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Abstract. The key notion for modelling calendar systems and many
other periodic temporal notion is the mathematical concept of a parti-
tioning of the real numbers. A partitioning of R splits the time axis into
a sequence of intervals. Basic time units like seconds, minutes, hours,
days, weeks, months, years etc. can all be represented as partitionings of
R with finite partitions. Besides the basic time units in calendar systems,
there are a lot of other temporal notions which can be modelled as parti-
tions: the seasons, the ecclesiastical calendars, financial years, semesters
at universities, the sequence of sunrises and sunsets, the sequence of the
tides, the sequence of school holidays etc.
Almost all systems for modelling periodic temporal notions developed so
far identify partitions, granules or whatever they are called, by labels or
coordinates which are essentially sequences of integers. In this paper it
is show how these integer coordinates as identifiers for partitions can be
generalised to ‘partition access specifiers’. An example for a non-trivial
partition access specifier is a path in a tree which represents hierarchically
nested partitions. A bus timetable, for example, can be specified this way:
’(in very winter, in every week, (in day 0-4, hour 5, minute 20, bus B1,
hour 6, minute 20 bus B2 ...), (in day 5-6, hour 8, minute 20 bus B1, ...)),
(in every spring ...)...’. A particular ‘partition access specifiers’ is then a
sequence of integers ’10/1/2/..’. The first integer represents an absolute
coordinate (season 10). The other integers represent shifts: 1 week after
the start of season 10, 2 days after the start of this week etc.
The main data structures and algorithms for these ‘tree partitionings’
are presented in this paper.

1 Introduction

The basic time units of calendar systems, years, months, weeks, days etc. are
the prototypes of periodic temporal notions. They can be modelled with algo-
rithms mapping the begin and end times of a given year, month etc. to dates
on a reference time axis [5]. This is sufficient for translating dates between dif-
ferent calendar systems. Many other periodic temporal notions, however, are
very application or user specific, ‘my weekend’, for example. Therefore a small
but active research community is investigating ways to specify periodic tem-
poral notions symbolically. One approach is to introduce an intermediate level
between the reference time axis and the time units. Different formalisations of



this intermediate level have been proposed. The simplest and most obvious way
is to model periodic temporal notions as partitionings of the time axis. This is
the approach which is realised in the PartLib library [14] which is part of the
CTTN system (Computational Treatment of Temporal Notions [13]). Periodic
temporal notions are modelled with labelled partitionings. The labels are names
of the partitions (‘Monday’, ‘Tuesday’, ... for example).

In their book, ‘Time Granularities’, Bettini, Jajodia and Wang [3] introduce
‘time granularities’ as a generalisation of partitionings of the time axis. The
‘granules’ in time granularities are like the partitions in partitionings, but there
can be gaps between two subsequent granules, and the granules can be non-
convex intervals. By means of a special label ‘gap’ in the PartLib library, one
can realise the same kind of granules as in [3]. There is an algebra of time
granularities, which allows one to define new time granularities from existing
ones in various ways. Other approaches are the formalisms of ‘collections’ [10]
and ‘slices’ [11]. A collection is a structured set of intervals where the order of
the collection gives a measure of the structure depth. The slice formalism was
introduced in [11] as an alternative to the collection formalism in order to have
an underlying evaluation procedure for the symbolic formalism. A selection of
papers about the abundant work in this area is [1, 12, 9, 15, 10, 6, 2, 7, 4, 8, 16].

The main characteristics of the algebraic approach is that new periodical
temporal notions are constructed from simpler ones with certain basic operators.
If the desired temporal notion is complex, many construction steps are necessary
until it is constructed. Each construction step introduces a new complexity in
the algorithms that work with these notions. In most of these approaches it is,
for example, very complex or even impossible to specify, say a bus schedule. The
bus schedule may depend on the season, it distinguishes between work days and
weekends, between daytime and nighttime etc.

