Common Knowledge

Additional Knowledge

K-Node

K-Node

K-Node

K-Node

K-Node

K-Node

T-Node

T-Node

T-Node

T-Node
T-Node

T-Node T-Node

T-Node

Figure 3.6: Four Tiers and Graph Structure of the ACE Ontology Architecture

Chapter 4

Building a Terminology

This chapter shows step by step how a terminology is built. First we create
an exemplary base terminology that we will use in a second step to build a
terminology for protein interactions upon.

4.1 An Exemplary Base Terminology

Before we can build a base terminology we have to think about the fundamental
structure of our world. We have to be careful not to introduce any domain-
specific aspects.

We divide our base terminology into three T-nodes that we call Base,
Types, and ConPro. Figure 4.1 shows the structure and we will explain the
three different nodes in the next sections. The detailed definition of the base
terminology is shown in appendix A.1.

Base Terminology

BASE

TYPES

CONPRO

Figure 4.1: The Structure of the Base Terminology

4.1.1 The Node Base

The node Base introduces the five fundamental concepts ‘entity’, ‘time’, ‘loca-
tion’, ‘type’, and ‘instance’ and the three roles ‘part of’, ‘type of’, and ‘instance
of’. Figure 4.2 shows the structure of Base.

33

34 CHAPTER 4. BUILDING A TERMINOLOGY

BASE
entity

time location type instance
type of

instance of

part of

Figure 4.2: Structure of Base

The concept ‘entity’ is the universal superconcept, i.e. every other concept
is a subconcept of ‘entity’1. ‘Time’ and ‘location’ stand for unmovable places
in time and space that exist even if there are no other objects.

Let us have a closer look to the concepts ‘type’ and ‘instance’. In any
domain we have to distinguish between single objects of our world and types
that represent an abstract view of multiple objects. ‘Instance’ stands for single
objects (like items or processes) in our world and ‘type’, in contrast, stands for
collections of instances that are similar in some respects. In order to have a
consistent ontology, it is important to make this distinction.

The two roles ‘type of’ and ‘instance of’ make the link between types and
instances. They assign types to instances and vice versa. A type can be assigned
to several instances and an instance can be assigned to several types.

Finally we have the role ‘part of’. This role allows to define compound
objects that consist of other objects. ‘Part of’ is reflexive and transitive.

We are now done with our first T-node Base which we can use to build
other nodes upon.

4.1.2 The Node Types

With the node Base we can express types, but we cannot structure the types
in hierarchies. For that purpose we define the node Types that uses the node
Base. We introduce the roles ‘subtype of’ and ‘supertype of’ which are both
mapped to ACE as of -constructs. These two roles allow us to define hierarchies
of types. Figure 4.3 shows the structure.

TYPES

type

subtype of;
supertype of

Figure 4.3: Structure of Types

The role ‘subtype of’ is the inverse role of ‘supertype of’. If a type is a
subtype of another type then that means: Every individual that belongs to the
first type belongs as well to the second.

1In DL the universal superconcept is called ‘top concept’ and it is denoted by >.

CHAPTER 4. BUILDING A TERMINOLOGY 35

4.1.3 The Node ConPro

In a next step we want to provide more structure to types and instances. Thus
we create the node ConPro which uses the node Types (and, as consequence,
uses the node Base).

We want to distinguish between objects that endure through time (e.g. ‘pro-
tein’) and objects that occur (e.g. ‘cell growth’). We call them continuants or
processes, respectively. We do the same distinction on types and on instances.
For that reason we introduce the four new concepts ‘continuant’, ‘process’,
‘continuant-type’, and ‘process-type’. The concepts ‘continuant’ and ‘process’
are disjoint, and so are ‘continuant-type’ and ‘process-type’. Figure 4.4 shows
the structure.

CONPRO

type instance

continuant-type process-type continuant process

Figure 4.4: Structure of ConPro

Supertype- and subtype-relationships can only occur among continuant-
types or among process-types, but not between them. Obviously every instance
that belongs to a continuant-type has to be a continuant; and every instance
that belongs to a process-type has to be a process.

All the three nodes of our base terminology are now defined and we are ready
to use this base terminology for a specific domain.

Due to the graph structure of the terminology we can use only a part of the
terminology, if we do not need all of it. If we want to use subtype-structures, for
example, but we do not want to distinguish between continuants and processes,
then we just use the nodes Base and Types. We do not need the node ConPro
in this case, and thus it produces no overhead.

4.2 A Terminology for Protein Interactions

We are now ready to create a terminology for protein interactions. We will give
only a coarse definition of the introduced terms. A thorough definition would
exceed the scope of this thesis. For an excellent description of how to give a
detailed definition of biomedical terms we recommend [17].

Our terminology for protein interaction uses the node ConPro that we
defined in the previous section2. Again we divide our terminology into several
T-nodes: Prot, Inter, Region, Go, ProtGo, and Prot2. Figure 4.5 shows
the structure of the terminology for protein interactions. In the next sections we
explain each of these nodes. The formal definition of the terminology is shown
in appendix A.2.

2That means that we use all three nodes of the base terminology, since ConPro uses Types
and Types uses Base.

36 CHAPTER 4. BUILDING A TERMINOLOGY

Base Terminology

Protein-Interaction
Terminology

PROT

REGION

CONPRO

GO

INTER PROT2 PROTGO

Figure 4.5: Structure of the Terminology for Protein Interactions

Furthermore, we will introduce some stub nodes that are not sufficiently
structured and that we need just for demonstration purposes. For practical use
we should give them a more detailed structure and we should split up each of
them into multiple nodes.

4.2.1 The Node Prot

The node Prot defines the basic structure of proteins and it uses the node
ConPro of the base terminology.

Several proteins together can form a protein-complex, and proteins consist of
different regions that are important for the interaction between them. Thus we
introduce the concepts ‘protein’, ‘protein-complex’, ‘region’, ‘protein-unit’, and
‘protein-component’. Each of them is expressed in ACE as a countable common
noun.

We have to connect these concepts with the concepts that we defined in
the base terminology. We have to decide whether the terms denote types or
instances. In science we usually do not make statements about single objects of
our world, but rather about types. Thus we define them as types. Figure 4.6
shows the structure of the node Prot.

PROT
protein-component

region protein-unit

protein protein-complex

continuant-type

region of

subunit of

part of

region of subunit of

Figure 4.6: Structure of Prot

CHAPTER 4. BUILDING A TERMINOLOGY 37

‘Region’ and ‘protein-unit’ are disjoint concepts and the same holds for ‘pro-
tein’ and ‘protein-complex’. The roles ‘region of’ and ‘subunit of’ are subroles
of the role ‘part of’ from the node Base. With ‘region of’ we can express that
a region is a part of a protein-unit and with ‘subunit of’ we can express that
a protein is a part of a protein-complex. Both roles are expressed in ACE as
of -constructs.

4.2.2 The Node Go

The node Go introduces the basic terms from the Gene Ontology (GO). The
Gene Ontology is a controlled vocabulary for the description of genes and gene
products3. We will use these terms to express information about proteins (e.g.
where does a certain protein occur) and to express context information about
protein interactions (e.g. to which process does the interaction of two proteins
belong). The Gene Ontology consists of the three basic concepts ‘cellular-
component’, ‘molecular-function’ and ‘biological-process’ which are mutually
disjoint. Figure 4.7 shows the structure of this node.

GO

cellular-component

continuant-type process-type

molecular-function biological-process

Figure 4.7: Structure of Go

This node contains only these three concepts, but not all the other terms
from the Gene Ontology. For that reason we introduce the three stub nodes
Gobp, Gocc, and Gomf that contain all the terms of the GO.

4.2.3 The Node Inter

The node Inter is the heart of our terminology and it allows to express inter-
actions between proteins. Figure 4.8 shows the structure.

INTER

protein-activity

protein-component

acetylation of;
amidation of; ...interacts-with

acetylates; amidates; ...

process-type

increases; decreases;
inhibits; regulates

Figure 4.8: Structure of Inter

3See [9] and http://www.geneontology.org/.

38 CHAPTER 4. BUILDING A TERMINOLOGY

Some protein interactions are expressed straightforward as transitive verbs,
for example ‘binds’; some of them are expressed as adverbs, for example ‘in-
teracts directly with’; and some of them are expressed as nouns that represent
activities of a single protein (e.g. ‘acetylation’) linked with an auxiliary verb
(i.e. ‘increases’, ‘decreases’, ‘inhibits’, and ‘regulates’). Thus we can state, for
example, the sentence ‘a protein X decreases the acetylation of a protein Y’.

4.2.4 The Node ProtGo

The node ProtGo connects the node Prot with the node Go. It allows to
express that a protein-component participates in a molecular-function or in a
biological-process. Furthermore we can express that a protein-unit localizes to
a cellular-component or that two protein-units co-localize. Figure 4.9 shows the
structure of the node ProtGo.

PROTGO

protein-component participates-in molecular-function

protein-unit

biological-process

cellular-component

participates-in

localizes-to

colocalizes-with

Figure 4.9: Structure of ProtGo

4.2.5 The Node Region

The node Region describes the inner structure of a protein, which is important
for the interaction between proteins. The smallest component of a protein is
a residue. A multi-residue-region is a structure that consists of several of such
residues. ‘Terminus’, ‘central-region’, ‘secondary-structure’, and ‘domain’ are
special cases of multi-residue-regions. A terminus is either a n-terminus or a
c-terminus, and a secondary-structure is either a alpha-helix or a beta-sheet.
Figure 4.10 shows the structure of this node.

4.2.6 The Node Prot2

The node Prot2 contains some additional terms for proteins. First we define
‘receptor’ as a subconcept of ‘protein’ and the role ‘receptor of’ that allows to
express that a certain receptor belongs to another protein.

Furthermore we can characterize a protein-complex as a dimer or a polymer
of a certain protein. For that reason we introduce the two roles ‘dimer of’ and
‘polymer of’.

Finally we introduce two new roles that map among proteins: ‘mutant of’
and ‘isoform of’. They allow us to declare mutants and isoforms of proteins.
Figure 4.11 shows the structure.

CHAPTER 4. BUILDING A TERMINOLOGY 39

REGION

residue of

part of

residue of secondary-
structure of

region

n-terminal
(region)

c-terminal
(region)

residue multi-residue-region

secondary-structureterminus central-region

n-terminus c-terminus alpha-helix beta-sheet

domain

secondary-
structure of

Figure 4.10: Structure of Region

PROT2

protein protein-complex

receptor of
dimer of; polymer of

receptor

mutant of;
isoform of

Figure 4.11: Structure of Prot2

40 CHAPTER 4. BUILDING A TERMINOLOGY

4.2.7 The Stub Nodes

Finally we introduce eight stub nodes that we use for demonstration purposes:
Gobp, Gocc, Gomf, ProtN, Ana, Dis, Org, and SciMeth.

The nodes Gobp, Gocc, and Gomf contain the terms that are extracted
from the Gene Ontology and they build upon the node Go. They contain the
terms about biological processes, cellular components, and molecular functions,
respectively. We extracted the is-a-relationships from the GO to represent them
as ‘subtype of’-relations in ACE. We did not extract the part-of -relationships
of GO, since they would belong to the knowledge tiers.

ProtN contains types of proteins that are used for expressing protein in-
teractions and other facts about proteins.

The last four nodes are only used for context information for protein in-
teractions. The node Ana contains terms that denote anatomical components
which are extracted from MeSH (Medical Subject Headings)4. The nodes Dis
and Org are extracted from MeSH as well and contain terms about diseases and
organisms respectively. The last node SciMeth consists of terms that stand
for scientific methods.

Since all these nodes are just stubs, they should get subdivided into multiple
small nodes in order to get a clear structure.

We are now done with the terminology for protein interactions. Figure 4.12
shows the big picture of this terminology including the terms from the base
terminology.

4http://www.nlm.nih.gov/mesh/

CHAPTER 4. BUILDING A TERMINOLOGY 41

residue of

n-terminal
(region)

c-terminal
(region)

residue multi-residue-region

secondary-structureterminus central-region

n-terminus c-terminus alpha-helix beta-sheet

domain

secondary-
structure of

entity

time location type instance
type of

instance of

part of

subtype of; supertype of

continuant-typeprocess-type

continuant process

protein-component

region protein-unit

protein protein-complex

region of

subunit of

protein-activity

acetylation of;
amidation of; ...

interacts-with

acetylates; amidates; ...

increases; decreases;
inhibits; regulates

participates-in participates-in localizes-to

colocalizes-with

molecular-function
biological-process

cellular-component

receptor of
dimer of; polymer of

receptor

receptor of

mutant of;
isoform of

Figure 4.12: The Big Picture of the Terminology

Chapter 5

Expressing Knowledge

In the previous chapter we built a base terminology and a terminology for
protein interactions. This chapter shows how we can express knowledge using
these terminologies. For that purpose we use again ACE together with OLF
lexica.

5.1 Accumulation of Knowledge

The modular tree structure of the ontology architecture allows us to extend the
knowledge about a domain dynamically. Thus we do not have to specify all the
knowledge at once. We can start with a small knowledge base and increase it
step by step. This process can be seen as knowledge assimilation as described
in [12].

Like terminologies, the knowledge is structured into nodes (which we call
K-nodes). They are the smallest independent pieces of knowledge. If we want
to express some new knowledge then we wrap it into one or more K-nodes and
add them to one of the knowledge tiers of our ontology.

We do not allow to introduce new roles or concepts in the knowledge tiers.
This can only be done on the level of the terminologies. But we are free to
introduce new individuals which we address with propernames.

A K-node can use the concepts, roles, and individuals from other nodes.
We do not have to specify these nodes explicitly, since we can just look for the
places where the words are defined. Thus a K-node can use concepts, roles, and
individuals from T-nodes and it can use individuals from other K-nodes.

5.1.1 State of Additional Knowledge

We have to think about the relationship between the common knowledge and
the additional knowledge. For that reason we take a look at an arbitrary K-
node that describes additional knowledge and its relationship to the common
knowledge. There are four cases for the relationship between the information A
of this K-node and the accumulated information B of the common knowledge
[12]:

1. A is a logical consequence of B.

42

CHAPTER 5. EXPRESSING KNOWLEDGE 43

2. Part of B is logically implied by A together with the other part of B, i.e.
B = B1 ∪B2 and B2 is a logical consequence of B1 ∪ {A}.

3. A is inconsistent with B.

4. None of the relationships 1 – 3 hold.

On the basis of these four cases we can examine the relationship of additional
knowledge to the common knowledge.

Additional knowledge that is the logical consequence of the common knowl-
edge is useless in most cases, since there is no new information contained. In
some situations it might be used as an extra confirmation of the truth of the
corresponding part of the common knowledge.

If the additional knowledge fulfills the second condition, then this knowledge
has the power to generalize the existing common knowledge. Such generaliza-
tions are very valuable since they allow to simplify the model of the world. But,
unfortunately, this case is very hard to detect, since we have to check basically
every possible split of the knowledge base B into two parts B1 and B2.

For additional knowledge that leads to inconsistency there are two possibil-
ities: either the additional knowledge or the common knowledge is wrong. If
we find out that the additional knowledge is wrong, then we can forget about
it. Otherwise, if the common knowledge contains wrong information, we might
have to rebuild the common knowledge by changing or removing some sentences.
In some rare cases it might be better to keep the wrong common knowledge for
the sake of a simple model. Since no model is perfect anyway, there will always
be observations of the real world that are inconsistent with our model.

The forth case, where none of these relationships hold, is the most common
one. The additional knowledge is not yet contained in the common knowledge,
does not contradict to it, and has no generalization power. We expect most of
the results of scientific papers to belong to this category.

5.1.2 The Paths of Knowledge

In this chapter, knowledge is described as a highly dynamic structure. On
the one hand, there is new information that has to be integrated, and there is
possibly knowledge that is falsified and has to be excluded from the ontology.
On the other hand, we have to distinguish between validated knowledge and
knowledge that is still uncertain. All that requires a dynamic management of
knowledge. We introduce here the term paths of knowledge, that denotes the
different kinds of changes of a single piece of knowledge. Figure 5.1 illustrates
these paths of knowledge.

The path (1) stands for the inclusion of new knowledge that is not (yet)
validated. Results from scientific papers could be such knowledge. At some
point in time the knowledge might get validated or falsified. In the case of
validation (3), we have to integrate it into the common knowledge, which might
entail further transformations of other parts of the common knowledge (8). In
the case of falsification (2), the knowledge has to be removed from the ontology.
For unvalidated knowledge there can be corrections (7). Furthermore we can
add new knowledge directly to the common knowledge (5), which is needed in
particular for the initial construction of the common knowledge.

44 CHAPTER 5. EXPRESSING KNOWLEDGE

Common
Knowledge

Additional
Knowledge

(7) correction

(9) correction

(1) new unvalidated
knowledge

(3) validation

(2) falsification

(4) relegation

(6) falsification

(5) knowledge collection(8) transformation

Figure 5.1: The Paths of Knowledge

In an ideal world, where we validate only true knowledge, these six paths
would be sufficient. But in reality we have to take into account that we possibly
validate knowledge that is wrong. Thus we need paths that allow us to correct
such validations. We can correct the common knowledge (9) or we can remove
parts of it (6). If there is a part of the common knowledge that we can not (yet)
falsify, but there emerge doubts about its truth, then we can relegate it to the
additional knowledge (4).

For the validation (3) of some additional knowledge A, the state of A – as
described in the previous section – plays an important role. If A is the logical
consequence of the common knowledge (the first case), then we do not have
to change the common knowledge and A can be removed from the additional
knowledge. The knowledge A was already known and thus the common knowl-
edge remains unchanged.

If a part of the common knowledge is logically implied by some additional
knowledge A together with the other part of the common knowledge (the second
case), then A has the power to generalize the common knowledge. That means
that we create redundancy if we integrate A into the common knowledge. Thus
we can transform the common knowledge (e.g. to merge sentences) in order to
eliminate this redundancy (8). Since this case is hard to detect (as we mentioned
before), we probably cannot perform a complete check, and thus we have to live
with a certain degree of redundancy in our knowledge base.