In this paper a new way is introduced to specify such complicated periodic
temporal notions as bus schedules in one go, i.e. with one construction step. The
result is a partitioning which has the same application interface as, for example,
years. All algorithms working with the standard periodic temporal notions can
therefore work with these new partitionings as well.

2 Partitionings

Partitionings of the time axis are infinite mathematical structures. Therefore
they are not directly implementable with finite data structures. They must be
represented on a computer in a more indirect way. We distinguish three aspects
of partitionings of the time axis:

1. the mathematical structure. It serves as the semantics for the more concrete
descriptions of these objects;

2. the specification of concrete partitionings. There are different ways to specify
them. Each type of specification comes with a mathematical structure that
has also a serialised text form which can be stored in files;
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3. the implementation. There should be a common interface for all types of
partitionings, such that the algorithms working with these partitionings are
independent of the specification type. The methods of the partitioning ap-
plication interface must be automatically compilable from the specification.

2.1 Partitionings as Mathematical Structures

In this paper we consider the following partitionings of the time axis:

Definition 1. The partitionings of the time axis (real numbers) we consider in
this paper meet the following conditions:

1. they are isomorphic to the integers (their ‘coordinates’)
2. the partions are half open intervals of the form [a, b[ with integer boundaries

a and b.

It is not by chance that half open intervals are used in this definition. Since
the partitions in a partitioning do not overlap, one cannot use closed intervals
because the endpoints of the closed intervals would be in two different partitions.
Open intervals can not be used either because the infima and suprema of the
intervals would then not be in any partition at all. Therefore only half open
intervals can be used, either of the type [a, b[, or of the type ]a, b]. In most cases
there is no preference for either of the two types, but both types should not be
used together. In this paper we therefore use the first type [a, b[.

Typical examples of such partitionings are years, months, weeks, days, hours
etc., but also semesters, financial years, sequences of holiday periods and working
periods, sequences of bus arrival times followed by waiting times in a bus schedule
etc.

Many of the application specific partitionings, for example, semesters, make
sense only for a finite period of time. It turned out that it is always possible, and
conceptually as well as algorithmically easier to extrapolate these finite parti-
tionings to the infinity, such that they are really isomorphic to the integers. The
finite ‘validity period’ can be attached as an extra attribute to the specification
of a partitioning. It can be used or ignored by an application.

The partitionings of Def. 1 can be enumerated by their corresponding integer
coordinates. We have, for example, year 0, year -1, year +1 etc. It is not necessary
that the coordinates of the partitions are aligned. That means, for example,
month 0 need not be the first month of year 0.

2.2 Partition Access Specifiers (PAS)

We now generalise the concept of integer coordinates to the more general concept
of partition access specifiers.

Definition 2 (Partition Access Specifier (PAS)). A partition access speci-
fier is a mathematical structure which is isomorphic to the integers. It is specified
by a distinguished element p0, an injective increment function and an injective
decrement function.
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At first glance this seems to be a very uninteresting idea. But there are math-
ematical structures which are very different to the integers, but still isomorphic
to them. The example, which is relevant for this paper, are paths in an infinite
tree with finite depth. If the subnodes of all nodes are ordered, one can enumer-
ate the paths in the same way as the integers. The way we express dates, for
example, makes use of such a tree structure. We do not say, this is day number
13230 after day 0, for example. Instead, we say, this is year 2006, third month
within this year, 23rd day within this month. Year/month/day specify three lev-
els in a tree where the nodes are the corresponding integers. Nevertheless, it is
clear that dates like 2006/3/23 can be used to enumerate the infinite sequence
of day coordinates in the same way as ordinary integers.

In this example the distinguished element p0 is the path 0/0/0. The increment
function would be going from the date of one day to the date of the next day.
The decrement function would be going to the date of the previous day.

2.3 Specification of Partitionings

A specification of a partitioning must be a mathematical structure from which
the isomorphism to the integer coordinates or, more general, to partition access
specifiers, can be derived.

In [14] I have presented different types of specifications. The first type of
partitionings were called ‘algorithmic partitionings’. They were characterised
by implementing the isomorphism to integers directly. All the standard periodic
temporal notions, years, months, weeks etc., but also Easter time, sun rises, tides
etc. are of this type. The implementation can in particular take into account all
the nasty and irregular features of real calendar systems, leap years, leap seconds,
daylight savings time, time zones etc.

Another type of specification were called ‘duration partitionings’. They are
specified by giving an anchor date and a list of durations. For example, one can
specify semesters in this way. The anchor date could be first of October 2000.
The durations could be ‘6 months’ (for the winter semester) and ‘6 months’ (for
the summer semester).

Another type are ‘date partitionings’, which are specified by concrete dates.
An example could be the seasons. 2000/3/21 spring 2000/6/21 summer 2000/9/23
autumn 2000/12/21 winter 2001/3/21 specifies the seasons for one year. The ex-
trapolation mechanism extrapolates them to the infinity.

2.4 Implementation of Partitionings

The common interface to all partitioning types consists of

– the abstract class ‘Partition Access Specifier’ (PAS) with a distinguished
element p0, together with an increment and a decrement function. Concrete
subclasses are the integers, and the ‘Tree Partition Access Specifier (TPAS.
Def. 5)’ which represent paths in a tree;

4



– a function PASP (t) which maps a time point t to the partition access spec-
ifier of the P -partition containing t;

– a function startOfPartitionP (pas) which maps a PAS to the start of the
P -partition denoted by pas.

– a function endOfPartitionP (pas) which maps a PAS to the end of the P -
partition denoted by pas. The default definition is
endOfPartitionP (pas) = startOfPartitionP (increment(pas)).
If the increment function is expensive, it may, however, be more efficient to
implement endOfPartitionP directly.

3 Basic Tree Partitionings

Many practical partitionings of the time axis are not like years, days etc., where
all partitions have the same status. In a bus timetable, for example, we want to
distinguish the one or two minutes where the bus is at the bus stop from the
rest of the time where the bus is not there. Therefore we generalise the simple
tree structure of dates to a more general structure. First of all, we need to relate
the levels of the tree to (previously defined) partitionings. ‘year/month/day’ is a
simple example. A not so simple example is ‘year/week/day’. The three partition-
ings in the first example are aligned. This is not the case in the ‘year/week/day’
example because a year and a week do not always begin at the same time. Since
in our application it is absolutely necessary to identify the first week in a year,
or more general, in a sequence P0/ . . . /Pn of partitionings to identify the first
Pi–partition within a Pi−1–partition, we need some extra information. There
is a wide range of criteria which can be used to identify the first Pi–partition
within a Pi−1–partition. Fortunately there are only very few ones which occur
in practical applications.

Definition 3 (Inclusion Condition). Given a sequence P0/ . . . /Pn of parti-
tionings, the following predicates (‘inclusion conditions’) can be used to specify
which Pi–partition counts as the first one in a Pi−1–partition:

– ‘subset’: the earliest Pi–partition which is a subset of the Pi−1–partition;
– ‘overlaps’: the earliest Pi–partition which overlaps with the Pi−1–partition;
– ‘bigger part inside’: the earliest Pi–partition whose bigger part is in the Pi−1–

partition.

‘subset’ and ‘bigger part inside’ are only well defined if the Pi−1–partitions
are big enough to contain a Pi–partition. In implementations one should issue
a warning if this is not the case. ‘bigger part inside’ is actually the condition
which is used to determine the first week in a year.

Definition 4 (Partition Access Format (PAF)). A Partition Access For-
mat (PAF) is a sequence P0, I0/ . . . /Pn, In of tuples consisting of a partitioning
and an inclusion condition.

The first inclusion condition I0 is irrelevant and may be omitted. If the Pi−1–
partitions are aligned with the Pi–partitions, we may omit the inclusion condition
Ii as well.
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Definition 5 (Tree Partition Access Specifier (TPAS)). A tree partition
access specifier with respect to a partition access format P0, I0/ . . . /Pn, In is a
sequence k0 . . . kn of integers. k1 . . . kn are non-negative.