If we validate some knowledge that is inconsistent with the common knowl-
edge (the third case) then we have to rebuild the common knowledge in order to
preserve consistency. The rebuilding may include correction (9), transformation
(8), falsification (6), and relegation (4) of parts of the common knowledge.

The fourth and most common case – none of the three relationships hold –
is easy to handle. We can just add A to the common knowledge.

CHAPTER 5. EXPRESSING KNOWLEDGE 45

5.2 ACE Summaries

The initial goal of this thesis is to provide a formal language to summarize the
results of scientific papers about protein interactions. We can finally take a
closer look at this issue.

The language ACE allows us to write texts that look natural, but are in
fact formal. Nonetheless ACE does not provide any help on translating natural
language into some logical representation. ACE is designed for the creation of
texts from scratch. If we have sentences in natural language that we want to
express in ACE, then there is no other way than translating them manually.

5.2.1 ACE Summaries for 89 Selected Articles

Since we want to show how results of papers about protein interactions could
have been written in ACE in the first place, we picked 89 articles from the journal
“Cell” that concern protein interactions. Articles from “Cell” mostly have a
section called “Results” which is subdivided into subsections. The headings of
these subsections are short descriptions of the corresponding results. It turned
out that these headings are highly suitable for a manual translation into ACE.
Note that we do this translation just for demonstration. It should not be the
usual way to express the results first in natural language and then to translate
them into ACE. Appendix B shows the headings and their representations in
ACE.

The 89 articles contain 457 such headings. 184 of them are ignored, because
they are not formulated as facts or because they contain information that is not
about protein interactions.

total: 457 (100%)
ignored: (not a fact) 87 (19%)

(off-topic) 97 (21%)
used: 273 (60%)

After that we tried to translate the 273 remaining headings into ACE. For
154 of them there is a perfect match, which means that the complete information
can be expressed in ACE. For another 62 headings only a part of the information
is expressed, and for the remaining 57 headings there is no translation at all.

used: 273 (100%)
matched: (perfect) 154 (56%)

(partial) 62 (23%)
unmatched: 57 (21%)

Let us take a closer look at the reasons, why 119 headings cannot be re-
phrased in ACE perfectly. 56 of them could not be rephrased because their
content is not covered by our model. These headings could be expressed with
an extended model. Another 21 headings describe relations of relations, like the
following heading from article #10 (see appendix B).

Kal-GEF1 activation of Pak does not require GEF activity.

In this case, there is a relation between two objects (‘Pak activates Kal-
GEF1’) and this relation itself stands in another relation (‘... does-not-require

46 CHAPTER 5. EXPRESSING KNOWLEDGE

GEF-activity’). We cannot express such structures in ACE – at least not in
the usual way. In order to be able to express such relations of relations in a
satisfying way, we would need to extend the language ACE.

Furthermore there are 11 headings with fuzzy statements and 31 headings
that we could not understand.

not perfectly matched: 119 (100%)
not covered by our model: 56 (47%)
relations of relations: 21 (18%)
fuzzy: 11 (9%)
not understood: 31 (26%)

Thus, altogether we could rephrase 79% of the relevant headings, either
partially or perfectly. This makes us confident that our approach is feasible
for practical use. The reason, why 119 headings are not rephrased perfectly,
is mostly our simple model and our lack of understanding. If we use a more
detailed model and if we let the scientists express their own results in ACE,
then we expect to be able to express much more than 79% of the results.

5.2.2 ACE Summary as an Integral Part of an Article

Since ACE looks like natural English, every reader of a scientific article is able
to understand sentences in ACE. The ACE summary of the results can be an
integral part of the article. Together with the abstract and a keyword list, it
gives a concise insight into the content. Figure 5.2 shows how an article with
an ACE summary could look like.

In contrast to the abstract, the ACE summary is readable by both, human
and machines; and in contrast to the keyword list, the ACE summary does not
only mention the objects of interest, but describes the relations among them.

Thus, every published article could be a contribution to a constantly growing
ontology.

CHAPTER 5. EXPRESSING KNOWLEDGE 47

The Drosophila kinesin-I associated protein
YETI binds both kinesin subunits

T. P. Wisniewski, C. L. Tanzi, J. G. Gindhart

Abstract

The microtubule-based motor kinesin-I is essential for the intra-
cellular transport of membrane-bound organelles in the Drosophila
nervous system and female germ line. A number of studies have
demonstrated that kinesin-I binds to its intracellular cargos through
proteinprotein interactions between the kinesin tail domain and pro-
teins on the cargo surface. To identify proteins that mediate or reg-
ulate kinesin-cargo interactions, we have performed yeast two-hybrid
screens of a Drosophila embryonic cDNA library, using the tetratri-
copeptide repeats of the kinesin light chain and amino acids 675-975 of
the kinesin heavy chain as baits. One of the proteins we have identified
is YETI. Interestingly, YETI has the unique ability to bind specifically
to both subunits of the kinesin tail domain. An epitope-tagged YETI
fusion protein, when expressed in Drosophila S2 cultured cells, binds
to kinesin-I in copurification assays, suggesting that YETI-kinesin-
I interactions are context-independent. Immunostaining of cultured
cells expressing YETI shows that YETI accumulates in the nucleus
and cytosol. YETI is evolutionarily conserved, and its yeast homolog
(AOR1) may have a role in regulating cytoskeletal dynamics or intra-
cellular transport. Collectively, these results demonstrate that YETI
interacts with both kinesin subunits of the kinesin tail domain, and is
potentially involved in kinesin-dependent transport pathways.

Keywords: Kinesin cargos; Intracellular transport; Two-hybrid system;
Biochemistry; Tissue culture.

ACE Summary: YETI specifically binds KHC in Yeast-Two-Hybrid and
specifically binds KLC in Yeast-Two-Hybrid. YETI binds Kinesin in Drosophila
in Cultured-Cell. YETI localizes-to Nucleus. YETI localizes-to Cytosol in
Cultured-Cell.

1

Figure 5.2: Article with ACE Summary: The frontpage of an article with an
ACE summary could look like this. For this demonstration the article #22 of
appendix B is used.

Chapter 6

Conclusions

6.1 The Benefits of our Approach

We showed in the preceding chapters what we need to do for expressing scientific
results about protein interactions in ACE, and how it is done in detail. Now it
is time to take a look at the benefits.

Imagine that all the scientific papers about protein interactions summarize
their results in ACE. We could use these formal summaries to build up a
dynamically growing knowledge base about protein interactions. On the basis
of this knowledge base we would be able to answer many questions. We present
now some examples of such questions.

Remembering that we decided to focus on a high degree of expressiveness,
we have now to deal with a poor reasoning performance. That means that we
probably need heuristics and simplifications and that we possibly cannot give
complete answers to the questions that are described below. But we can argue
that this problem is due to the inherent complexity of scientific results and is
not made by our approach. We claim that even incomplete answers to these
questions are a big advantage, compared to the possibilities we have today.

Are the results of a scientific paper consistent with the common knowledge and
with other papers?

We can check, whether an ACE summary is consistent with the common knowl-
edge. Usually this should be the case, since the common knowledge contains
only knowledge that is supposed to be sure. If a paper contains results that are
inconsistent with the common knowledge, then this can be seen as an appeal
against the common knowledge.

Without a formal declaration of common knowledge and scientific results, it
is impossible to check for consistency. Probably there exist many scientific pa-
pers that contain results which are inconsistent with some common knowledge.
But since it can be very difficult to find out, neither the author nor the readers
might realize the special status of the results.

In the same way we can check, whether there exist papers that contradict a
certain paper. That would mean that different researchers claim contradictory
results. Being aware of such a contradiction might lead to a dialogue between
the corresponding scientists, which might entail better and consistent results.

48

CHAPTER 6. CONCLUSIONS 49

Are the results of a scientific paper already known?

With our formal approach we can check whether a certain result is already
known. Results that are already considered common knowledge are not worth
to be described as results of scientific papers. Thus it is very valuable to be able
to run a check, whether a certain result is already contained in the common
knowledge or not.

Furthermore a researcher might want to check, whether there exists scientific
literature that has arrived at the same results. Altogether our approach would
help the researchers to save a lot of time, since they would not need to search
“manually” for the relevant literature.

Is there a known answer for a certain question?

If someone – researcher or not – has a specific question about the domain (e.g.
protein interactions), then we would be able to extract automatically an an-
swer1. Such an answer-extraction can consider only the common knowledge, or
it can include every known scientific paper.

What is known about a certain object of interest?

In some cases we do not want to ask a specific question, but we rather want to
get an overview of a single object of interest (e.g. the protein IRAK2). If we
ask for information about such an object then we might get something like2

type IRAK2
supertypes IRAK – Protein – Molecule

subtypes IRAK2a, IRAK2b
interacts directly with BTG2, XDH, Mcm3, MAX

interacts indirectly with BCL2, Indo, Cckbr, HPCA, ID1, Ep300
phosphorylates XDH
colocalizes with BTG2, HPCA

localizes to Membrane
participates in Cell-Growth, Signal-Transduction

Again we have the option to consider either only the common knowledge or
to include all known scientific papers. The idea of such an overview could be
used for a dynamic hypertext representation. This would allow us to navigate
through the whole knowledge base, e.g. with an ordinary web browser. New
papers that are submitted can be integrated automatically and thus such a web
interface would be always up-to-date.

How are some objects of interest related?

Instead of focusing on one single object, we might want to have an overview of
the interrelations of a certain group of objects. We could extract, for example,
the interacts-with-relations of all proteins and use this data for further examina-
tion, like the detection of clusters or hot-spots. Such examinations are already
common in the research on proteins, but only with restricted data. With our
approach we could consider every interaction that has been published.

1ACE allows to formulate questions which could be used for queries on the knowledge base.
2this example is purely fictitious

50 CHAPTER 6. CONCLUSIONS

6.2 Summary

The goal of this thesis was to show, how the results of scientific papers on protein
interactions can be expressed in ACE, in order to make them machine-readable.
For that purpose we decided to create an ontology for protein interactions,
which should serve as basis for the descriptions of the results. We adopted the
basic elements of Descriptions Logics – individuals, concepts, and roles – for our
ontology in ACE, but we retained the expressiveness of first-order logic.

For the specification of an ontology in ACE we needed to introduce a new
lexicon format: Ontology Lexicon Format. This format is used to define the
basic structure of the ontology and the representations in ACE. For the trans-
lation of ACE into the logical representation (i.e. the DRS), we used the existing
parser APE together with some additional tools.

In order to give a clear structure to the ontology, we defined an ontology
architecture for ACE. Basically such an ontology is divided into four tiers:
two terminology tiers and two knowledge tiers. The terminology tiers define the
terms and their interrelation, and we distinguish between a domain-independent
and a domain-specific terminology. One of the two knowledge tiers defines
the common knowledge, whereas the other defines additional knowledge that is
uncertain.

For a dynamic management of the ontology we defined a graph structure
for the ontology. This allowed us to handle knowledge as a highly dynamic
structure and we introduced the term paths of knowledge, that stands for the
kinds of changes that a piece of knowledge undergoes.

We defined an ontology for protein interactions and demonstrated how it
can be used for the expression of scientific results. For that purpose we took 89
articles from the journal “Cell” and demonstrated how the results could have
been written in ACE. We could express 56% of the results perfectly in ACE, and
another 23% can be expressed partially. These results make us quite confident
that our approach is feasible for practical use.

6.3 Future Work

This thesis suggests an approach of using controlled natural language for making
the results of scientific papers readable and – to some degree – understandable
by computers. But in order to achieve this goal, there is still a lot of work to
do. We point out here some of the major tasks that have to be performed.

Writing Assistance Tool. First of all, we need a writing assistance tool as
it is sketched in section 2.3, in order to support the authors of scientific papers
in the creation of ACE summaries.

Terminology Definition System. Next, we need a tool that allows to create
and maintain the terminological definitions of an ontology. This tool is used by
system experts, i.e. the system administrators.

Knowledge Management System. For the collection and management of
knowledge on the basis of an existing ontology, we need a knowledge manage-

CHAPTER 6. CONCLUSIONS 51

ment tool. Among other tasks, this tool is responsible for the consistency of the
knowledge base.

Creation of an Ontology. We have to create an ontology of the correspond-
ing domain in order to be able to collect knowledge about this domain. In this
thesis we showed how it could be done.

Collection of Common Knowledge. The collection of common knowledge
is an important and demanding task. We have to map the knowledge on the
structures that are defined by the ontology.

Commitment among Scientists. Besides all these technical requirements,
there are also political requisites. There must be a commitment among the
scientists of the corresponding field of research – or at least among a big part
of them – that every scientific article has to summarize its results in ACE. If
such a summary is optional then there is little hope that it gets established.

Altogether we can say that there is a lot of work to do, and we do not expect to
have a working system in the near future. But due to the immense benefits such
a system would bring along, we belief in the great potential of our approach.

Appendix A

Terminology Definitions

A.1 Definition of the Base Terminology

The Node Base

Lexicon

concept(id(entity),
cn(singular(entity), type(unspecified), gender(neutr)),
superconcepts([])).

concept(id(time),
cn(singular(time), type(time), gender(neutr)),
superconcepts([entity])).

concept(id(location),
cn(singular(location), type(unspecified), gender(neutr)),
superconcepts([entity])).

concept(id(type),
cn(singular(type), type(unspecified), gender(neutr)),
superconcepts([entity])).

role(id(’type-of’),
cn(ref(type)),
superroles([]),
domain(type),
range(instance)).

concept(id(instance),
cn(singular(instance), type(unspecified), gender(neutr)),
superconcepts([entity])).

role(id(’instance-of’),
cn(ref(instance)),
superroles([]),
domain(instance),
range(type)).

role(id(’part-of’),
cn(singular(part), type(unspecified), gender(neutr)),
superroles([]),
domain(entity),
range(entity)).

Definitions

Everything is an entity.

52

APPENDIX A. TERMINOLOGY DEFINITIONS 53

No time is a location. No time is a type. No time is an instance. No location is a
type. No location is an instance. No type is an instance.

If an instance Y is an instance of a type X then X is a type of Y. If a type X is a
type of an instance Y then Y is an instance of X.

Everything is a part of itself.

If an entity X is a part of an entity Y that is a part of an entity Z then X is a part
of Z.

If an entity X is a part of a time then X is a time. If an entity X is a part of a
location then X is a location. If an entity X is a part of a type then X is a type. If
an entity X is a part of an instance then X is an instance.

The Node Types

Lexicon
role(id(’subtype-of’),

cn(singular(subtype), type(unspecified), gender(neutr)),
superroles([]),
domain(type),
range(type)).

role(id(’supertype-of’),
cn(singular(supertype), type(unspecified), gender(neutr)),
superroles([]),
domain(type),
range(type)).

Definitions

If a type X is a subtype of a type Y then Y is a supertype of X. If a type X is a
supertype of a type Y then Y is a subtype of X.

If an instance X is an instance of a type that is a subtype of a type Y then X is an
instance of Y.

The Node ConPro

Lexicon
concept(id(continuant),

cn(singular(continuant), type(unspecified), gender(neutr)),
superconcepts([instance])).

concept(id(process),
cn(singular(process), type(unspecified), gender(neutr)),
superconcepts([instance])).

concept(id(’continuant-type’),
cn(singular(’continuant-type’), type(unspecified), gender(neutr)),
superconcepts([type])).

concept(id(’process-type’),
cn(singular(’process-type’), type(unspecified), gender(neutr)),
superconcepts([type])).

Definitions

No continuant is a process. No continuant-type is a process-type.

If a type X is a subtype of a continuant-type then X is a continuant-type. If a type
X is a subtype of a process-type then X is a process-type.

If an instance X is an instance of a continuant-type then X is a continuant. If an
instance X is an instance of a process-type then X is a process.

54 APPENDIX A. TERMINOLOGY DEFINITIONS

A.2 Definition of the Terminology for Protein
Interactions

The Node Prot

Lexicon

concept(id(’protein-component’),
cn(singular(’protein-component’), type(object), gender(neutr)),
superconcepts([’continuant-type’])).

concept(id(region),
cn(singular(region), type(object), gender(neutr)),
superconcepts([’protein-component’])).

role(id(’region-of’),
cn(ref(region)),
superroles([’part-of’]),
domain(region),
range(protein)).

concept(id(’protein-unit’),
cn(singular(’protein-unit’), type(object), gender(neutr)),
superconcepts([’protein-component’])).

concept(id(protein),
cn(singular(protein), type(object), gender(neutr)),
superconcepts([’protein-component’])).

concept(id(’protein-complex’),
cn(singular(’protein-complex’), type(object), gender(neutr)),
superconcepts([’protein-unit’])).

role(id(’subunit-of’),
cn(singular(subunit), type(object), gender(neutr)),
superroles([’part-of’]),
domain(protein),
range(’protein-complex’)).

Definitions

No region is a protein-unit. No protein is a protein-complex.

The Node Go

Lexicon

concept(id(’cellular-component’),
cn(singular(’cellular-component’), type(object), gender(neutr)),
superconcepts([’continuant-type’])).

concept(id(’molecular-function’),
cn(singular(’molecular-function’), type(unspecified), gender(neutr)),
superconcepts([’process-type’])).

concept(id(’biological-process’),
cn(singular(’biological-process’), type(unspecified), gender(neutr)),
superconcepts([’process-type’])).

Definitions

No molecular-function is a biological-process.

If an entity X is a part of a cellular-component then X is a cellular-component. If
an entity X is a part of a molecular-function then X is a molecular-function. If an
entity X is a part of a biological-process then X is a biological-process.

APPENDIX A. TERMINOLOGY DEFINITIONS 55

The Node Inter

Lexicon

role(id(’interacts-with’),
tv(third_singular(interacts), third_plural(interact),

phrasal_particle(’’), direct_preposition(with)),
superroles([]),
domain(’protein-component’),
range(’protein-component’),
context([prep(in, ’cellular-component’), prep(for, ’molecular-function’),

prep(in, ’biological-process’), prep(in, ’scientific-method’),
prep(in, ’anatomical-component’), prep(in, ’disease’),
prep(in, ’organism’)])).

role(id(acetylates),
tv(third_singular(acetylates), third_plural(acetylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(amidates),
tv(third_singular(amidates), third_plural(amidate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(associates),
tv(third_singular(associates), third_plural(associate),

phrasal_particle(’’), direct_preposition(with)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(autophosphorylates),
tv(third_singular(autophosphorylates), third_plural(autophosphorylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(binds),
tv(third_singular(binds), third_plural(bind),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(cleaves),
tv(third_singular(cleaves), third_plural(cleave),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(deacetylates),
tv(third_singular(deacetylates), third_plural(deacetylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(deamidates),
tv(third_singular(deamidates), third_plural(deamidate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(deglycosylates),
tv(third_singular(deglycosylates), third_plural(deglycosylate),

phrasal_particle(’’), direct_preposition(’’)),

56 APPENDIX A. TERMINOLOGY DEFINITIONS

superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(degrades),
tv(third_singular(degrades), third_plural(degrade),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(demethylates),
tv(third_singular(demethylates), third_plural(demethylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(deneddylates),
tv(third_singular(deneddylates), third_plural(deneddylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(dephosphorylates),
tv(third_singular(dephosphorylates), third_plural(dephosphorylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(desumoylates),
tv(third_singular(desumoylates), third_plural(desumoylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(deubiquitinates),
tv(third_singular(deubiquitinates), third_plural(deubiquitinate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(farnesylates),
tv(third_singular(farnesylates), third_plural(farnesylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(gernaylgernanylates),
tv(third_singular(gernaylgernanylates), third_plural(gernaylgernanylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(glycosylates),
tv(third_singular(glycosylates), third_plural(glycosylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(homodimerizes),
tv(third_singular(homodimerizes), third_plural(homodimerize),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

APPENDIX A. TERMINOLOGY DEFINITIONS 57

role(id(hydroxylates),
tv(third_singular(hydroxylates), third_plural(hydroxylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(internalizes),
tv(third_singular(internalizes), third_plural(internalize),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(methylates),
tv(third_singular(methylates), third_plural(methylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(mobilizes),
tv(third_singular(mobilizes), third_plural(mobilize),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(neddylates),
tv(third_singular(neddylates), third_plural(neddylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(nitrates),
tv(third_singular(nitrates), third_plural(nitrate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(oxidizes),
tv(third_singular(oxidizes), third_plural(oxidize),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(phosphorylates),
tv(third_singular(phosphorylates), third_plural(phosphorylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(prenylates),
tv(third_singular(prenylates), third_plural(prenylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(reduces),
tv(third_singular(reduces), third_plural(reduce),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(sumoylates),
tv(third_singular(sumoylates), third_plural(sumoylate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),

58 APPENDIX A. TERMINOLOGY DEFINITIONS

domain(’protein-component’),
range(’protein-component’)).

role(id(ubiquitinates),
tv(third_singular(ubiquitinates), third_plural(ubiquitinate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(polymerizes),
tv(third_singular(polymerizes), third_plural(polymerize),

phrasal_particle(’’), direct_preposition(’’)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(’specifically-interacts-with’),
adv(adverb(specifically), type(manner)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(’selectively-interacts-with’),
adv(adverb(selectively), type(manner)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(’directly-interacts-with’),
adv(adverb(directly), type(manner)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(’indirectly-interacts-with’),
adv(adverb(indirectly), type(manner)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(’hydrophobically-interacts-with’),
adv(adverb(hydrophobically), type(manner)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(’physically-interacts-with’),
adv(adverb(physically), type(manner)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(’functionally-interacts-with’),
adv(adverb(functionally), type(manner)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(’stably-interacts-with’),
adv(adverb(stably), type(manner)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(’interacts-with-in-vivo’),
adv(adverb(’in-vivo’), type(location)),
superroles([’interacts-with’]),
domain(’protein-component’),
range(’protein-component’)).

role(id(’interacts-with-in-vitro’),
adv(adverb(’in-vitro’), type(location)),
superroles([’interacts-with’]),

APPENDIX A. TERMINOLOGY DEFINITIONS 59

domain(’protein-component’),
range(’protein-component’)).

concept(id(’protein-activity’),
cn(singular(’protein-activity’), type(unspecified), gender(neutr)),
superconcepts([’process-type’])).

role(id(’acetylation-of’),
cn(singular(acetylation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’amidation-of’),
cn(singular(amidation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’autophosphorylation-of’),
cn(singular(autophosphorylation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’cleavage-of’),
cn(singular(cleavage), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’deacetylation-of’),
cn(singular(deacetylation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’degradation-of’),
cn(singular(degradation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’dephosphorylation-of’),
cn(singular(dephosphorylation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’depolymerization-of’),
cn(singular(depolymerization), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’glycosylation-of’),
cn(singular(glycosylation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’hydroxylation-of’),
cn(singular(hydroxylation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’internalization-of’),
cn(singular(internalization), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’methylation-of’),

60 APPENDIX A. TERMINOLOGY DEFINITIONS

cn(singular(methylation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’neddylation-of’),
cn(singular(neddylation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’nitration-of’),
cn(singular(nitration), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’nitrosylation-of’),
cn(singular(nitrosylation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’oxidation-of’),
cn(singular(oxidation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’phosphorylation-of’),
cn(singular(phosphorylation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’polymerization-of’),
cn(singular(polymerization), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’prenylation-of’),
cn(singular(prenylation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’pro-cleavage-of’),
cn(singular(’pro-cleavage’), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’reduction-of’),
cn(singular(reduction), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’release-of’),
cn(singular(release), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’secretion-of’),
cn(singular(secretion), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’sumoylation-of’),
cn(singular(sumoylation), type(unspecified), gender(neutr)),
superroles([]),

APPENDIX A. TERMINOLOGY DEFINITIONS 61

domain(’protein-activity’),
range(’protein-component’)).

role(id(’ubiquitination-of’),
cn(singular(ubiquitination), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’activity-of’),
cn(singular(activity), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’efflux-of’),
cn(singular(efflux), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’expression-of’),
cn(singular(expression), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’influx-of’),
cn(singular(influx), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’mobilization-of’),
cn(singular(mobilization), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’stabilization-of’),
cn(singular(stabilization), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’trafficking-of’),
cn(singular(trafficking), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(’translocation-of’),
cn(singular(translocation), type(unspecified), gender(neutr)),
superroles([]),
domain(’protein-activity’),
range(’protein-component’)).

role(id(increases),
tv(third_singular(increases), third_plural(increase),

phrasal_particle(’’), direct_preposition(’’)),
superroles([]),
domain(’protein-component’),
range(’protein-activity’),
context([prep(in, ’cellular-component’), prep(for, ’molecular-function’),

prep(in, ’biological-process’), prep(in, ’scientific-method’),
prep(in, ’anatomical-component’), prep(in, ’disease’),
prep(in, ’organism’)])).

role(id(decreases),
tv(third_singular(decreases), third_plural(decrease),

phrasal_particle(’’), direct_preposition(’’)),
superroles([]),
domain(’protein-component’),
range(’protein-activity’),

62 APPENDIX A. TERMINOLOGY DEFINITIONS

context([prep(in, ’cellular-component’), prep(for, ’molecular-function’),
prep(in, ’biological-process’), prep(in, ’scientific-method’),
prep(in, ’anatomical-component’), prep(in, ’disease’),
prep(in, ’organism’)])).

role(id(inhibits),
tv(third_singular(inhibits), third_plural(inhibit),

phrasal_particle(’’), direct_preposition(’’)),
superroles([]),
domain(’protein-component’),
range(’protein-activity’),
context([prep(in, ’cellular-component’), prep(for, ’molecular-function’),

prep(in, ’biological-process’), prep(in, ’scientific-method’),
prep(in, ’anatomical-component’), prep(in, ’disease’),
prep(in, ’organism’)])).

role(id(regulates),
tv(third_singular(regulates), third_plural(regulate),

phrasal_particle(’’), direct_preposition(’’)),
superroles([]),
domain(’protein-component’),
range(’protein-activity’),
context([prep(in, ’cellular-component’), prep(for, ’molecular-function’),

prep(in, ’biological-process’), prep(in, ’scientific-method’),
prep(in, ’anatomical-component’), prep(in, ’disease’),
prep(in, ’organism’)])).

The Node ProtGo

Lexicon
role(id(’participates-in’),

tv(third_singular(participates), third_plural(participate),
phrasal_particle(’’), direct_preposition(’in’)),

superroles([]),
domain(’protein-component’),
range(’process-type’)).

role(id(’localizes-to’),
tv(third_singular(localizes), third_plural(localize),

phrasal_particle(’’), direct_preposition(’to’)),
superroles([]),
domain(’protein-unit’),
range(’cellular-component’)).

role(id(’colocalizes-with’),
tv(third_singular(colocalizes), third_plural(colocalize),

phrasal_particle(’’), direct_preposition(’with’)),
superroles([]),
domain(’protein-unit’),
range(’protein-unit’)).

Definitions

If something participates-in an entity X then X is a molecular-function or X is a
biological-process.

The Node Region

Lexicon
concept(id(’n-terminal-region’),

adj(positive(’n-terminal’)),
superconcepts([region])).

concept(id(’c-terminal-region’),
adj(positive(’c-terminal’)),
superconcepts([region])).

concept(id(residue),

APPENDIX A. TERMINOLOGY DEFINITIONS 63

cn(singular(residue), type(object), gender(neutr)),
superconcepts([region])).

role(id(’residue-of’),
cn(ref(residue)),
superroles([’part-of’]),
domain(residue),
range(’multi-residue-region’)).

concept(id(’multi-residue-region’),
cn(singular(’multi-residue-region’), type(object), gender(neutr)),
superconcepts([region])).

concept(id(terminus),
cn(singular(terminus), type(object), gender(neutr)),
superconcepts([’multi-residue-region’])).

concept(id(’central-region’),
cn(singular(’central-region’), type(object), gender(neutr)),
superconcepts([’multi-residue-region’])).

concept(id(’secondary-structure’),
cn(singular(’secondary-structure’), type(object), gender(neutr)),
superconcepts([’multi-residue-region’])).

role(id(’secondary-structure-of’),
cn(ref(’secondary-structure’)),
superroles([’part-of’]),
domain(’secondary-structure’),
range(’domain’)).

concept(id(domain),
cn(singular(domain), type(object), gender(neutr)),
superconcepts([’multi-residue-region’])).

concept(id(’n-terminus’),
cn(singular(’n-terminus’), type(object), gender(neutr)),
superconcepts([’n-terminal-region’, terminus])).

concept(id(’c-terminus’),
cn(singular(’c-terminus’), type(object), gender(neutr)),
superconcepts([’c-terminal-region’, terminus])).

concept(id(’alpha-helix’),
cn(singular(’alpha-helix’), type(object), gender(neutr)),
superconcepts([’secondary-structure’])).

concept(id(’beta-sheet’),
cn(singular(’beta-sheet’), type(object), gender(neutr)),
superconcepts([’secondary-structure’])).

Definitions

No n-terminal region is a c-terminal region. No residue is a multi-residue-region.

No terminus is a central-region. No secondary-structure is a domain.

No alpha-helix is a beta-sheet.

The Node Prot2

Lexicon
concept(id(receptor),

cn(singular(receptor), type(object), gender(neutr)),
superconcepts([protein])).

role(id(’receptor-of’),
cn(ref(receptor)),
superroles([]),
domain(receptor),
range(protein)).

64 APPENDIX A. TERMINOLOGY DEFINITIONS

role(id(’dimer-of’),
cn(singular(dimer), type(object), gender(neutr)),
superroles([]),
domain(’protein-complex’),
range(protein)).

role(id(’polymer-of’),
cn(singular(polymer), type(object), gender(neutr)),
superroles([]),
domain(’protein-complex’),
range(protein)).

role(id(’isoform-of’),
cn(singular(isoform), type(object), gender(neutr)),
superroles([]),
domain(protein),
range(protein)).

role(id(’mutant-of’),
cn(singular(mutant), type(object), gender(neutr)),
superroles([]),
domain(protein),
range(protein)).

Appendix B

Cell Headings

This appendix shows how the results of 89 selected articles from the journal
“Cell” could have been written in ACE. For that reason the headings of the
section “Results” of these articles are translated into ACE, if possible. Some
headings are ignored; they are indicated as follows.

not a fact The heading is ignored, because it is not a
fact.

off-topic The heading is ignored, because it is not about
protein interactions.

For every other heading the degree of matching is indicated.

perfect The heading is matched perfectly (the com-
plete information is translated).

perfect (r) The heading is matched perfectly, but the in-
formation is already contained in a previous
sentence.

partial The heading is partially matched (some infor-
mation is translated, and some is not).

partial (r) The heading is partially matched, but the in-
formation is already contained in a previous
sentence.

no match The heading is not matched (the information
is not translated at all).

For the headings, that are not perfectly matched, (i.e. the headings that are
indicated with partial, partial (r), or no match) the reason for the non-perfect
matching is declared as follows.

1 not covered by our model
2 relation of relation
3 fuzzy
4 not understood

65

66 APPENDIX B. CELL HEADINGS

Article #1

Authors: Kanamori M, Kai C, Hayashizaki Y, Suzuki H.

Title: NF-kappaB activator Act1 associates with IL-1/Toll pathway adaptor molecule TRAF6.

PMID: 12459498.

Cell heading ACE
Interaction of Act1 with TRAF6. perfect: Act1 interacts-with TRAF6.
Act1 specifically interacts with TRAF6
through the TRAF domain.

perfect: Act1 specifically interacts-with a
TRAF-domain of TRAF6.

Reporter gene analysis using the
expression vector for Act1.

not a fact.

Article #2

Authors: Strelow A, Kollewe C, Wesche H.

Title: Characterization of Pellino2, a substrate of IRAK1 and IRAK4.

PMID: 12860405.

Cell heading ACE
Interaction of Pellino2 with IRAKs. perfect: Pellino2 interacts-with IRAK.
Pellino2 phosphorylation by IRAKs. perfect: IRAK phosphorylates Pellino2.
Functional characterization of Pellino2. not a fact.

Article #3

Authors: Bongiorno-Borbone L, Kadare G, Benfenati F, Girault JA.

Title: FAK and PYK2 interact with SAP90/PSD-95-Associated Protein-3.

PMID: 16202977.

Cell heading ACE
SAPAP3 interacts with FAK in yeast
two-hybrid.

perfect: SAPAP3 interacts-with FAK in
Yeast-Two-Hybrid.

Interaction between FAK and SAPAP3 in
GST pull-down assays.

perfect: SAPAP3 interacts-with FAK in
GST-Pull-Down-Assay.

Interaction between SAPAP3 and PYK2. perfect: SAPAP3 interacts-with PYK2.
Subcellular expression of SAPAP3 and
co-distribution with FAK and PYK2.

off topic.

Article #4

Authors: Lahiri S, Pulakat L, Gavini N.

Title: Functional NifD-K fusion protein in Azotobacter vinelandii is a homodimeric complex
equivalent to the native heterotetrameric MoFe protein.

PMID: 16202390.

Cell heading ACE
Detection of interaction between NifD-K
fusion protein units.

perfect: A subunit of NifD-K interacts-with a
subunit of NifD-K.

Interaction between the NifD-K fusion
proteins is comparable to the interaction
between the β − β subunits of the native
MoFe protein.

no match3.

Article #5

Authors: Veyron-Churlet R, Bigot S, Guerrini O, Verdoux S, Malaga W, Daffe M, Zerbib D.

Title: The biosynthesis of mycolic acids in Mycobacterium tuberculosis relies on multiple
specialized elongation complexes interconnected by specific protein-protein interactions.

PMID: 16213523.

APPENDIX B. CELL HEADINGS 67

Cell heading ACE
Yeast two-hybrid (Y2H) analysis of
protein-protein interactions between
mtFabD and the FAS-II components.

not a fact.

The mtFabD protein is part of the core of
the FAS-II complex

partial1: MtFabD is a subunit of FAS-II.

The methyltransferases MmaAs interact
with the FAS-II proteins in Y2H analysis.

perfect: MmaAs interacts-with FAS-II in
Yeast-Two-Hybrid.

Co-IP analysis of MmaAs interactions with
the FAS-II proteins.

not a fact.

The MmaA4 interaction is specific with
KasA and KasB and not with mtFabH.

perfect: MmaA4 specifically interacts-with
KasA and specifically interacts-with KasB and
does not specifically interact-with MtFabH.

The terminal condensing enzyme Pks13
interacts with the FAS-II complex
proteins.

perfect: Pks13 interacts-with FAS-II.

The architecture of an
elongationmodification complex for the
biosynthesis of mycolic acids.

not a fact.

Article #6
Authors: Masumi A, Aizaki H, Suzuki T, DuHadaway JB, Prendergast GC, Komuro K,
Fukazawa H.
Title: Reduction of hepatitis C virus NS5A phosphorylation through its interaction with
amphiphysin II.
PMID: 16139795.

Cell heading ACE
NS5A associates with amphiphysin II in
HeLa cells.

perfect: NS5A associates-with Amphiphysin-II
in Hela-Cell.

The interaction with amphiphysin II SH3
inhibits NS5A phosphorylation.

perfect: A SH3-domain of Amphiphysin-II
inhibits the phosphorylation of NS5A.

Article #7
Authors: Rajendran KS, Nagy PD.
Title: Kinetics and functional studies on interaction between the replicase proteins of Tomato
Bushy Stunt Virus: Requirement of p33:p92 interaction for replicase assembly.
PMID: 16242746.

Cell heading ACE
In vivo interaction between full length p33
and p92 replication proteins.

perfect: P33 interacts-with P92 in-vivo.

Kinetics of interaction between
recombinant TBSV p33 replication
proteins.

not a fact.

Role of highly conserved amino acid
residues in S1 and S2 subdomains of p33
and p92 on the assembly of functional
replication complexes and viral RNA
replication in vivo.

not a fact.

TBSV p33 interacts with replicase proteins
of the closely related CNV, but not with
the more distantly related TCV.

off-topic.

Key role of the p33 replication co-factor in
replicase assembly.

off-topic.

Model on the role of p33:p92 interaction
during the assembly of the replicase
complex.

not a fact.