A TPAS can be shorter than the corresponding PAF. In order to avoid purely
technical case distinctions, we assume in this paper that both have always the
same length.

For the bus schedule example (Ex. 1, below) we might have 2006/10/3/5/20
as a TPAS. It indicates the particular partition where the bus is at the bus
stop. 2006/10/3/5/21 indicates the same partition because the bus stays there
2 minutes.

A Tree Partition Access Specifier has a meaning with respect to a Partition
Access Format. Essentially it denotes an ordinary date.

Definition 6 (Semantics of TPAS with respect to PAF).
Let D=defP0, I0/ . . . /Pn, In be a Partition Access Format. Let d=defd0/ . . . /dn be a
TPAS:
The interpretation ℑD(d) maps the TPAS to a Pn–partition as follows:
Let J0=def[startOfPartitionP0

(d0), endOfPartitionP0
(d0)[.

If n = 0 then ℑD(d) = J0,
otherwise for l = 1, . . . , n: let J ′

l be the leftmost Pl–partition in Jl−1 with respect
to the inclusion condition Il. Let Jl be the Pl–partition obtained by moving from
J ′

l k Pl–partitions forward.
Let ℑD,l(d)=defJl and ℑD(d)=defJn.

This definition is nothing else than the usual date computation. For example,
with the PAF year/month/day and the TPAS 2000/5/20, we first compute the
year 2000. Within this year we locate the first month and move 5 months forward.
Within this month, we locate the first day and move 20 days forward.

One can also go the other way round and compute for a time point t and a
Partition Access Format the corresponding TPAS.

Definition 7 (PASD(t)). Let t be a time point and let D=defP0, I0/ . . . /Pn, In be
a Partition Access Format.
We define the function PASD(t) as follows:
Let a be the start of the P0–partition containing t and let d0 be its coordinate1.
For i = 1, . . . , n:
Let di=

defk − l where l is the coordinate of the first (according to the inclusion
condition Ii) Pi–partition within the Pi−1–partition containing a, and k is the
coordinate of the Pi–partition containing t. Let a now be the start of the Pi–
partition containing t.

PASD(t)=defd0/ . . . /dn.

1 In most cases the partitionings of a PAF will be partitionings like years etc. with
integer coordinates. Therefore we shall continue to speak of ‘coordinates’ in this
context. Nothing changes, however, if the partitionings in the PAF have more general
Partition Access Specifiers as their coordinates.
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For a PAF ‘year/month/day’, this algorithm computes the date for a time
point t: d0 is the coordinate of the year. d1 is the difference between the month
coordinate containing t and the month coordinate of the beginning of the year. d2

is the difference between the day coordinate containing t and the day coordinate
of the beginning of the month.

The function PASD(d) works even for dates like 2006/0/32 (thirty third of
January 2006), although January has only 31 days. PASD(2006/0/32) moves
from the beginning of January 32 days forward. It ends up at the second of
February. This date is in fact equivalent to the more standard date 2006/1/12.

Sometimes it is useful to be able to also work with these nonstandard PAS
(dates). Therefore we define a function standardise that standardises a PAS. The
definition is informal. The concrete details are technical, but not very exciting.
standardiseD(d0/ . . . /dn) goes from dn backwards to d0. If dn is too large, dn−1

is incremented. If dn < 0 then dn−1 is decremented etc.

Definition 8 (Standardised PAS). Given a Partition Access Format D and
a Tree Partition Access Specifier d, we define a function standardiseD(d) which
turns d into its standardised form.

3.1 Tree Partitioning Specifications

A Partition Access Format specifies the levels in a ‘Partition Access Tree’ (PAT),
which is the kernel of a Tree Partition Specification (TPS).