Article #8
Authors: Scott KL, Plon SE.
Title: CHES1/FOXN3 interacts with Ski-interacting protein and acts as a transcriptional
repressor.
PMID: 16102918.

Cell heading ACE
The C-terminus of CHES1 represses
reporter transcription in human cells.

off-topic.

CHES1 interacts with SKIP. perfect: CHES1 interacts-with SKIP.
Identification of the CHES1-binding
domain on SKIP.

not a fact.

68 APPENDIX B. CELL HEADINGS

Article #9
Authors: Anand SP, Chattopadhyay A, Khan SA.
Title: The PcrA3 mutant binds DNA and interacts with the RepC initiator protein of plasmid
pT181 but is defective in its DNA helicase and unwinding activities.
PMID: 16122559.

Cell heading ACE
Overexpression and purification of the
His-PcrA3 and MBP-RepC D57Y proteins.

not a fact.

The D57Y mutant of RepC is biologically
active.

off-topic.

PcrA3 protein can interact with RepC. perfect: PcrA3 interacts-with RepC.
DNA binding activity of PcrA3. off-topic.
PcrA3 is defective in ATPase and DNA
helicase activities.

off-topic.

The RepC D57Y mutant fails to
complement PcrA3 in pT181 DNA
unwinding and in vitro replication.

off-topic.

Article #10
Authors: Schiller MR, Blangy A, Huang J, Mains RE, Eipper BA.
Title: Induction of lamellipodia by Kalirin does not require its guanine nucleotide exchange
factor activity.
PMID: 15950621.

Cell heading ACE
Kal-GEF1, but not Kal-GEF2, induces
formation of lamellipodia.

off topic.

Kalirin GEF1 activates Rac and Pak,
proteins involved in forming lamellipodia.

no match1.

Kalirin GEF1 induces lamellipodial
formation through a
GEF-activity-independent mechanism.

off-topic.

Induction of pinwheel lamellipodia by
inactive Kal-GEF1 requires Pak kinase
activity.

off topic.

Kal-GEF1 activation of Pak does not
require GEF activity.

no match2.

Kal-GEF1 interacts with Pak indirectly
through Filamin A.

perfect: Kal-GEF1 indirectly interacts-with
Pak. Kal-GEF1 directly interacts-with Filamin-A
and Filamin-A directly interacts-with Pak.

A natural Kalirin isoform induces
formation of lamellipodia and co-localizes
with Pak.

off topic. / perfect: An isoform of Kalirin
colocalizes-with Pak.

Lamellipodia induced by
Kal-GEF1(ND/AA) share properties with
lamellipodia induced by other mechanisms.

off-topic.

Article #11
Authors: Yao Q, Chen J, Cao H, Orth JD, McCaffery JM, Stan RV, McNiven MA.
Title: Caveolin-1 interacts directly with dynamin-2.
PMID: 15811383.

Cell heading ACE
Dyn2 localizes to caveolae at the plasma
membrane and interacts directly with
Cav1.

perfect: Dyn2 localizes-to Caveola at
Cell-Membrane and directly interacts-with Cav1.

The carboxy terminus including the PRD
of Dyn2 mediates direct binding to Cav1.

partial4: The c-terminus of Dyn2 binds Cav1.

Cav1 interacts differentially with distinct
Dyn2 forms.

no match3.

Article #12
Authors: Zhang W, Arcos R.
Title: Interaction of the adenovirus major core protein precursor, pVII, with the viral DNA
packaging machinery.
PMID: 15780869.

APPENDIX B. CELL HEADINGS 69

Cell heading ACE
Interaction of pVII with the IVa2 protein perfect: PVII interacts-with IVa2.
Interaction of pVII with the L1 52/55 kDa
protein

perfect: PVII interacts-with L1-52-55-kDa.

Specific interaction of the IVa2 protein
with the packaging sequence.

off-topic.

Interaction of the protein pVII with the
packaging sequence.

off-topic.

Interaction of the L1 52/55 kDa protein
with the packaging sequence.

off-topic.

Article #13
Authors: Xia L, Zheng L, Lee HW, Bates SE, Federico L, Shen B, O’Connor TR.
Title: Human 3-methyladenine-DNA glycosylase: effect of sequence context on excision,
association with PCNA, and stimulation by AP endonuclease.
PMID: 15713479.

Cell heading ACE

Both kcat and Km contribute to SCD
MPG excision.

partial3: Kcat regulates the activity of SCD.
Km regulates the activity of SCD.

Rate of MPG-catalyzed excision of Hx is
enhanced in the presence of APE1.

partial2: APE1 increases the activity of MPG.

Enhancement of MPG-catalyzed SCD
excision by APE1.

partial (r)2: APE1 increases the activity of
MPG.

MPG associates with PCNA in vitro. perfect: MPG associates-with PCNA in-vitro.
PCNA increases the rate of Hx excision by
MPG.

partial2: PCNA increases the activity of MPG.

MPG excision of Hx is enhanced by PCNA
on a nicked plasmid substrate with a
unique damage site.

partial (r)2: PCNA increases the activity of
MPG.

Co-immunoprecipitation of MPG, PCNA,
and APE1 from human cells.

not a fact.

Article #14
Authors: Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN
46285, USA.
Title: Suramin interacts with RANK and inhibits RANKL-induced osteoclast differentiation.
PMID: 15780954.

Cell heading ACE
Suramin inhibits osteoclast differentiation. off-topic.
Suramin blocks PTH (138)-induced
calvarial bone resorption.

off-topic.

Suramin blocks sRANKL-induced AKT
and p38 MAP kinase phosphorylation.

no match2.

Suramin interferes with sRANKL binding
to rhRANK-Fc.

partial2: SRANKL binds RhRANK-Fc.

Suramin binds to rhRANK-Fc perfect: Suramin binds RhRANK-Fc.

Article #15
Authors: Torrado M, Nespereira B, Lopez E, Centeno A, Castro-Beiras A, Mikhailov AT.
Title: ANKRD1 specifically binds CASQ2 in heart extracts and both proteins are co-enriched
in piglet cardiac Purkinje cells.
PMID: 15698842.

Cell heading ACE
ANKRD1 specifically and selectively
interacts with CASQ2 in cardiac extracts.

perfect: Ankrd1 specifically interacts-with
CASQ2 in Cardiac-Extract and selectively
interacts-with CASQ2 in Cardiac-Extract.

Direct reciprocal ANKRD1CASQ2 binding
in vitro.

partial1: Ankrd1 directly binds CASQ2
in-vitro.

ANKRD1 contains potential CASQ2
binding sequences located in both its NT-
and CT-regions.

no match3.

CASQ2 contains potential
ANKRD1-binding sequences located
outside its Asp-rich CT-region.

no match3.

ANKRD1 and CASQ2 are co-enriched in
cardiac Purkinje cells.

no match1.

70 APPENDIX B. CELL HEADINGS

Article #16
Authors: Chun J, Kwon T, Lee EJ, Hyun S, Hong SK, Kang SS.
Title: The subcellular localization of 3-phosphoinositide-dependent protein kinase is controlled
by caveolin-1 binding.
PMID: 15567163.

Cell heading ACE
PDK1 interacts with caveolin-1 in vitro. perfect: PDK1 interacts-with Caveolin-1

in-vitro.
PDK1 interacts with caveolin-1 in the
COS-1 cell.

perfect: PDK1 interacts-with Caveolin-1 in
COS-Cell.

The binding of caveolin-1 down-regulates
both the self-phosphorylation and kinase
activity of PDK1.

partial1: Caveolin-1 regulates the
phosphorylation of PDK1 and regulates the
activity of PDK1.

The caveolin-1 peptide also down-regulates
both self-phosphorylation and kinase
activity of PDK1 in vitro

off-topic.

Article #17
Authors: Schweneker M, Bachmann AS, Moelling K.
Title: The HIV-1 co-receptor CCR5 binds to alpha-catenin, a component of the cellular
cytoskeleton.
PMID: 15541354.

Cell heading ACE
The C-terminus of CCR5 interacts with
a-catenin.

perfect: The c-terminus of CCR5 interacts-with
Alpha-Catenin.

Association of a-catenin and mutants
thereof with full-length CCR5 in
mammalian cells.

perfect: Alpha-Catenin associates-with CCR5
in Mammal. A mutant of Alpha-Catenin
associates-with CCR5 in Mammal.

Half-endogenous interaction of a-catenin
with CCR5.

partial (r)1: CCR5 interacts-with
Alpha-Catenin.

Endogenous interactions of a-catenin with
the chemokine- and HIV-1 co-receptors
CCR5 and CXCR4.

partial1: Alpha-Catenin interacts-with CCR5
and interacts-with CXCR4.

Article #18
Authors: Krause A, Zacharias W, Camarata T, Linkhart B, Law E, Lischke A, Miljan E,
Simon HG.
Title: Tbx5 and Tbx4 transcription factors interact with a new chicken PDZ-LIM protein in
limb and heart development.
PMID: 15302601.

Cell heading ACE
Isolation and characterization of Tbx
binding proteins.

not a fact.

Chicken LMP-4 is a novel member of the
PDZ-LIM family of proteins.

perfect: Chicken-LMP-4 is a subtype of
PDZ-LIM.

LMP-4 interacts specifically with the
transactivation domains of Tbx5 and
Tbx4, but not Tbx3.

perfect: LMP-4 specifically interacts-with a
transactivation-domain of Tbx5 and specifically
interacts-with a transactivation-domain of Tbx4
and does not specifically interact-with a
transactivation-domain of Tbx3.

LMP-4 localizes Tbx5 and Tbx4 to actin
filaments

perfect: LMP-4 localizes-to Microfilament.
Tbx5 localizes-to Microfilament. Tbx4
localizes-to Microfilament.

LMP-4 mRNA in the developing limbs
co-expresses with Tbx5 and Tbx4.

off-topic.

Tbx5 and Tbx4 expression domains in the
developing heart co-localize with LMP-4
expression.

off-topic.

Article #19
Authors: Xu S, Hori RT.
Title: Identification of a domain within human TAF(I)48, a subunit of Selectivity Factor 1,
that interacts with helix 2 of TBP.
PMID: 15315821.

APPENDIX B. CELL HEADINGS 71

Cell heading ACE
Yeast two-hybrid strategy. not a fact.
TBP binds more strongly to the
carboxyl-terminal half of hTAFI48.

partial3: TBP binds the c-terminus of
HTAF148.

The carboxyl-terminal 42 residues of
hTAFI48 bind TBP.

partial (r)1: HTAFI148 binds TBP.

TBP binds directly to the
carboxyl-terminus of hTAFI48

perfect: TBP directly binds the c-terminus of
HTAF148.

TBP interacts with basic and polar
residues within the carboxyl-terminus of
hTAFI48.

partial1: TBP interacts-with a residue of the
c-terminus of HTAF148.

The carboxyl-terminus of hTAFI48
interacts with residues within and around
helix 2 of TBP.

partial1: The c-terminus of HTAF148
interacts-with a alpha-helix of TBP.

Article #20
Authors: Johnson DR, Lovett JM, Hirsch M, Xia F, Chen JD.
Title: NuRD complex component Mi-2beta binds to and represses RORgamma-mediated
transcriptional activation.
PMID: 15144897.

Cell heading ACE
Identification of Mi-2beta as an
RORgamma-interacting protein in yeast
two-hybrid screen

perfect: Mi-2-Beta interacts-with ROR-Gamma
in Yeast-Two-Hybrid.

Yeast two-hybrid interaction between
Mi-2beta and RORgamma.

perfect (r): Mi-2-Beta interacts-with
ROR-Gamma in Yeast-Two-Hybrid.

Mi-2beta interacts with RORgamma in
vitro.

perfect: Mi-2-Beta interacts-with ROR-Gamma
in-vitro.

Mi-2beta inhibits RORgamma
transcriptional activity.

partial1: Mi-2-Beta inhibits the activity of
ROR-Gamma.

Article #21
Authors: Mizugishi K, Hatayama M, Tohmonda T, Ogawa M, Inoue T, Mikoshiba K, Aruga J.
Title: Myogenic repressor I-mfa interferes with the function of Zic family proteins.
PMID: 15207726.

Cell heading ACE
Identification of the Zic2 transcriptional
activation domain.

not a fact.

Zic family members specifically interact
with I-mfa.

perfect: Zic specifically interacts-with I-mfa.

I-mfa inhibits transcriptional activities of
Zic family proteins.

partial1: I-mfa inhibits the activity of Zic.

I-mfa can retain nuclear Zic proteins in the
cytoplasm.

off-topic.

Article #22
Authors: Wisniewski TP, Tanzi CL, Gindhart JG.
Title: The Drosophila kinesin-I associated protein YETI binds both kinesin subunits.
PMID: 14720462.

Cell heading ACE
YETI binds specifically to both KHC and
KLC in the yeast two-hybrid system.

perfect: YETI specifically binds KHC in
Yeast-Two-Hybrid and specifically binds KLC in
Yeast-Two-Hybrid.

YETI binds to kinesin in cultured
Drosophila cells.

perfect: YETI binds Kinesin in Drosophila in
Cultured-Cell.

YETI is localized to the nucleus and
cytosol of cultured cells.

perfect: YETI localizes-to Nucleus. YETI
localizes-to Cytosol in Cultured-Cell.

Article #23
Authors: Prasad CK, Meyers C, Zhan DJ, You H, Chiriva-Internati M, Mehta JL, Liu Y,
Hermonat PL.
Title: The adeno-associated virus major regulatory protein Rep78-c-Jun-DNA motif complex
modulates AP-1 activity.
PMID: 14517094.

72 APPENDIX B. CELL HEADINGS

Cell heading ACE

Rep78 binds c-Jun as demonstrated by
Western blot analysis and amino half of
Rep78 is required for this interaction.

partial2: Rep78 binds C-Jun in
Western-Blot-Analysis.

Rep78 binds c-Jun in vivo by yeast
two-hybrid cDNA analysis.

perfect: Rep78 binds C-Jun in-vivo in
Yeast-Two-Hybrid-CDNA-Analysis.

Rep78 binds c-Jun in vitro as shown by
EMSA supershift analysis.

perfect: Rep78 binds C-Jun in-vitro in
EMSA-Supershift-Analysis.

Rep78 inhibits transcription from the c-jun
promoter by CAT assay.

off-topic.

Rep78 inhibits c-Jun augmented
transcription in vitro in nuclear extracts

off-topic.

Article #24
Authors: Gieswein CE, Sharom FJ, Wildeman AG.

Title: Oligomerization of the E5 protein of human papillomavirus type 16 occurs through
multiple hydrophobic regions.

PMID: 12954209.

Cell heading ACE
HPV16 E5 can self-interact. perfect: HPV16-E5 interacts-with itself.
HPV16 E5 monomers associate via
hydrophobic interactions.

perfect: HPV16-E5 hydrophobically
associates-with itself.

HPV16 E5 can interact with 16K through
hydrophobic interactions.

perfect: HPV16-E5 hydrophobically
interacts-with 16K.

Localization of HPV16 E5. not a fact.

Article #25
Authors: Shimoyama T, Kato K, Miyaji-Yamaguchi M, Nagata K.

Title: Synergistic action of MLL, a TRX protein with template activating factor-I, a histone
chaperone.

PMID: 15670842.

Cell heading ACE
In vivo interaction of MLLN with
TAF-Ibeta

perfect: MLLN interacts-with TAF1B in-vivo.

In vitro interaction of MLLN with
TAF-Ibeta

perfect: MLLN interacts-with TAF1B in-vitro.

Synergistic activation of Hoxa9 gene
transcription by MLLN and TAF-Ibeta

off-topic.

Article #26
Authors: Yamamoto K, Sonoda M.

Title: Self-interaction of heterochromatin protein 1 is required for direct binding to histone
methyltransferase, SUV39H1.

PMID: 12565857.

Cell heading ACE
Interaction between full-length mHP1alpha
and full-length SUV39H1 in yeast and in
vitro.

perfect: MHP1-Alpha interacts-with SUV39H1
in Yeast in-vitro.

Interaction sites of mHP1alpha and
SUV39H1.

not a fact.

Self-interaction of mHP1alpha is required
for binding to SUV39H1.

partial2: MHP1-Alpha interacts-with itself and
binds SUV39H1.

Dimer surface of mHP1alpha is required
for the interaction with SUV39H1.

partial (r)1: MHP1-Alpha interacts-with
SUV39H1.

Article #27
Authors: Chang JF, Hall BE, Tanny JC, Moazed D, Filman D, Ellenberger T.

Title: Structure of the coiled-coil dimerization motif of Sir4 and its interaction with Sir3.

PMID: 12791253.

APPENDIX B. CELL HEADINGS 73

Cell heading ACE

Sir4 Dimerizes through a C-terminal
Coiled-Coil Domain.

partial1: There is a dimer of Sir4. A
c-terminal coiled-coil-domain of Sir4 binds itself.

Sir3 Binds to a Hydrophobic Patch on the
Surface of the Sir4 Coiled Coil.

partial1: Sir3 binds a coiled-coil-domain of
Sir4.

A Sir3 Dimer Binds to the Coiled Coil of
Sir4.

perfect: A dimer of Sir3 binds a
coiled-coil-domain of Sir4.

Assembly of a Ternary Complex of
Sir2/Sir4/Sir3.

perfect: There is a protein-complex X such
that Sir2 is a subunit of X and Sir4 is a subunit
of X and Sir3 is a subunit of X.

Biological Implications. not a fact.:

Article #28
Authors: Cayrol C, Cougoule C, Wright M.

Title: The beta2-adaptin clathrin adaptor interacts with the mitotic checkpoint kinase BubR1.

PMID: 12419313.

Cell heading ACE
Beta2 adaptin binds to BubR1 in yeast
two-hybrid and in vitro binding assays.

perfect: Beta2-Adaptin binds BubR1 in
Yeast-Two-Hybrid. Beta2-Adaptin binds BubR1
in Vitro-Binding-Assay.

The trunk domain of beta2-adaptin is
necessary and sufficient for interaction
with BubR1.

partial1: A trunk-domain of Beta2-Adaptin
interacts-with BubR1.

Mapping of BubR1 domains involved in
the binding to beta2-adaptin.

not a fact.

Immunolocalization studies of BubR1 and
beta1/2 adaptins.

not a fact.

The BubR1 related mitotic checkpoint
kinase Bub1 interacts with the trunk
domain of beta2-adaptin.

perfect: Bub1 interacts-with the trunk-domain
of Beta2-Adaptin.

The Bub1 and BubR1 kinases interact
with all the beta chains of AP complexes.

perfect: Bub1 interacts-with every beta-sheet
of AP. BubR1 interacts-with every beta-sheet of
AP.

Article #29
Authors: Du X, Hublitz P, Gunther T, Wilhelm D, Englert C, Schule R.

Title: The LIM-only coactivator FHL2 modulates WT1 transcriptional activity during gonadal
differentiation.

PMID: 12151099.

Cell heading ACE
FHL2 and WT1 are coexpressed in mouse
embryonic gonads.

off-topic.

FHL2 interacts with WT1 in vitro. perfect: FHL2 interacts-with WT1 in-vitro.
FHL2 interacts with WT1 in vivo. perfect: FHL2 interacts-with WT1 in-vivo.
FHL2 modulates WT1-dependent
transcription.

off-topic.

Article #30
Authors: Payton JE, Perrin RJ, Clayton DF, George JM.

Title: Protein-protein interactions of alpha-synuclein in brain homogenates and transfected
cells.

PMID: 11687285.

Cell heading ACE

Tubulin co-immunoprecipitates with
alpha-synuclein.

partial1: Tubulin interacts-with
Alpha-Synuclein.

Tubulin binds immobilized
GST/alpha-synuclein.

partial1: Tubulin binds GST-Alpha-Synuclein.

Alpha-Synuclein binds a tubulin affinity
column.

partial1: Alpha-Synuclein binds Tubulin.

Alpha-Synuclein does not pellet with
polymerized microtubules.

off-topic.

Alpha-Synuclein/GFP does not colocalize
with microtubules in transfected cells.

off-topic.

74 APPENDIX B. CELL HEADINGS

Article #31
Authors: Kausalya PJ, Reichert M, Hunziker W.

Title: Connexin45 directly binds to ZO-1 and localizes to the tight junction region in epithelial
MDCK cells.

PMID: 11557048.

Cell heading ACE
The C-terminus of Cx45 interacts with the
PDZ domains of ZO-1 and ZO-3 in a yeast
two-hybrid assay.

perfect: The c-terminus of Cx45 interacts-with
a PDZ-domain of ZO-1 in Yeast-Two-Hybrid.
The c-terminus of Cx45 interacts-with a
PDZ-domain of ZO-3 in Yeast-Two-Hybrid.

Characterization of epithelial MDCK cells
transfected with Cx45 cDNA.

not a fact.

Cx45 directly associates with ZO-1 in vivo. perfect: Cx45 directly associates-with ZO-1
in-vivo.

Cx45 co-localizes with ZO-1 in the tight
junction region in polarized MDCK cells.

perfect: Cx45 colocalizes-with ZO-1 in
Tight-Junction in Polarized-MDCK-Cell.

Article #32
Authors: Pellizzoni L, Baccon J, Charroux B, Dreyfuss G.

Title: The survival of motor neurons (SMN) protein interacts with the snoRNP proteins
fibrillarin and GAR1.

PMID: 11509230.

Cell heading ACE
SMN interacts directly with the snoRNP
proteins fibrillarin and GAR1.

perfect: SMN directly interacts-with Fibrillarin
and directly interacts-with GAR1.

The interaction of SMN with fibrillarin
and GAR1 requires the conserved Y/G
box and is defective in SMN mutants
found in some SMA patients.

partial (r)4: SMN interacts-with Fibrillarin
and interacts-with GAR1.

The arginine- and glycine-rich domains of
fibrillarin and GAR1 are necessary for
SMN interaction.

no match1.

Association of the SMN complex with
fibrillarin and GAR1 in vivo.

perfect: SMN associates-with Fibrillarin in-vivo
and associates-with GAR1 in-vivo.

Transcription-dependent association of
SMN with fibrillarin, GAR1, and the
nucleolus.

partial1: SMN associates-with Fibrillarin and
associates-with GAR1.

Expression of SMNdeltaN27 causes
accumulation of snoRNPs outside the
nucleolus.

off-topic.

Article #33
Authors: Jones DD, Stott KM, Reche PA, Perham RN.

Title: Recognition of the lipoyl domain is the ultimate determinant of substrate channelling in
the pyruvate dehydrogenase multienzyme complex.

PMID: 11114246.

Cell heading ACE
Interaction of E2plipapo with E1p. perfect: E2plipapo interacts-with E1p.
The effect of 2-oxo acid on the interaction
of E2plipapo with E1p.

not a fact.

The interaction of E2plipholo with E1p. perfect: E2plipholo interacts-with E1p.
The interaction of E2plipholo with E1o
and BSA.

perfect: E2plipholo interacts-with E1o and
interacts-with BSA.

Mapping the interaction sites on the
surface of E2plip.

not a fact.

Article #34
Authors: Shapiro R, Ruiz-Gutierrez M, Chen CZ.

Title: Analysis of the interactions of human ribonuclease inhibitor with angiogenin and
ribonuclease A by mutagenesis: importance of inhibitor residues inside versus outside the
C-terminal “hot spot”.

PMID: 10970748.

APPENDIX B. CELL HEADINGS 75

Cell heading ACE
Role of the C-terminal region of hRI. not a fact.
Interactions of des(460)-hRI with the Ang
variants R5A and K40G.

partial1: Des-460-hRI interacts-with a mutant
of ANG.

Interactions of hRI variants
Q430A/V432A, W438A/S439A/E440A,
R457A, and I459A with Ang and RNase A.

partial1: A mutant of HRI interacts-with ANG
and interacts-with RNase-A. A mutant of HRI
interacts-with ANG and interacts-with RNase-A.
A mutant of HRI interacts-with ANG and
interacts-with RNase-A. A mutant of HRI
interacts-with ANG and interacts-with RNase-A.

Role of the tryptophan-rich region of hRI. not a fact.
Effects of single-residue Ang and hRI
replacements on hRI-Ang binding affinity.

not a fact.

Interactions of multi-residue hRI variants
with Ang.

not a fact.

Effects of hRI replacements on affinity for
RNase A.

not a fact.

Inter-relationship between the Trp-rich and
hot spot regions in the hRI-Ang complex.

not a fact.

Role of hRI Tyr150 in binding Ang. not a fact.

Article #35
Authors: Rotheneder H, Geymayer S, Haidweger E.
Title: Transcription factors of the Sp1 family: interaction with E2F and regulation of the
murine thymidine kinase promoter.
PMID: 10547281.

Cell heading ACE

Amino acids 102-125 of E2F-1 and 622-668
of Sp1 are sufficient for interaction of the
two proteins.

partial1: E2F1 interacts-with Sp1.

Cyclin A does not interfere with the
binding of Sp1 to E2F-1.

no match2.

All members of the Sp1 family are able to
interact with E2F-1.

perfect: Every protein that is a subtype of Sp1
interacts-with E2F1.

Sp1 and Sp3 bind to the Sp1 binding site
of the mouse TK promoter in
electrophoretic mobility shift assays.

perfect: Sp1 binds a region X of
Mouse-TK-Promoter in
Electrophoretic-Mobility-Shift-Assay and Sp3
binds the region X of Mouse-TK-Promoter in
Electrophoretic-Mobility-Shift-Assay.

Sp1, Sp3 and to a lesser extent Sp4, but
not Sp2 are able to transactivate the
mouse TK promoter in SL2 cells.

off-topic.

The TK promoter is synergistically
activated in mouse fibroblasts.

off-topic.

Article #36
Authors: Ayora S, Stasiak A, Alonso JC.
Title: The Bacillus subtilis bacteriophage SPP1 G39P delivers and activates the G40P DNA
helicase upon interacting with the G38P-bound replication origin.
PMID: 10329127.

Cell heading ACE
Purification of SPP1 G39P. not a fact.
G39P specifically interacts with G40P. perfect: G39P specifically interacts-with G40P.
Stoichiometry of G40P-G39P interaction. not a fact.
G39P interferes with the high affinity
binding of G40P to ssDNA.

no match2.

G39P decreases the ATPase activity of
G40P.

partial1: G39P decreases the activity of G40P.

G38P reverses the negative effect exerted
by G39P on the DNA-dependent ATPase
activity of G40P.

no match2.

The G38P-G39P complex increases the
apparent unwinding activity of G40P.

partial1: There is a protein-complex X such
that G38P is a subunit of the protein-complex X
and G39P is a subunit of the protein-complex X
and the protein-complex X increases the activity
of G40P.

Release of G39P upon formation of an
oriL-G38P-G39P-G40P-ATP?S complex.

no match4.

76 APPENDIX B. CELL HEADINGS

Article #37
Authors: Wunderlich L, Goher A, Farago A, Downward J, Buday L.
Title: Requirement of multiple SH3 domains of Nck for ligand binding.
PMID: 10372803.

Cell heading ACE
Nck Associates with Bcr/Abl, Cbl, p120
and p155 In Vivo.

perfect: Nck associates-with Bcr-Abl in-vivo
and associates-with Cbl in-vivo and
associates-with P120 in-vivo and associates-with
P155 in-vivo.

Nck Interacts with Bcr/Abl, Cbl and p155
via its SH3 Domains.

perfect: A SH3-domain of Nck interacts-with
Bcr-Abl and interacts-with Cbl and
interacts-with P155.

Combined SH3 Domains of Nck are
Necessary for Ligand Binding.

off-topic.

Mutations of Conserved Tryptophans to
Lysines in GST-SH3-12 Abolishes Ligand
Binding.

off-topic.

Article #38
Authors: Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M.
Title: MDM2 interacts with MDMX through their RING finger domains.
PMID: 10218570.

Cell heading ACE
Identification of MDMX as a
MDM2-binding protein.

perfect: MDMX binds MDM2.

Binding of MDMX with MDM2 in vitro
and in vivo.

perfect: MDMX binds MDM2 in-vitro and
binds MDM2 in-vivo.

Effect of co-expression of MDMX on
MDM2 stability.

off-topic.

Article #39
Authors: Miyata KS, McCaw SE, Meertens LM, Patel HV, Rachubinski RA, Capone JP.
Title: Receptor-interacting protein 140 interacts with and inhibits transactivation by,
peroxisome proliferator-activated receptor alpha and liver-X-receptor alpha.
PMID: 10022764.

Cell heading ACE
Interaction cloning of RIP140. not a fact.
RIP140 interacts with PPARalpha,
RXRalpha and LXRalpha in vitro.

perfect: PIP140 interacts-with PPAR-Alpha
in-vitro and interacts-with RXR-Alpha in-vitro
and interacts-with LXR-Alpha in-vitro.

RIP140 antagonizes
PPARalpha/RXRalpha- and
LXRalpha/RXRalpha -mediated signaling.

off-topic.

Article #40
Authors: Ng RW, Arooz T, Yam CH, Chan IW, Lau AW, Poon RY.
Title: Characterization of the cullin and F-box protein partner Skp1.
PMID: 9827542.

Cell heading ACE
Interaction between Skp1 and the
F-box-containing protein Skp2.

perfect: Skp1 interacts-with Skp2.

Expression and purification of recombinant
Skp1.

not a fact.

The native molecular size of Skp1. not a fact.
Skp1 associates with Skp2 as well as other
proteins in mammalian cell extracts.

partial3: Skp1 associates-with Skp2 in
Mammal.

Article #41
Authors: Woo HN, Hong GS, Jun JI, Cho DH, Choi HW, Lee HJ, Chung CW, Kim IK, Jo
DG, Pyo JO, Bertin J, Jung YK.
Title: Inhibition of Bcl10-mediated activation of NF-kappa B by BinCARD, a
Bcl10-interacting CARD protein.
PMID: 15637807.

APPENDIX B. CELL HEADINGS 77

Cell heading ACE
Identification and expression of BinCARD. not a fact.
BinCARD binds to Bcl10 through
CARD–CARD interaction.

perfect: A CARD-domain of BinCARD binds a
CARD-domain of BCL10.

BinCARD inhibits Bcl10-mediated
activation of NF-kappaB.

partial2: BinCARD inhibits the activity of
NF-kappaB.

BinCARD reduces the phosphorylation of
Bcl10.

perfect: BinCARD decreases the
phosphorylation of BCL10.

BinCARD inhibits Bcl10 phosphorylation
induced by T cell activation signal.

partial2: BinCARD inhibits the
phosphorylation of BCL10.

Article #42

Authors: Yoshima T, Yura T, Yanagi H.

Title: Novel testis-specific protein that interacts with heat shock factor 2.

PMID: 9651507.

Cell heading ACE
cDNA cloning of Image. not a fact.
Testis-specific expression of Image. not a fact.
Interaction of HSF2 with HSF2BP in vitro. perfect: HSF2 interacts-with HSF2BP in-vitro.
Two-hybrid assays for HSF2BP–HSF2
interaction in mammalian cells.

perfect: HSF2BP interacts-with HSF2 in
Two-Hybrid-Assay in Mammal.

Article #43

Authors: Ibarrola I, Vossebeld PJ, Homburg CH, Thelen M, Roos D, Verhoeven AJ.

Title: Influence of tyrosine phosphorylation on protein interaction with FcgammaRIIa.

PMID: 9268059.

Cell heading ACE
FcgammaRIIa phosphorylation by various
tyrosine kinases.

perfect: Tyrosine-Kinase phosphorylates
FcGammaRIIa.

Lyn association with FcgammaRIIa. perfect: Lyn associates-with FcGammaRIIa.
Interaction of cytosolic proteins with
phosphorylated GST-CT.

partial1: Cytosolic-Protein interacts-with
GST-CT.

Differential roles of tyrosine residues in
FcgammaRIIa.

not a fact.

Article #44

Authors: Choi YJ, Cho SY, Kim HW, Kim JA, Bae SH, Park SS.

Title: Cloning and characterization of mouse disabled 2 interacting protein 2, a mouse
orthologue of human NOSTRIN.

PMID: 15596140.

Cell heading ACE
Yeast-two hybrid screening. not a fact.
Nucleotide and deduced amino acid
sequences of mDaIP2.

not a fact.

Expression pattern of mDaIP2 in
transcriptional and translational level.

not a fact.

mDaIP2 binds to the mDab2 in F9 cells
treated with RA.

partial1: MDaIP2 binds MDab2 in F9-Cell.

Subcellular localization of mDaIP2. not a fact.

Article #45

Authors: Afshar K, Willard FS, Colombo K, Johnston CA, McCudden CR, Siderovski DP,
Gonczy P.

Title: RIC-8 is required for GPR-1/2-dependent Galpha function during asymmetric division
of C. elegans embryos.

PMID: 15479639.

78 APPENDIX B. CELL HEADINGS

Cell heading ACE
ric-8 Is Required for Proper Asymmetric
Division of C. elegans Embryos.

off-topic.

RIC-8 Distribution. not a fact.
ric-8 Is Required for Generation of Pulling
Forces on Spindle Poles.

off-topic.

RIC-8 Interacts with GOA-1 and GPA-16. perfect: RIC-8 interacts-with Goa-1 and
interacts-with GPA-16.

RIC-8 Is a GEF and GPR-1/2 Is a GDI. perfect: RIC-8 is a subtype of GEF. GPR-1-2 is
a subtype of GDI.

RIC-8 Is Required for Interaction of
GOA-1 with GPR-1/2.

partial1: Goa-1 interacts-with GPR-1-2.

Inactivation of Gbetagamma Alleviates the
Requirement for RIC-8 in Asymmetric Cell
Division.

no match2.

Article #46
Authors: Tai HH, Geisterfer M, Bell JC, Moniwa M, Davie JR, Boucher L, McBurney MW.

Title: CHD1 associates with NCoR and histone deacetylase as well as with RNA splicing
proteins.

PMID: 12890497.

Cell heading ACE
CHD1 associates with HDAC. perfect: CHD1 associates-with HDAC.
CHD1 interacts with NCoR and splicing
proteins.

perfect: CHD1 interacts-with NCoR and
interacts-with Splicing-Protein.

In vitro pull-down assay confirms
interaction between CHD1 and NcoR.

not a fact.

CHD1 and CLK1 interact with different
regions of NcoR.

perfect: CHD1 interacts-with a region X of
NCoR and CLK1 interacts-with a region Y of
NCoR and the region X is not the region Y.

CHD1 and splicing. not a fact.

Article #47
Authors: Tsuzuki M, Wu W, Nishikawa H, Hayami R, Oyake D, Yabuki Y, Fukuda M, Ohta T.

Title: A truncated splice variant of human BARD1 that lacks the RING finger and ankyrin
repeats.

PMID: 15878232.

Cell heading ACE
Identification of BARD1deltaRIN. not a fact.
DeltaRIN expression in human cell lines. not a fact.
DeltaRIN localizes to the cytoplasm and
does not interact with BRCA1.

perfect: Delta-RIN localizes-to Cytoplasm and
does not interact-with BRCA1.

DeltaRIN interacts with and colocalizes
with CstF-50.

perfect: Delta-RIN interacts-with CstF-50 and
colocalizes-with CstF-50.

Article #48
Authors: Yan J, Zhu J, Zhong H, Lu Q, Huang C, Ye Q.

Title: BRCA1 interacts with FHL2 and enhances FHL2 transactivation function.

PMID: 14550570.

Cell heading ACE
Identification of a BRCA1-interacting
protein.

not a fact.

Interaction between FHL2 and BRCA1 in
vitro and in vivo.

perfect: FHL2 interacts-with BRCA1 in-vitro
and interacts-with BRCA1 in-vivo.

Mapping of the BRCA1 binding domain of
FHL2.

not a fact.

Potentiation of the FHL2 transactivation
by BRCA1.

no match4.

Lack of BRCA1 binding sites in the FHL2
abolishes FHL2 transactivation function.

no match4.

Expression of FHL2 mRNA in breast
cancer cell lines.

not a fact.

APPENDIX B. CELL HEADINGS 79

Article #49
Authors: Mils V, Lee SM, Joly W, Hang EW, Baldin V, Waye MM, Ducommun B, Tsui SK.
Title: LIM-only protein FHL3 interacts with CDC25B2 phosphatase.
PMID: 12681290.