Definition 9 (Partition Access Tree (PAT)). A PAT is a tree whose nodes
are labelled either

– with a range ‘n − m’ of integers (n ≤ m), or
– with * (which stands for the maximally admissible set of integers)
– or with ‘n−∗’ where n is an integer (which stands for all maximally admis-

sible integers ≥ n),

such that for each node N ,

– either there is only one subnode with label *, or
– the labels of the subnodes denote disjoint sets of integers and are ordered in

increasing order
– only the last subnode may have a label n− ∗ and all previous subnodes have

disjoint integer labels smaller than n.

Labels of the root node denote absolute coordinates, and can therefore be, instead
of integers, the more general Partition Access Specifiers of the corresponding
partitioning.
If T is a PAT, let root(T ) be the label of the root node.
If N is a node in T let nlabel(N) be the label of this node.

2 In the usual date format, January is month 1, and the first day in a month is day 1.
For dates in this paper, we adopt the convention to count months and days from 0
and not from 1. This way one can interpret month and day numbers as shifts from
the first month/day.
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A Partition Access Format together with a Partition Access Tree makes up
a Tree Partitioning Specification (TPS).

Definition 10 (Tree Partitioning Specification (TPS)). The specification
of a tree partitioning consists of

– a Partition Access Format and

– one or more Partition Access Trees.

The PAF must have as least as many elements as the PAT has levels.

Example 1 (for a Tree Partitioning Specification). A typical PAF is the standard
date format year/week,bigger part inside/day/hour/minute/second.

The following PAT may define a bus schedule.

year *

week *

day 0–4 5–6

hour 5 6 . . . 20 8 10 . . . 16

minute 20–21 20–21 . . . 20–21 0–1 0–1 . . . 0–1

It specifies the following bus schedule: every year, every week, every work day
(0–4), there is a bus at 5:20 – 5.21 (2 minutes stay at the bus stop), 6:20 – 6:21
until 20:20 – 20:21, and at the weekends (days 5,6) there is a bus every hour
from 8 until 16 hours.

The PAT is actually a finite representation of an infinite forest because the
∗ at the root node indicates the infinite set of integers. Asterisks at the lower
levels of the tree indicate only the finitely many coordinates of partitions which
are contained in the corresponding partition of the higher level. For example, in
the PAT

year *

week *

the ‘*’ at the ‘week’ level stands for either 0–51 or 0–52, depending on how many
weeks the corresponding year has.

A PAT where the root node is labelled with ‘*’ gives in fact rise to an iso-
morphism with the whole set of integers. In practical implementations we can
also allow PAT’s where the root node are labelled with a finite set of integers,
or where we have a finite forest of such trees:
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year 2000-2002 2004

week * *

day . . . . . . . . . . . .

for example, specifies an isomorphism with a finite segment of the integers, which
in turn corresponds to a partitioning of the time axis with infinite partitions at
the left and right end.

A Partition Access Tree is usually a finite representation of an infinite tree.
All algorithms work on this finite representation. Certain definitions become,
however, mathematically simpler if they can refer to the expanded infinite tree.

Definition 11 (Expanded PAT, Admissible Range).
Let T be a Partition Access Tree (or forest) with respect to a Partition Access
Format D=defP0, I0/ . . . /Pn, In. We define Expand(T ) by expanding the ‘*’ level-
wise:

Level 0:
If root(T ) = ∗ then replace T by infinitely many copies Ti of T , where root(Ti) =
i, and i is an integer.

If root(T ) = a − b then replace T by copies Ta, . . . , Tb of T where root(Ti) = i.

If root(T ) = n − ∗ then replace T by infinitely many copies Tn, . . . of T where
root(Ti) = i and i is an integer.

Level l < n:
Consider a tree T with a path k0/ . . . /kl in T leading to node N . Let TN be the
subtree below and including N .

Let pl=
def

ℑD,l−1(k0/ . . . /kl−1) be the partition specified by k0/ . . . /kl−1 (Def.
6).