Cell heading ACE
Interaction between FHL3 and the
CDC25B2 phosphatase in a two-hybrid
assay.

perfect: FHL3 interacts-with CDC25B2 in
Two-Hybrid-Assay.

In vitro interaction assay not a fact.
In vivo FHL3 and CDC25B2 interaction is
limited to the nucleus.

perfect: If FHL3 interacts-with CDC25B2
in-vivo in a cellular-component X then X is a
part of Nucleus.

FHL3 has no effect on CDC25B2
phosphatase activity.

no match1.

Article #50
Authors: Backes WL, Kelley RW.
Title: Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in
membranes.
PMID: 12725870.

Cell heading ACE
Evidence for specific interactions between
different P450 enzymes.

perfect: P450 specifically interacts-with itself.

Demonstration that interactions between
CYP2B4 and CYP1A2 occur in
microsomes.

perfect: CYP2B4 interacts-with CYP1A2 in
Microsome.

Possible interactions among multiple
P450s and reductase.

not a fact.

Article #51
Authors: Lin CL, Leu S, Lu MC, Ouyang P.
Title: Over-expression of SR-cyclophilin, an interaction partner of nuclear pinin, releases SR
family splicing factors from nuclear speckles.
PMID: 15358154.

Cell heading ACE
Identification of SR-cyp as an interacting
partner of pnn.

perfect: SR-cyp interacts-with PNN.

Interaction between SR-cyp and pnn is
mediated by pnns C-terminal RS domain.

perfect: SR-cyp interacts-with the c-terminal
RS-domain of PNN.

SR-cyp regulates SR family proteins
intranuclear distribution by releasing them
from speckles to nucleoplasm.

no match4.

Article #52
Authors: Joensen L, Borda E, Kohout T, Perry S, Garcia G, Sterin-Borda L.
Title: Trypanosoma cruzi antigen that interacts with the beta1-adrenergic receptor and
modifies myocardial contractile activity.
PMID: 12672526.

Cell heading ACE

Recombinant MBP-Tc13 Tul interacts
with the beta1-AR.

partial1: MBP-Tc13 interacts-with Beta1-AR.

Effects of MBP-Tc13 Tul on atrial
function.

not a fact.

Article #53
Authors: Ramm K, Pluckthun A.
Title: High enzymatic activity and chaperone function are mechanistically related features of
the dimeric E. coli peptidyl-prolyl-isomerase FkpA.
PMID: 11428902.

80 APPENDIX B. CELL HEADINGS

Cell heading ACE
High isomerase activity with protein
substrates mediated by tight substrate
binding.

off-topic.

FK520 binds with nanomolar affinity to
both active sites of a dimeric FkpA.

partial1: FK520 binds a dimer of FkpA.

RCM a-lactalbumin competes for protein
substrate binding only.

off-topic.

FkpA prevents aggregation of unfolding
CS intermediates.

no match4.

FkpA binds reversibly to early unfolding
intermediates of CS.

no match4.

Binding of CS-unfolding intermediates is
not influenced by inhibition of isomerase
activity.

no match4.

Both activities reside primarily in the
FKBP-domain.

no match4.

FkpY from Haemophilus influenzae has
identical characteristics.

no match4.

Article #54
Authors: Ji YJ, Nam S, Jin YH, Cha EJ, Lee KS, Choi KY, Song HO, Lee J, Bae SC, Ahnn
J.
Title: RNT-1, the C. elegans homologue of mammalian RUNX transcription factors, regulates
body size and male tail development.
PMID: 15385167.

Cell heading ACE
The rnt-1(ok351) mutation bears a
deletion.

off-topic.

The rnt-1(ok351) mutant has a small body
size and male tail defects.

off-topic.

rnt-1 is expressed in the male tail. off-topic.
rnt-1 is expressed in the male tail. off-topic.
The rnt-1(ok351) mutant shows synergistic
effects with known mutants of Sma/Mab
pathway genes.

off-topic.

The phenotype of lon-1(e185), which is the
downstream target mutant of Sma/Mab
pathway, is epistatic to the rnt-1(ok351)
mutant phenotype.

off-topic.

RNT-1 physically interacts with SMA-4. perfect: RNT-1 physically interacts-with
SMA-4.

Article #55
Authors: Nishanian TG, Waldman T.
Title: Interaction of the BMPR-IA tumor suppressor with a developmentally relevant splicing
factor.
PMID: 15351706.

Cell heading ACE
BMPR-IA yeast two-hybrid screening. not a fact.
Full-length BMPR-IA interacts with
SAP49 in human cells.

perfect: BMPR1A interacts-with SAP49 in
Human.

BMPR-IA and SAP49 localization. not a fact.
Characterization of BMPR-IA/SAP49
interaction.

not a fact.

SAP49 expression analysis. not a fact.
Functional consequence of
BMPR-IA/SAP49 interaction.

not a fact.

SAP49 is a developmentally relevant
splicing factor.

off-topic.

Interaction between splicing components
and cell signaling.

off-topic.

Effects of BMPR-IA on SAP49 function. not a fact.

Article #56
Authors: Yanagita M, Oka M, Watabe T, Iguchi H, Niida A, Takahashi S, Akiyama T,
Miyazono K, Yanagisawa M, Sakurai T.
Title: USAG-1: a bone morphogenetic protein antagonist abundantly expressed in the kidney.
PMID: 15020244.

APPENDIX B. CELL HEADINGS 81

Cell heading ACE
Primary structure of USAG-1. not a fact.
Secreted form of human USAG-1. not a fact.
USAG-1 antagonizes the action of BMPs
in C2C12 cells.

perfect: USAG-1 decreases the activity of BMP
in C2C12-Cell.

USAG-1 inhibits endogenous BMP activity
in Xenopus embryogenesis.

perfect: USAG-1 inhibits the activity of BMP
in Xenopus in Embryogenesis.

USAG-1 directly binds BMP-2, -4, and -7. perfect: USAG-1 directly binds BMP2 and
directly binds BMP4 and directly binds BMP7.

Tissue distribution of USAG-1 in fetal and
adult mice.

not a fact.

Effects of USAG-1 on Wnt1 signaling. not a fact.

Article #57
Authors: Yoshida Y, von Bubnoff A, Ikematsu N, Blitz IL, Tsuzuku JK, Yoshida EH,
Umemori H, Miyazono K, Yamamoto T, Cho KW.
Title: Tob proteins enhance inhibitory Smad-receptor interactions to repress BMP signaling.
PMID: 12782279.

Cell heading ACE

Tob and Tob2 preferentially interact with
inhibitory Smads.

partial3: Tob interacts-with Smad. Tob2
interacts-with Smad.

Identification and expression of Xenopus
Tob2.

not a fact.

Both Tob and XTob2 cooperate with
Smad6 to inhibit BMP signaling.

off-topic.

Tob co-localizes with Smad6 at the cell
membrane and assists in complex
formation between inhibitory Smads and
BMP receptors.

partial2: Tob colocalizes-with SMAD6 at
Cell-Membrane. There is a protein-complex X
such that Smad is a subunit of X and a receptor
of BMP is a subunit of X.

Article #58
Authors: Kraemer B, Crittenden S, Gallegos M, Moulder G, Barstead R, Kimble J, Wickens
M.
Title: NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in
Caenorhabditis elegans.
PMID: 10508609.

Cell heading ACE
NOS-3 and FBF proteins interact
physically.

perfect: Nos-3 physically interacts-with FBF.

The nos-3 mRNA and protein are present
in the germ line and present throughout
development.

off-topic.

NOS functions in the hermaphrodite
spermoocyte switch.

off-topic.

NOS functions in the hermaphrodite
spermoocyte switch.

off-topic.

The three nos genes are critical for
germ-line survival.

off-topic.

Overlapping but non-identical functions of
the nos genes.

off-topic.

Other nos defects. not a fact.

Article #59
Authors: Upton JW, van Dyk LF, Speck SH.
Title: Characterization of murine gammaherpesvirus 68 v-cyclin interactions with cellular
cdks.
PMID: 16102793.

Cell heading ACE
GammaHV68 v-cyclin interacts with cdk2
and cdc2, but not cdk4 or cdk6.

perfect: GammaHV68-V-Cyclin interacts-with
Cdk2 and interacts-with Cdc2 and does not
interact-with Cdk4 and does not interact-with
Cdk6.

Mutation of conserved residues within the
cyclin box of gammaHV68 v-cyclin
eliminates binding to cellular cdks.

no match1.

GammaHV68 v-cyclin:cdk2 complexes
phosphorylate cyclin E:cdk2 substrates.

off-topic.

GammaHV68 v-cyclin-mediated
phosphorylation of cyclin A:cdk substrates.

off-topic.

82 APPENDIX B. CELL HEADINGS

Article #60

Authors: Nevado J, Tenbaum SP, Aranda A.

Title: hSrb7, an essential human Mediator component, acts as a coactivator for the thyroid
hormone receptor.

PMID: 15249124.

Cell heading ACE
hSrb7 and hMo15 interact with the
thyroid hormone receptor in mammalian
two-hybrid assays.

perfect: HSrb7 interacts-with
Thyroid-Hormone-Receptor in
Mammalian-Two-Hybrid-Assay. HMo15
interacts-with Thyroid-Hormone-Receptor in
Mammalian-Two-Hybrid-Assay.

Srb7 enhances TR-mediated
transcriptional activation.

off-topic.

Transcriptional synergistic effect between
hSrb7 and TR is T3- and AF-2-dependent.

off-topic.

Gal4DBD-fused ligand binding domains of
TRa and TR also show a synergistic effect
with hSrb7, and other
basal-transcriptional components.

no match4.

TR interacts directly with hSrb7 in vitro. perfect: TR directly interacts-with HSrb7
in-vitro.

hSrb7 does not interact with other nuclear
receptors.

no match4.

hSrb7 does not act as a coactivator for
other nuclear receptors.

no match4.

Article #61

Authors: Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S.

Title: Links between tumor suppressors: p53 is required for TGF-beta gene responses by
cooperating with Smads.

PMID: 12732139.

Cell heading ACE
Cloning of an Alternatively Spliced
Isoform of p53 (p53AS) in a Screen for
Activators of TGF-beta Signaling.

not a fact.

p53 Is Required for
TGF-beta/Activin/Nodal-Mediated Gene
Responses in Xenopus Embryos.

off-topic.

p53 Is Required for Full TGF-beta Gene
Responses and TGF-beta-Mediated
Growth Arrest in Mammalian Cells.

off-topic.

p53 Is Required for TGF-beta1-Mediated
Growth Arrest in Mouse Embryonic
Fibroblasts and Hematopoietic
Progenitors.

off-topic.

p53 Family Members Cooperate with
TGF-beta-Induced Transcription in
Human Cells but Require Promoter
Sequences Separate from Smad-Responsive
Element.

off-topic.

A p53 Responsive Element on the Mix.2
Promoter Is Required for Endogenous
Expression In Vivo and Full TGF-beta
Responsiveness.

off-topic.

p53 Physically Interacts with Smads. perfect: P53 physically interacts-with Smad.

Article #62

Authors: Rascle A, Stowers RS, Garza D, Lepesant JA, Hogness DS.

Title: L63, the Drosophila PFTAIRE, interacts with two novel proteins unrelated to cyclins.

PMID: 12782278.

APPENDIX B. CELL HEADINGS 83

Cell heading ACE
Two Drosophila genes encode proteins that
interact with the L63B1 isoform.

off-topic.

PIF-1B and PIF-2 interact with the same
histidine-rich domain present in the
N-terminal extension of all L63 isoforms.

perfect: There is a histine-rich-domain X that
is a part of the n-terminus of every isoform of
L63 and PIF-1B interacts-with X and PIF-2
interacts-with X.

L63B1 interacts with cysteine-rich domains
in PIF-1B and PIF-2.

perfect: L63B1 interacts-with a
cysteine-rich-domain of PIF-1B. L63B1
interacts-with a cysteine-rich-domain of PIF-2.

Developmental profiles of PIF-1 mRNA
and protein abundances indicate that
PIF-1 expression is controlled at both
transcriptional and translational levels.

off-topic.

The domain in PIF-1B that is required for
interaction with L63 in yeast binds L63 in
vitro.

perfect: A domain X of PIF-1B interacts-with
L63 in Yeast and the domain X binds L63
in-vitro.

L63 is an active kinase. perfect: L63 is a subtype of Active-Kinase.
Coimmunoprecipitation assays indicate
that L63 and PIF-1B interact in vivo.

perfect: L63 interacts-with PIF-1B in-vivo in
Coimmunoprecipitation-Assay.

Article #63
Authors: Vogel L, Baratte B, Detivaud L, Azzi L, Leopold P, Meijer L.
Title: Molecular cloning and characterisation of p15(CDK-BP), a novel CDK-binding protein.
PMID: 12007796.

Cell heading ACE
cDNA cloning of p15CDK-BP. not a fact.
Starfish suc1 homologue cloning and
sequence analysis of the p15A and p15B
with the p13suc1/p9Cks family of proteins.

not a fact.

p15CDK-BP transcripts are restricted to
oocytes.

off-topic.

Recombinant p15B possesses the same
properties as purified p15CDK-BP and
binds a starfish PSTAIRE-immunoreactive
protein.

no match4.

p15CDK-BP binds several CDKs. perfect: P15CDK-BP binds CDK.

Article #64
Authors: Haidweger E, Novy M, Rotheneder H.
Title: Modulation of Sp1 activity by a cyclin A/CDK complex.
PMID: 11237594.

Cell heading ACE

Sp1 interacts with a growth dependent
histone 1 (H1) kinase activity.

no match4.

Cyclin A interacts with Sp1. perfect: Cyclin-A interacts-with Sp1.
The zinc finger region of Sp1 and the N
terminus of cyclin A are necessary for the
interaction of the two proteins.

no match4.

A cyclin A/kinase complex is able to
phosphorylate Sp1 and to enhance its
DNA binding activity.

no match4.

nhibition of CDK activity reduces DNA
binding of Sp1 and Sp1 dependent
expression of a reporter gene.

off-topic.

Over-expression of cyclin A increases DNA
binding of Sp1 and enhances Sp1
dependent promoter activity.

off-topic.

Stimulation of arrested 3T6 cells to grow
results in enhanced DNA binding of
Sp1/Sp3 which correlates with the
expression of cyclin A.

off-topic.

Article #65
Authors: Wang Y, Xu F, Hall FL.
Title: The MAT1 cyclin-dependent kinase-activating kinase (CAK) assembly/targeting factor
interacts physically with the MCM7 DNA licensing factor.
PMID: 11056214.

84 APPENDIX B. CELL HEADINGS

Cell heading ACE

Identification of MCM7 as a putative
MAT1-interacting protein.

no match3.

Verification of the in vivo interaction
between MAT1 and MCM7 in the yeast
two-hybrid system.

not a fact.

Verification of the physical interaction
between MAT1 and MCM7 in vitro.

not a fact.

Association of MCM7 with CAK
complexes (CDK7, cyclin H, MAT1) in
mammalian cells.

perfect: MCM7 associates-with CDK7 in
Mammal and associates-with Cyclin-H in
Mammal and associates-with MAT1 in Mammal.

Article #66
Authors: Moorthamer M, Zumstein-Mecker S, Chaudhuri B.
Title: DNA binding protein dbpA binds Cdk5 and inhibits its activity.
PMID: 10100871.

Cell heading ACE
A C-terminal fragment of dbpA binds to
Cdk5 in a yeast two-hybrid screen.

perfect: A c-terminal region of DbpA binds
Cdk5 in Yeast-Two-Hybrid.

The dbpA(Cdelta) protein precipitates
35S-labeled Cdk5 and Cdk4.

no match4.

The dbpA(Cdelta) protein precipitates
Cdk5 and Cdk4 expressed in COS-1 cells.

off-topic.

issue specific expression of dbpA. off-topic.
Inhibition of the Cdk5 kinase by
bacterially expressed GST-dbpA(Cdelta)
and His-dbpA(Cdelta).

no match4.

Activation of Cdk5 with D-type cyclins. no match4.
Inhibition of the Cdk4 kinase by
bacterially expressed His-dbpA(Cdelta).

no match4.

Specificity of inhibition of the Cdk5 kinase
compared to the Cdk2 kinase.

not a fact.

Triple infections with GST-DbpA(C?)
baculoviruses do not yield active Cdk5 or
Cdk4 kinases.

off-topic.

Inhibition of the Cdk5 and Cdk4 kinase by
insect cell expressed GST-DbpA(Cdelta).

no match4.

Article #67
Authors: Tran DD, Edgar CE, Heckman KL, Sutor SL, Huntoon CJ, van Deursen J, McKean
DL, Bram RJ.
Title: CAML is a p56Lck-interacting protein that is required for thymocyte development.
PMID: 16111633.

Cell heading ACE
Creation of Conditional CAML Knockout
Mice in Thymocytes.

not a fact.

Reduced Numbers of DP and SP
Thymocytes in tCAML–/– Mice.

off-topic.

Thymocytes Lacking CAML Do Not
Contribute to the Peripheral T Cell
Subset.

off-topic.

Positive Selection Is Impaired, Whereas
Negative Selection Is Enhanced in
tCAML–/– Thymocytes.

off-topic.

CAML-Deficient Thymocytes Undergo
Increased Cell Death upon TCR Ligation.

off-topic.

CAML Interacts with p56Lck in an
Activation-Dependent Manner.

partial1: CAML interacts-with P56Lck.

CAML Negatively Regulates p56Lck
Activation.

partial1: CAML regulates the activity of
P56Lck.

Article #68
Authors: Warbrick E, Lane DP, Glover DM, Cox LS.
Title: A small peptide inhibitor of DNA replication defines the site of interaction between the
cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen.
PMID: 7780738.

APPENDIX B. CELL HEADINGS 85

Cell heading ACE

The carboxy-terminal 89 amino acids of
p21WAF1 bind PCNA in an interaction
trap.

partial1: A c-terminal region of P21WAF1
binds PCNA.

PCNA–PCNA interactions. perfect: PCNA interacts-with itself.
p21WAF1 interacts with the central region
of PCNA.

perfect: P21WAF1 interacts-with the
central-region of PCNA.

Peptide mapping of sites on p21WAF1
important for its interaction with PCNA.

off-topic.

p21WAF1 peptides can precipitate PCNA
from cell extracts.

off-topic.

Inhibition of SV40 DNA replication by
p21PBP.

off-topic.

The minimum PCNA binding site on
p21WAF1.

not a fact.

Critical residues within p21PBP. not a fact.

Article #69
Authors: Pyrowolakis G, Hartmann B, Muller B, Basler K, Affolter M.
Title: A simple molecular complex mediates widespread BMP-induced repression during
Drosophila development.
PMID: 15296719.

Cell heading ACE
Mad and Medea Directly Bind to a Dpp
Morphogen-Dependent Silencer Element of
the brk Gene.

off-topic.

The Spacing but Not the Sequence
between the Mad and the Med Binding
Site Is Important for Shn Recruitment.

off-topic.

Shn Is a Modular Repressor Protein. perfect: Shn is a subtype of
Modular-Repressor-Protein.

Functional Mad/Med/Shn-Dependent
Silencers Are Found in Other Drosophila
Genes.

off-topic.

Germline Stem Cells Are Maintained by
Shn Recruitment to an SE in the bam
Gene.

off-topic.

Dpp Directly Represses gsb Transcription
in the Dorsal Ectoderm.

off-topic.

Article #70
Authors: Maeda T, Gupta MP, Stewart AF.
Title: TEF-1 and MEF2 transcription factors interact to regulate muscle-specific promoters.
PMID: 12061776.

Cell heading ACE
Physical interaction between TEF-1 and
MEF2.

perfect: TEF-1 physically interacts-with MEF2.

Functional interaction between TEF-1 and
MEF2.

perfect: TEF-1 functionally interacts-with
MEF2.

TEF-1 isoforms differentially modulate
MEF2 activation of the MLC2v and MHC
promoters.

no match2.

MEF2 recruits a TEF-1-like factor to the
MLC2v promoter.

no match4.

Article #71
Authors: Authors
Title: Title
PMID: PMID

Cell heading ACE

Binding of PML to Multiple Corepressors
and HDAC1.

partial4: PML binds HDAC1.

Colocalization of Corepressors and PML. no match4.
PML Is Involved in Mad-Mediated
Transcriptional Repression.

off-topic.

PML-RARa Inhibits the Mad-Mediated
Repression.

off-topic.

86 APPENDIX B. CELL HEADINGS

Article #72

Authors: Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA,
Topper JN, Gimbrone MA Jr, Wrana JL, Falb D.

Title: The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as
an antagonist of TGFbeta signaling.

PMID: 9215638.

Cell heading ACE

Smad7 Inhibits TGFbeta Signaling. partial1: Smad7 inhibits the activity of
TGF-Beta.

Smad7 Blocks Activation of Smad2. partial1: Smad7 inhibits the activity of Smad2.
Smad7 Interacts Stably with the TGFbeta
Receptor.

perfect: Smad7 stably interacts-with a receptor
of TGF-Beta.

A Nonfunctional Mutant of Smad7 Does
Not Interact with the TGFbeta Receptor.

perfect: A mutant of Smad7 does not
interact-with a receptor of TGF-Beta.

Article #73

Authors: Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans
RM.

Title: Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and
histone deacetylase.

PMID: 9150137.

Cell heading ACE
SMRT Has Two Independent Repressor
Domains.

perfect: There is a repressor-domain X of
SMRT and there is a repressor-domain Y of
SMRT and X is not Y.

Interaction between SMRT and mSin3A. perfect: SMRT interacts-with MSin3A.
An SMRT–mSin3A–HDAC1 Ternary
Complex.

perfect: There is a protein-complex X such
that SMRT is a subunit of X and MSin3A is a
subunit of X and HDAC1 is a subunit of X.

Functional Interaction between HDAC1
and SMRT.

perfect: HDAC1 functionally interacts-with
SMRT.

Retinoic Acid and Trichostatin A
Synergize in Cell Differentiation.

off-topic.

Article #74

Authors: Zong H, Li Z, Liu L, Hong Y, Yun X, Jiang J, Chi Y, Wang H, Shen X, Hu Y, Niu
Z, Gu J.

Title: Cyclin-dependent kinase 11(p58) interacts with HBO1 and enhances its histone
acetyltransferase activity.

PMID: 15963510.

Cell heading ACE
CDK11p58 interacts with histone
acetyltransferase HBO1 in yeast.

perfect: CDK11p58 interacts-with HBO1 in
Yeast.

CDK11p58 binds to HBO1 in vitro. perfect: CDK11p58 binds HBO1 in-vitro.
CDK11p58 associates with HBO1 in
mammalian cells.

perfect: CDK11p58 associates-with HBO1 in
Mammal.

CDK11p58 colocalizes with HBO1 in the
nucleus.

perfect: CDK11p58 colocalizes-with HBO1 in
Nucleus.

CDK11p58 enhances the histone
acetyltransferase activity of HBO1 in vitro.

partial1: CDK11p58 increases the activity of
HBO1 in-vitro.

CDK11p58 enhances the histone
acetyltransferase activity of HBO1 in vivo.

partial1: CDK11p58 increases the activity of
HBO1 in-vivo.

Article #75

Authors: Chi RJ, Olenych SG, Kim K, Keller TC 3rd.

Title: Smooth muscle alpha-actinin interaction with smitin.

PMID: 15833278.

APPENDIX B. CELL HEADINGS 87

Cell heading ACE
Alpha-Actinin-smitin binding in vitro. perfect: Alpha-Actinin binds Smitin in-vitro.
The native alpha-actinin rod domain
interacts with smitin.

partial1: The rod-domain of Alpha-Actinin
interacts-with Smitin.

Alpha-Actinin rod and C-terminal
domains bind smitin.

perfect: The c-terminal domain of
Alpha-Actinin binds Smitin and a rod-domain of
Alpha-Actinin binds Smitin.

The alpha-actinin R2-R3 spectrin-like
repeat and C-terminus domains out
compete native alpha-actinin for smitin
binding.

no match4.

Effects of PIP2 on interactions of
alpha-actinins with cardiac muscle titin
and smooth muscle smitin.

not a fact.

Article #76
Authors: Bubeck Wardenburg J, Pappu R, Bu JY, Mayer B, Chernoff J, Straus D, Chan AC.
Title: Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76.
PMID: 9846482.

Cell heading ACE
In Vitro Interaction of Nck and SLP-76. perfect: Nck interacts-with SLP-76 in-vitro.
In Vivo Interaction of Nck and SLP-76 in
Jurkat and Normal Peripheral T Cells.

perfect: Nck interacts-with SLP-76 in-vivo in
Jurkat-T-Cell. Nck interacts-with SLP-76
in-vivo in Normal-Peripheral-T-Cell.

Formation of a Tri-Molecular Complex
Consisting of SLP-76, Nck, and Vav.

perfect: There is a protein-complex X such
that SLP-76 is a subunit of X and Nck is a
subunit of X and Vav is a subunit of X.

Integration of Vav GEF Activity with
Rho-GTPase Effector Protein Function by
the Tri-Molecular Complex.

no match4.

Regulation of F-Actin Formation by
SLP-76, Vav, and Nc.

no match4.

Article #77
Authors: Ivanova AV, Ivanov SV, Zhang X, Ivanov VN, Timofeeva OA, Lerman MI.
Title: STRA13 interacts with STAT3 and modulates transcription of STAT3-dependent targets.
PMID: 15223310.

Cell heading ACE
STRA13 interacts with STAT3beta, the
short isoform of STAT3.

perfect: STRA13 interacts-with STAT3Beta.

STAT3beta associates with the HLH and
the C-terminal regions of STRA13.

partial1: STAT3Beta associates-with the
c-terminal region of STRA13.

STRA13 binds to the
tyrosine-phosphorylated forms of
STAT3beta and STAT3alpha proteins.

partial1: STRA13 binds STAT3Beta and binds
STAT3Alpha.

STRA13 activates transcription from
STAT-responsive elements GAS, ISRE and
STAT3.

off-topic.

The basic domain and the C-terminal
region of STRA13 are responsible for
transcription activation from
cytokine-responsive elements.

off-topic.

STRA13 expression is induced by
cytokines.

off-topic.

Roles of STRA13 and STAT3 in the
regulation of Fas transcription.

not a fact.

STRA13 over-expression causes apoptosis. off-topic.

Article #78
Authors: Li W, Kedersha N, Chen S, Gilks N, Lee G, Anderson P.
Title: FAST is a BCL-X(L)-associated mitochondrial protein.
PMID: 15110758.

Cell heading ACE
Subcellular localization of endogenous
FAST.

not a fact.

Identification of a mitochondrial targeting
domain.

not a fact.

FAST interacts with BCL-XL. perfect: FAST interacts-with BCL-XL.

88 APPENDIX B. CELL HEADINGS

Article #79
Authors: Muromoto R, Sugiyama K, Yamamoto T, Oritani K, Shimoda K, Matsuda T.
Title: Physical and functional interactions between Daxx and TSG101.
PMID: 15033475.

Cell heading ACE
Association of Daxx with DMAP1 and
TSG101 in 293T cells.

perfect: DAXX associates-with DMAP1 in
293T-Cell and associates-with TSG101 in
293T-Cell.

Co-localization of Daxx and TSG101 in
the nucleus.

perfect: DAXX colocalizes-with TSG101 in
Nucleus.

TSG101 and Daxx cooperatively repress
glucocorticoid receptor-mediated
transcriptional activity.

off-topic.

Article #80
Authors: Kim YY, Park BJ, Seo GJ, Lim JY, Lee SM, Kimm KC, Park C, Kim J, Park SI.
Title: Long form of cellular FLICE-inhibitory protein interacts with Daxx and prevents
Fas-induced JNK activation.
PMID: 14637155.

Cell heading ACE
Overexpression of c-FLIPL but not of
c-FLIPS renders cells resistant to
Fas-induced apoptosis.

off-topic.

c-FLIPL inhibits the Fas-induced JNK
activation.

partial1: C-FLIPL inhibits the activity of JNK.

c-FLIPL but not c-FLIPS interacts with
Daxx.

perfect: C-FLIPL interacts-with DAXX.
C-FLIPS does not interact-with DAXX.

Daxx interacts with c-FLIPL through its
Fas-binding domain.

perfect: A domain X of DAXX binds Fas and
the domain X interacts-with C-FLIPL.

Article #81
Authors: Mikolajczyk M, Shi J, Vaillancourt RR, Sachs NA, Nelson M.
Title: The cyclin-dependent kinase 11(p46) isoform interacts with RanBPM.
PMID: 14511641.

Cell heading ACE
Identification of RanBPM as
CDK11p46-interacting protein.

perfect: RanBPM interacts-with CDK11p46.

Binding of RanBPM with CDK11p46 in
vitro and in vivo.

perfect: RanBPM binds CDK11p46 in-vitro
and binds CDK11p46 in-vivo.

CDK11p46 phosphorylates RanBPM in
vitro

perfect: CDK11p46 phosphorylates RanBPM
in-vitro.

Article #82
Authors: Fleckenstein DS, Dirks WG, Drexler HG, Quentmeier H.
Title: Tumor necrosis factor receptor-associated factor (TRAF) 4 is a new binding partner for
the p70S6 serine/threonine kinase.
PMID: 12801526.

Cell heading ACE
Identification of TRAF4 as a new binding
partner of p70S6K.

perfect: TRAF4 binds P70S6K.

Activated lymphotoxin-beta receptor
induces p70S6K/TRAF4 interaction.

no match2.

Crosstalk between the TNF-receptor and
the PI3K/p70S6K signaling pathway.

off-topic.

TRAF4 inhibits Fas-inducible apoptosis in
HEK-293 cells.

off-topic.

Article #83
Authors: Barberis M, Pagano MA, Gioia LD, Marin O, Vanoni M, Pinna LA, Alberghina L.
Title: CK2 regulates in vitro the activity of the yeast cyclin-dependent kinase inhibitor Sic1.
PMID: 16168390.

APPENDIX B. CELL HEADINGS 89

Cell heading ACE
Sic1 protein binds to CK2alpha and
CK2beta subunits.

perfect: Sic1 binds CK2Alpha that is a subunit
of CK2 and binds CK2Beta that is a subunit of
CK2.

Sic1 is phosphorylated by both the alpha
subunit and the holoenzyme CK2 in vitro.

perfect: CK2Alpha phosphorylates Sic1
in-vitro. CK2 phosphorylates Sic1 in-vitro.

Phosphorylation of the CK2 consensus site
within a Sic1-derived peptide increases
binding to the mammalian Cdk2/cyclin A
complex

no match1.

Sic1 fully phosphorylated by CK2 is a
stronger inhibitor of the S-Cdk activity
than the unphosphorylated protein.

no match1.

Homology modelling of the
Sic1/Cdk1/Clb5 ternary complex.

not a fact.

The CK2 consensus site of Sic1 is
predicted to interact with the Cdk1/Clb5
kinase complex.

no match3.

Article #84
Authors: Irie S, Hachiya T, Rabizadeh S, Maruyama W, Mukai J, Li Y, Reed JC, Bredesen
DE, Sato TA.
Title: Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and
their effect on NF-kappaB activation.
PMID: 10544233.

Cell heading ACE

FAP-1 interacts with the C-terminal SPV
of p75NTR in vitro.

partial4: FAP-1 interacts-with the c-terminus
of P75NTR in-vitro.

FAP-1 interacts with p75NTR in vivo. perfect: FAP-1 interacts-with P75NTR in-vivo.
Co-localization of FAP-1 and p75NTR. perfect: FAP-1 colocalizes-with P75NTR.
Interaction of FAP-1 with p75NTR is
involved in the regulation of
TRAF6-mediated NF-kappaB activation.

no match2.

p75NTR C-terminal mutation (V to M)
enhances its pro-apoptotic activity

no match1.

Article #85
Authors: Roder K, Wolf SS, Larkin KJ, Schweizer M.
Title: Interaction between the two ubiquitously expressed transcription factors NF-Y and Sp1.
PMID: 10393239.

Cell heading ACE
NF-YA and Sp1 interact in-vivo. perfect: NFYA interacts-with Sp1 in-vivo.
An Sp1 interaction domain is located
between amino acids 55 and 139 of NF-YA.

no match1.

An NF-YA interaction domain is located
between amino acids 139 and 344 of Sp1.

no match1.

In-vitro interaction of Sp1 with CBF-B. perfect: Sp1 interacts-with CBFB in-vitro.
NF-YA co-immunoprecipitates Sp1 from
rat hepatoma cells.

no match1.

Article #86
Authors: Yang X, Khosravi-Far R, Chang HY, Baltimore D.
Title: Daxx, a novel Fas-binding protein that activates JNK and apoptosis.
PMID: 9215629.

Cell heading ACE
Two-Hybrid Screen for Novel
Fas-Interacting Proteins.

not a fact.

Cloning of Daxx cDNA and Northern
Analysis.

not a fact.

Daxx Interacts with Fas Both In Vitro and
In Vivo.

perfect: DAXX interacts-with Fas in-vitro and
interacts-with Fas in-vivo.

Daxx Potentiates Fas-Mediated Apoptosis. no match1.
Daxx Activates the JNK/SAPK Pathway. off-topic.
Deletion Mutagenesis of Daxx. not a fact.
DaxxC Is a Dominant-Negative Inhibitor
of Fas-Mediated Apoptosis and JNK
Activation.

no match1.

Daxx and FADD Define Two Distinct
Fas-Mediated Signaling Pathways.

off-topic.

90 APPENDIX B. CELL HEADINGS

Article #87
Authors: Shu HB, Halpin DR, Goeddel DV.
Title: Casper is a FADD- and caspase-related inducer of apoptosis.
PMID: 9208847.

Cell heading ACE
Identification of Casper. not a fact.
Induction of Apoptosis by Casper and Its
Protease-like Domain.

off-topic.

A Deletion Mutant of Casper Blocks TNF-
and Fas-Induced Apoptosis.

no match1.

Casper Interacts with Distinct Signaling
Proteins.

partial3: Casper interacts-with
Signaling-Protein.

Casper Interacts with FADD and Is
Recruited to Fas.

partial1: Casper interacts-with FADD.

Casper Interacts with Caspase-8 through
Distinct Domains.

partial3: Casper interacts-with Caspase-8.

CrmA Interacts with Caspase-8 but Not
Casper or Caspase-3.

perfect: CrmA interacts-with Caspase-8 and
does not interact-with Casper and does not
interact-with Caspase-3.

Casper Indirectly Induces Caspase-3
Activity.

partial1: Casper regulates the activity of
Caspase-3.

Casper Interacts with Caspase-3. perfect: Casper interacts-with Caspase-3.
Casper Is Proteolytically Processed in
Mammalian Cells.

no match4.

Casper Interacts with TRAF1 and TRAF2. perfect: Casper interacts-with TRAF1 and
interacts-with TRAF2.

Article #88
Authors: Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV.
Title: TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling
complex.
PMID: 8612133.

Cell heading ACE
Identification of RIP as a
TRADD-Interacting Protein.

perfect: RIP interacts-with TRADD.

RIP Interacts with TRAF Proteins. perfect: RIP interacts-with TRAF.
Characterization of RIP Deletion Mutants. not a fact.
The Death Domain of RIP Blocks
TNF-Mediated NF-kappaB Activation.

partial2: The death-domain of RIP inhibits the
activity of NF-kappaB.

TRADD Recruits RIP to TNFR1. no match1.
TNFR1–TRADD–TRAF2–RIP Complex. perfect: There is a protein-complex X such

that TNFR1 is a subunit of X and TRADD is a
subunit of X and TRAF2 is a subunit of X and
RIP is a subunit of X.

Association of RIP with TNFR1 Is TNF
Dependent.

partial2: RIP associates-with TNFR1.

RIP Is a SerineThreonine Protein Kinase. perfect: RIP is a subtype of
Serine-Threonine-Protein-Kinase.

Article #89
Authors: Chatellier J, Hartley O, Griffiths AD, Fersht AR, Winter G, Riechmann L.
Title: Interdomain interactions within the gene 3 protein of filamentous phage.
PMID: 10606756.