Let q0, . . . , qn be the Pl–partitions in pl where q0 is the first Pl–partition in
pl with respect to the inclusion condition Il and qn is the last such Pl–partition
(qn+1 would be the first Pl–partition in the successor of pl with respect to Il).

The integers 0, . . . , n are the admissible range for the node N in Expand(T ).

If kl = ∗ then replace TN with copies TN,i of TN such that root(TN,i) = i and
i = 0, . . . , n.

If kl = a − b then replace TN with copies Tl,i of Tl such that root(Tl,i) = i and
i = a, . . . , min(b, n).

If kl = a − ∗ then replace TN with copies TN,i of TN such that root(TN,i) = i
and i = a, . . . , n.

We illustrate the expansion operation with the tree of Example 1.

Example 2 (for Expand(T )). If T is the Partition Access Tree of Example 1
then Expand(T ) looks as follows:
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year . . . 2005 2006 2007. . .

week ... 0 . . . 51 ...

day 0 . . . 4 5 6

hour 5 . . . 20 8 . . . 16 . . .

minute 20–21 20–21 0–1 0–1

The leaf nodes are not expanded because they determine the length of the
partitions. In the bus schedule example, a leaf node with label 20–21 denotes a
two minute stop of a bus, whereas two leaf nodes with labels 20 and 21 denote
two different buses with a stop of one minute each.

In Def. 6 we have defined the semantics of a Tree Partition Access Specifier
with respect to a Partition Access Format. A TPAS has also a meaning with
respect to a Tree Partitioning Specification. In this case it denotes either a
non-gap partition which corresponds to a leaf node, or a gap partition which
corresponds to a gap between two leaf nodes.

Definition 12 (Semantics of a TPAS with respect to a TPS).
Let S=def(D, T ) be a Tree Partitioning Specification (Def. 10) where
D=defP0, I0/ . . . /Pn, In is a Partition Access Format and T is a Partition Access
Tree.
Let d=defd0/ . . . /dn be a TPAS.
Let T ′=defexpand(T ) be the expanded PAT (Def.11).

We define the partition ℑS(d) as follows:

Case 1: d0/ . . . /dn−1 is a path in T ′ leading to node N and i ≤ dn ≤ j for some
subnode N ′ of N with nlabel(N ′) = ‘i–j’. Then ℑS(d)=def[a, b[ where a is the start
of ℑD(d0/ . . . /dn−1/i) and b is the end of ℑD(d0/ . . . /dn−1/j).

Case 2: d0/ . . . /dn−1 is not a path in T ′.

Case 2a: mismatch at the root node:
If T ′ = . . . Ti, Tj . . . and root(Ti) < d0 < root(Tj) then ℑS(d)=def[a, b[ where a
is the end of ℑD(p) with p being the rightmost path of Ti and b is the start of
ℑD(q) with q being the leftmost path of Tj

3.

If T ′ = . . . Ti and root(Ti) < d0 then ℑS(d)=def[a,∞[ where a is the end of ℑD(p)
with p being the rightmost path of Ti.

If T ′ = Ti . . . and d0 < root(Ti) then ℑS(d)=def[∞, b[ where b is the start of ℑD(p)
with p being the leftmost path of Ti.

3 If we speak of left/rightmost path where a leaf node is labelled ‘i–j’ then ‘i’ is taken
as the end of the leftmost path. ‘j’ is taken for the end of the rightmost path.
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Case 2b: mismatch at a deeper node:
If d0/ . . . /dk is a path in T ′ leading to node N , but d0/ . . . /dk+1 is not a path
in T ′:

If the subtrees of N are . . . Ti, Tj . . . and root(Ti) < d0 < root(Tj) then ℑS(d)=def[a, b[
where a is the end of ℑD(p) with p being the rightmost path crossing Ti and b is
the start of ℑD(q) with q being the leftmost path crossing Tj.

If the subtrees of N are . . . Ti and root(Ti) < d0 then ℑS(d)=def[a,∞[ where a is
the end of ℑD(p) with p being the rightmost path crossing Ti.