Cell heading ACE
Specific interaction between g3p-D12 and
g3p-D3.

perfect: G3p-D12 specifically interacts-with
G3p-D3.

Functional significance of the
g3p-D12/g3p-D3 interaction.

not a fact.

Implications for selective infection of
phage (SIP) strategies.

not a fact.

Implications for phage infectivity. not a fact.

Appendix C

Ontology Lexicon Converter

This appendix contains the code for the Ontology Lexicon Converter that trans-
lates the Ontology Lexicon Format into the ACE Lexicon Format. The Ontology
Lexicon Converter is written in SWI Prolog.

% --

% Ontology Lexicon Converter

% version 1.0, 3 January 2006

% Tobias Kuhn

% --

% This program converts from the Ontology Lexicon Format into the ACE

% Lexicon Format.

% --

:- module(ontology_lexicon_converter,

[

transform/2 % +InputFile, +OutputFile

]).

% --

% transform(+InputFile, +OutputFile)

% --

% Transforms a file in the Ontology Lexicon Format (InputFile) into a

% file in the ACE Lexicon Format (OutputFile).

% --

transform(InputFile, OutputFile) :-

open(InputFile, read, In),

open(OutputFile, write, Out),

repeat,

read(In, OLFTerm),

process_term(Out, OLFTerm),

!,

close(In),

close(Out),

check_references.

% --

% entry(-OLFTerm)

% --

% This dynamic predicate is used to store the processed OLF terms.

91

92 APPENDIX C. ONTOLOGY LEXICON CONVERTER

% --

:- dynamic(entry/1).

% --

% reference(-Ref, -Type)

% --

% This dynamic predicate is used to store the references and their

% types.

% --

:- dynamic(reference/2).

% --

% process_term(+OutputStream, +OLFTerm)

% --

% Transforms the term OLFTerm into the ACE Lexicon Format and writes it

% in the stream OutputStream. After that it fails, unless OLFTerm is

% end_of_file.

% --

% End Of File

process_term(_Out, end_of_file) :-

!.

% CONCEPTS

% Common Noun

process_term(Out, OLFTerm) :-

OLFTerm = concept(id(ID),

cn(singular(Singular),

type(ObjectType),

gender(Gender)),

superconcepts(SuperconceptList)),

valid_id(ID),

atom(Singular),

valid_object_type(ObjectType),

valid_gender(Gender),

list_of_atoms(SuperconceptList),

!,

assert(entry(OLFTerm)),

assert_references(SuperconceptList, concept),

writeq(Out, cn(singular(Singular),

plural(’’),

singular_aliases([]),

plural_aliases([]),

type(ObjectType),

gender(Gender),

group(countable),

comment(’’))),

write(Out, ’.’), nl(Out),

fail.

% Common Noun (with reference)

process_term(_Out, OLFTerm) :-

OLFTerm = concept(id(ID),

cn(ref(RefID)),

superconcepts(SuperconceptList)),

atom(RefID),

APPENDIX C. ONTOLOGY LEXICON CONVERTER 93

entry(role(id(RefID),

cn(singular(_Singular),

type(_ObjectType),

gender(_Gender)),

_Superroles,

_Domain,

_Range)),

valid_id(ID),

list_of_atoms(SuperconceptList),

!,

assert(entry(OLFTerm)),

assert_references(SuperconceptList, concept),

fail.

% Adjective

process_term(Out, OLFTerm) :-

OLFTerm = concept(id(ID),

adj(positive(Positive)),

superconcepts(SuperconceptList)),

valid_id(ID),

atom(positive),

list_of_atoms(SuperconceptList),

!,

assert(entry(OLFTerm)),

assert_references(SuperconceptList, concept),

writeq(Out, adj(positive(Positive),

comparative(’’),

superlative(’’),

positive_aliases([]),

comparative_aliases([]),

superlative_aliases([]),

complementing_preposition(’’),

comment(’’))),

write(Out, ’.’), nl(Out),

fail.

% Intransitive Verb

process_term(Out, OLFTerm) :-

OLFTerm = concept(id(ID),

iv(third_singular(ThirdSingular),

third_plural(ThirdPlural),

phrasal_particle(PhrasalParticle)),

superconcepts(SuperconceptList)),

valid_id(ID),

atom(ThirdSingular),

atom(ThirdPlural),

atom(PhrasalParticle),

list_of_atoms(SuperconceptList),

!,

assert(entry(OLFTerm)),

assert_references(SuperconceptList, concept),

writeq(Out, iv(third_singular(ThirdSingular),

third_plural(ThirdPlural),

third_singular_aliases([]),

third_plural_aliases([]),

type(unspecified),

phrasal_particle(PhrasalParticle),

comment(’’))),

write(Out, ’.’), nl(Out),

fail.

94 APPENDIX C. ONTOLOGY LEXICON CONVERTER

% INDIVIDUALS

% Propername

process_term(Out, OLFTerm) :-

OLFTerm = individual(id(ID),

pn(singular(Singular),

type(ObjectType),

gender(Gender))),

valid_id(ID),

atom(Singular),

valid_object_type(ObjectType),

valid_gender(Gender),

!,

assert(entry(OLFTerm)),

writeq(Out, pn(singular(Singular),

plural(’’),

singular_aliases([]),

plural_aliases([]),

type(ObjectType),

gender(Gender),

comment(’’))),

write(Out, ’.’), nl(Out),

fail.

% ROLES

% Transitive Verb (basic version)

process_term(Out, OLFTerm) :-

OLFTerm = role(id(ID),

tv(third_singular(ThirdSingular),

third_plural(ThirdPlural),

phrasal_particle(PhrasalParticle),

direct_preposition(DirectPreposition)),

superroles(SuperroleList),

domain(Domain),

range(Range)),

valid_id(ID),

atom(ThirdSingular),

atom(ThirdPlural),

atom(PhrasalParticle),

atom(DirectPreposition),

list_of_atoms(SuperroleList),

atom(Domain),

atom(Range),

!,

assert(entry(OLFTerm)),

assert_references(SuperroleList, role),

assert(reference(Domain, concept)),

assert(reference(Range, concept)),

writeq(Out, tv(third_singular(ThirdSingular),

third_plural(ThirdPlural),

third_singular_aliases([]),

third_plural_aliases([]),

type(unspecified),

phrasal_particle(PhrasalParticle),

direct_preposition(DirectPreposition),

comment(’’))),

write(Out, ’.’), nl(Out),

fail.

% Transitive Verb (extended version)

APPENDIX C. ONTOLOGY LEXICON CONVERTER 95

process_term(Out, OLFTerm) :-

OLFTerm = role(id(ID),

tv(third_singular(ThirdSingular),

third_plural(ThirdPlural),

phrasal_particle(PhrasalParticle),

direct_preposition(DirectPreposition)),

superroles(SuperroleList),

domain(Domain),

range(Range),

context(ContextList)),

valid_id(ID),

atom(ThirdSingular),

atom(ThirdPlural),

atom(PhrasalParticle),

atom(DirectPreposition),

list_of_atoms(SuperroleList),

atom(Domain),

atom(Range),

valid_context_list(ContextList),

!,

assert(entry(OLFTerm)),

assert_references(SuperroleList, role),

assert(reference(Domain, concept)),

assert(reference(Range, concept)),

assert_context_references(ContextList),

writeq(Out, tv(third_singular(ThirdSingular),

third_plural(ThirdPlural),

third_singular_aliases([]),

third_plural_aliases([]),

type(unspecified),

phrasal_particle(PhrasalParticle),

direct_preposition(DirectPreposition),

comment(’’))),

write(Out, ’.’), nl(Out),

fail.

% Adverb

process_term(Out, OLFTerm) :-

OLFTerm = role(id(ID),

adv(adverb(Adverb),

type(ModifierType)),

superroles(SuperroleList),

domain(Domain),

range(Range)),

valid_id(ID),

atom(Adverb),

valid_modifier_type(ModifierType),

list_of_atoms(SuperroleList),

atom(Domain),

atom(Range),

!,

assert(entry(OLFTerm)),

assert_references(SuperroleList, role),

assert(reference(Domain, concept)),

assert(reference(Range, concept)),

writeq(Out, adv(adverb(Adverb),

adverb_comparative(’’),

adverb_superlative(’’),

adverb_aliases([]),

adverb_comparative_aliases([]),

adverb_superlative_aliases([]),

type(ModifierType),

96 APPENDIX C. ONTOLOGY LEXICON CONVERTER

comment(’’))),

write(Out, ’.’), nl(Out),

fail.

% Of-Construct

process_term(Out, OLFTerm) :-

OLFTerm = role(id(ID),

cn(singular(Singular),

type(ObjectType),

gender(Gender)),

superroles(SuperroleList),

domain(Domain),

range(Range)),

valid_id(ID),

atom(Singular),

valid_object_type(ObjectType),

valid_gender(Gender),

list_of_atoms(SuperroleList),

atom(Domain),

atom(Range),

!,

assert(entry(OLFTerm)),

assert_references(SuperroleList, role),

assert(reference(Domain, concept)),

assert(reference(Range, concept)),

writeq(Out, cn(singular(Singular),

plural(’’),

singular_aliases([]),

plural_aliases([]),

type(ObjectType),

gender(Gender),

group(countable),

comment(’’))),

write(Out, ’.’), nl(Out),

fail.

% Of-Construct (with reference)

process_term(_Out, OLFTerm) :-

OLFTerm = role(id(ID),

cn(ref(RefID)),

superroles(SuperroleList),

domain(Domain),

range(Range)),

atom(RefID),

entry(concept(id(RefID),

cn(singular(_Singular),

type(_ObjectType),

gender(_Gender)),

_Superconcepts)),

valid_id(ID),

list_of_atoms(SuperroleList),

atom(Domain),

atom(Range),

!,

assert(entry(OLFTerm)),

assert_references(SuperroleList, role),

assert(reference(Domain, concept)),

assert(reference(Range, concept)),

fail.

% Comparative Form of Adjective

process_term(Out, OLFTerm) :-

APPENDIX C. ONTOLOGY LEXICON CONVERTER 97

OLFTerm = role(id(ID),

adj(comparative(Comparative)),

superroles(SuperroleList),

domain(Domain),

range(Range)),

valid_id(ID),

atom(Comparative),

list_of_atoms(SuperroleList),

atom(Domain),

atom(Range),

!,

assert(entry(OLFTerm)),

assert_references(SuperroleList, role),

assert(reference(Domain, concept)),

assert(reference(Range, concept)),

writeq(Out, adj(positive(’’),

comparative(Comparative),

superlative(’’),

positive_aliases([]),

comparative_aliases([]),

superlative_aliases([]),

complementing_preposition(’’),

comment(’’))),

write(Out, ’.’), nl(Out),

fail.

% Invalid Term

process_term(_Out, OLFTerm) :-

write(’ERROR. Invalid Entry: ’),

writeq(OLFTerm), nl,

fail.

% --

% assert_references(+ReferencesList, +Type)

% --

% Stores the references in ReferencesList which is a list of atoms. Type

% is one of {context, role} and defines the type of the reference.

% --

assert_references([], _Type).

assert_references([Ref|Rest], Type) :-

assert(reference(Ref, Type)),

assert_references(Rest, Type).

% --

% assert_context_references(+ContextRefList)

% --

% ContextRefList is a list of context-terms that look like prep(Prep,

% Concept). This predicate stores the concept references.

% --

assert_context_references([]).

assert_context_references([prep(_Prep, ConceptID)|Rest]) :-

assert(reference(ConceptID, concept)),

assert_context_references(Rest).

98 APPENDIX C. ONTOLOGY LEXICON CONVERTER

% --

% check_references

% --

% Checks whether the stored references are valid. This predicate

% succeeds always. For each unresolved reference a warning-message is

% printed onto the standard output-device.

% --

check_references :-

reference(Ref, Type),

\+ id_exists(Ref, Type),

write(’WARNING. Undefined Reference: ’),

writeq(Ref), nl,

fail.

check_references.

% --

% valid_id(+ID)

% --

% Checks whether ID is a valid ID, i.e. is atomic and unique.

% --

valid_id(ID) :-

atom(ID),

\+ id_exists(ID, _Type).

% --

% id_exists(+ID, ?Type)

% --

% Checks whether the ID exists for the given type. Type is one of

% {individual, concept, role}.

% --

id_exists(ID, individual) :-

entry(individual(id(ID), _Word)).

id_exists(ID, concept) :-

entry(concept(id(ID), _Word, _Superconcepts)).

id_exists(ID, role) :-

entry(role(id(ID), _Word, _Superroles, _Domain, _Range)).

id_exists(ID, role) :-

entry(role(id(ID), _Word, _Superroles, _Domain, _Range, _Context)).

% --

% valid_object_type(?ObjectType)

% --

% Checks whether ObjectType is a valid object-type in the ACE Lexicon

% Format.

% --

valid_object_type(unspecified).

valid_object_type(person).

valid_object_type(object).

valid_object_type(time).

APPENDIX C. ONTOLOGY LEXICON CONVERTER 99

% --

% valid_gender(?Gender)

% --

% Checks whether Gender is a valid gender description in the ACE Lexicon

% Format.

% --

valid_gender(human).

valid_gender(neutr).

valid_gender(masc).

valid_gender(fem).

% --

% valid_modifier_type(?ModifierType)

% --

% Checks whether ModifierType is a valid modifier-type in the ACE

% Lexicon Format.

% --

valid_modifier_type(unspecified).

valid_modifier_type(manner).

valid_modifier_type(time).

valid_modifier_type(location).

valid_modifier_type(duration).

valid_modifier_type(frequency).

valid_modifier_type(instrument).

valid_modifier_type(destination).

valid_modifier_type(comitative).

% --

% list_of_atoms(+List)

% --

% Succeeds if List is a list of atomic values.

% --

list_of_atoms([]).

list_of_atoms([Atom|Rest]) :-

atom(Atom),

list_of_atoms(Rest).

% --

% valid_context_list(+List)

% --

% Succeeds if List is a valid context list in the ACE Ontology Format.

% --

valid_context_list([]).

valid_context_list([prep(Prep, Concept)|Rest]) :-

atom(Prep),

atom(Concept),

valid_context_list(Rest).

Bibliography

[1] ACE Lexicon Specification. University of Zurich, Department of Informat-
ics. 22 October 2005.
http://www.ifi.unizh.ch/attempto/tools/documentation/ace lexicon.html

[2] APE Webservice. University of Zurich, Department of Informatics. 26 Oc-
tober 2005.
http://www.ifi.unizh.ch/attempto/tools/documentation/ape webservice.html

[3] Franz Baader, Werner Nutt. Basic Description Logics. In “The Description
Logic Handbook: Theory, Implementation, and Applications”. Cambridge
University Press. 2003.

[4] Franz Baader, Ian Horrocks, Ulrike Sattler. Description Logics as Ontology
Languages for the Semantic Web. Theoretical Computer Science, RWTH
Aachen; Department of Computer Science, University of Manchester. 2003.

[5] Alex Borgida. On the Relative Expressiveness of Description Logics and
Predicate Logics. Department of Computer Science. Rutgers University.
New Brunswick. 1996.

[6] Francesco M. Donini. Complexity of Reasoning. In “The Description Logic
Handbook: Theory, Implementation, and Applications”. Cambridge Uni-
versity Press. 2003.

[7] Norbert E. Fuchs, Uta Schwertel, Rolf Schwitter. Attempto Controlled Eng-
lish – Not Just Another Logic Specification Language. University of Zurich,
Department of Informatics. 1998.

[8] Norbert E. Fuchs, Stefan Hoefler, Kaarel Kaljurand, Gerold Schneider,
Uta Schwertel. Discourse Representation Structures of ACE 4 Sentences.
University of Zurich, Department of Informatics. 2005.

[9] The Gene Ontology Consortium. Gene Ontology: tool for the unification
of biology. In “Nature America Inc.”. 2000.

[10] Thomas R. Gruber. Toward Principles for the Design of Ontologies Used
for Knowledge Sharing. Stanford Knowledge Systems Laboratory, Palo
Alto. 1993.

[11] Hans Kamp, Uwe Reyle. From Discourse to Logic: Introduction to Model-
theoretic Semantics of Natural Language, Formal Logic and Discourse Rep-
resentation Theory. Kluwer Academic Publishers, Dordrecht / Boston /
London. 1993.

100

BIBLIOGRAPHY 101

[12] Robert Kowalski. Logic without Model Theory. In “What is a Logical Sys-
tem?”. Oxford University Press. 1994.

[13] Deborah L. McGuinness, Frank van Harmelen. OWL Web Ontology Lan-
guage Overview. W3C World Wide Web Consortium. 10 February 2004.
http://www.w3.org/TR/2004/REC-owl-features-20040210/

[14] Daniele Nardi, Ronald J. Brachman. An Introduction to Description Log-
ics. In “The Description Logic Handbook: Theory, Implementation, and
Applications”. Cambridge University Press. 2003.

[15] Rolf Schwitter. Controlled Natural Language as Interface Language to the
Semantic Web. Centre for Language Technology, Maquarie University, Syd-
ney. 2005.

[16] Rolf Schwitter, Anna Ljungberg, David Hood. ECOLE: A Look-ahead Ed-
itor for a Controlled Language. Centre for Language Technology, Maquarie
University, Sydney. 2003.

[17] Barry Smith, Werner Ceusters, Bert Klagges, Jacob Köhler, Anand Kumar,
Jane Lomax, Chris Mungall, Fabian Neuhaus, Alan L. Rector, Cornelius
Rosse. Relations in biomedical ontologies. Genome Biology 2005, Volume
6, Issue 5.

[18] John F. Sowa. Knowledge Representation: Logical, Philosophical, and
Computational Foundations. Brooks Cole Publishing Co, Pacific Grove,
CA. 1999.

[19] Mike Uschold, Michael Gruninger. Ontologies: Principles, Methods and
Applications. Knowledge Engineering Review, Volume 11, Number 2. 1996.

[20] Jan Wielemaker. SWI-Prolog 5.4, Reference Manual. University of Ams-
terdam, Department of Social Science Informatics. 2004.