If the subtrees of N are Ti . . . and d0 < root(Ti) then ℑS(d)=def[∞, b[ where b is
the start of ℑD(p) with p being the leftmost path crossing Ti.

Now we are ready to define the functions startOfPartition(pas) and
endOfPartition(pas) which map a TPAS to the start/end of the corresponding
partition.

Definition 13 (startOfPartition and endOfPartition). Let S be a Tree Parti-
tioning Specification (Def. 10). and let d=defd0/ . . . /dn be a TPAS with ℑS(d) =
[a, b[ (Def. 12).

startOfPartitionS(d)=defa and endOfPartitionS(d)=defb.

Unfortunately Definition 12 means that there is some redundancy because
different TPAS may denote the same partition. In the bus schedule example (Ex.
1) 2006/10/9/5/20 and 2006/10/9/5/21 denote the same partition. In order to
be able to check whether two different TPAS specify the same partition, we need
to normalise the TPAS:

Definition 14 (Normalised TPAS). Let S=def(D, T ) be a Tree Partitioning
Specification (Def. 10) where D=defP0, I0/ . . . /Pn, In is a Partition Access Format
and T is a Partition Access Tree. Let d=defd0/ . . . /dn be a TPAS.
Let T ′=defexpand(T ) be the expanded PAT (Def.11).
We define NormaliseS(d) as follows:

Case 1: d0/ . . . /dn−1 is a path in T ′ leading to node N and i ≤ dn ≤ j for some
subnode N ′ of N with nlabel(N ′) = i–j. Then NormaliseS(d)=defd0/ . . . /dn−1/i.

Case 2: d0/ . . . /dn−1 is not a path in T ′.

Case 2a: mismatch at the root node:
If T ′ = . . . Ti, Tj . . . and root(Ti) < d0 < root(Tj) then let e0/ . . . /en be the
rightmost path in Ti. Then NormaliseS(d)=defstandardiseD(e0/ . . . /en−1/(en +
1)).

If T ′ = . . . Ti and root(Ti) < d0 then let e0/ . . . /en be the rightmost path in Ti.
Then NormaliseS(d)=defstandardiseD(e0/ . . . /en−1/(en + 1)).

If T ′ = Ti . . . and d0 < root(Ti) then let e0/ . . . /en be the leftmost path in Ti.
Then NormaliseS(d)=defstandardiseD(e0/ . . . /en−1/(en − 1)).

Case 2b: mismatch at a deeper node:
If d0/ . . . /dk is a path in T ′ leading to node N , but d0/ . . . /dk+1 is not a path
in T ′:
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If the subtrees of N are . . . Ti, Tj . . . and root(Ti) < d0 < root(Tj) then let
e0/ . . . /en be the rightmost path crossing Ti.
Then NormaliseS(d)=defstandardiseD(e0/ . . . /en−1/(en + 1)).

If the subtrees of N are . . . Ti and root(Ti) < d0 then let e0/ . . . /en be the right-
most path crossing Ti. Then NormaliseS(d)=defstandardiseD(e0/ . . . /en−1/(en +
1)).

The normalised Tree Partition Access Specifiers together with an increment
function that goes from a normalised TPAS to the next normalised TPAS, and
a corresponding decrement function, is the desired isomorphism to the integers.
It can therefore serve as coordinates for the tree partitionings.

Definition 15 (Partition Access Specifier Data Type). The data type
which is isomorphic to the integers, and which therefore can serve as partition
access specifier for tree partitionings S = (D, T ) consists of

– the set of normalised Tree Partition Access Specifiers (Def. 14), together with
the functions

– increment(pas)=defPASD(endOfPartition(pas)) (Def. 7, 13) and
– decrement(pas)=defNormalise(PASD(startOfPartition(pas) − 1)).

The increment and decrement functions can actually be implemented more
efficiently by traversing the partition access tree directly in the same way as in
Def. 12 and Def. 14.

4 Generalised Tree Partitionings

The concept which is the kernel of the tree partitioning idea is actually not
the partition access tree (Def. 9), but the expanded partition access tree (Def.
11). Except for the leaf nodes, all labels in an expanded PAT are integers. (The
labels of the root nodes are at least isomorphic to the integers). The whole idea
of tree partitionings works in the same way if it is possible to generate such an
expanded PAT from some other PAT like data type. This offers the possibility
for a considerable generalisation of tree partitioning specifications. The idea is
to use, except for the leaf nodes, instead of concrete numbers as the labels of a
node N , a predicate which checks for a given number, whether it falls into the
class which is associated with N .

We can use the bus schedule example (Ex. 1) to explain the idea. Suppose
there are different time tables for the four seasons. The partitioning which is
associated with the top level of the generalised PAT must then model the seasons.
To make it more comfortable, we can assume that the partitions of the season
partitioning are labelled with the season names ‘spring’, ‘summer’, ‘autumn’,
‘winter’. That means, for example, season 0 has label ‘spring’, season 1 has label
‘summer’ etc. (A labelling of partitions in this way is possible in the PartLib
library.)
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The Tree Partitioning Specification for the season dependent bus timetable
would then consist of four different PATs.

season spring summer autumn winter

week,overlaps * * * *
day ... ... ... ...

The root labels, ‘spring’, for example, stands for the predicate which checks for
a given season coordinate whether the label of its partition is ‘spring’ (‘summer’,
‘autumn’, ‘winter’). These predicates are sufficient to associate a given season
coordinate with the corresponding tree.

It does actually not matter whether the boundary between two seasons is in
the middle of a week or not. If it is in the middle then the two neighbouring
nodes have overlapping parts for some days of the week. Since for each time
point t it is clear in which season it is, it is also clear, which of the four trees
is relevant. Therefore the overlapping parts of one of the neighbouring trees is
irrelevant.

To illustrate the idea of generalised tree partitionings further, assume the
spring timetable distinguishes even and odd weeks.

The corresponding tree partitioning specification would then be

season spring summer autumn winter

week,overlaps λ(x)even(x) λ(x)odd(x) * * *
day ... ... ... ... ...

For each week number it is possible to identify the corresponding subtree, and
this is sufficient for the TPS mechanisms.

In the PartLib library all partitions can be associated with labels. Labels can
be strings or any other data structure. The partition labelling mechanism makes
also sense for the tree partitionings. In the bus scheduling example, one can, for
example, add the bus number as an extra label to the leaf nodes. It is then easy,
for example, to compute for a time point t the bus number of the next bus, or to
compute the time intervals where a particular bus is at a particular bus station.

The concept of Tree Partitioning Specifiers is currently being integrated into
the PartLib library of the CTTN system. Besides the basic implementation of
the different specification types it contains several dozens of more or less com-
plex algorithms which work with the application programming interface of the
different partitioning data structures.

5 Summary

This paper presents a considerable generalisation to the mechanisms for specify-
ing periodic temporal notions developed so far. The main idea of the generalisa-
tion is to represent periodicies no longer by ordinary integers, but by ‘partition
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access specifiers’ (PAS). This is an abstraction for all mathematical structures
which are isomorphic to the integers. A particular nontrivial instance of a PAS
are the paths in a tree. It is shown how certain forms of trees can be used to spec-
ify such complex irregular, but still periodic temporal notions as bus schedules
or other time tables.
In this approach we distinguish very clearly

– the partitionings as the mathematical structures behind the periodic tem-
poral notions,

– the specification of these partitionings, and
– the application programming interface for them.

Whereas very different types of specifications have been proposed, and Tree
Partitionings Specifications is one of them, it is important to have the same
application programming interface for all of them. This offers the possibility
to write algorithms for the periodic temporal notions without referring to the
details of their specifications.

The presented concepts are currently being integrated into the PartLib li-
brary of the CTTN system.
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