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Abstract

An automaton model used for validation and type checking with languages
defined using R2G2 [1] is presented. First, tree-shaped data is considered to be
handled by the automaton model, then the approach is extended to graph shaped
data. The presented approach is based on specialized non-deterministic finite state
automata. The specialisation copes with unranked tree shaped data. Graph shaped
data will be treated as, possibly inifinite in depth, trees.

The choice of using non-deterministic automata is motivated by complexity
issues: as the tree automata are based on regular expressions, non-deterministic
automata are a necessary intermediate step. Arguably deterministic tree automata
are more eficient on validating data, but the derivation of such automata from
non-deterministic ones comes with potentially exponential costs. As all the needed
algorithms can be achieved on non-deterministic automata in sub-exponential time
and space complexity, no need for determinisation arises.

1 Introduction to Regular Tree Automata
Traditionally, regular tree automata are defined as follows (cf. [2]).

Definition 1 (Non-deterministic Finite Tree Automata) A non-deterministic finite tree
automaton (NFTA) over Σ is a tuple A = (Q,Σ,QF ,∆), where Q is a set of (unary)
states, QF ⊆ Q is a set of final states, and ∆ is a set of transition rules of type
f (q1(x1), . . . ,qn(xn))→ q( f (x1, . . . ,xn)), where n≥ 0, f ∈Σn, q,q1, . . . ,qn ∈Q, x1, . . . ,xn ∈
X.

The set Σ contains the symbols or the alphabet of the tree. Note, that traditionally
regular tree automata operate on ranked trees, therefore the symbols have fixed arity
– the number of child nodes in a corresponding tree is fixed. The set Σp ⊆ Σ is the set
of all symbols in Σ with arity p. The set T (Σ) denotes the set of all tree that can be
constructed using the symbols in Σ. Therefore

• Σ0 ⊆ T (Σ)

• for p≥ 1, if f ∈ Σp and t1, . . . , tp ∈ T (Σ), then f (t1, . . . , tp) ∈ T (Σ)

Example 1 A non-deterministic1 finite tree automaton able to recognize a language
containing (under many others) the tree f (g(a,b),c,g(c)) is generated. de The figure

1Indeed it is deterministic, but the difference is not relevant at the moment.
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on the right of the automaton informally illustrates the relationship between the states,2

transitions and the data tree: a transition is denoted as a kind of tube. If some subtrees
of the data tree have been recognized the automaton is in corresponding states. A
transition is used, if the automaton is in all the corresponding input states (in the
example below the tube) and the father node of the subtrees recognized with those states
is labeled like the tube. The automaton is then not any longer in the states below the
transition, but in the target state (precisely in all the target states of all the transitions
traversable in that step). The root of the tree has to be accepted in such a way, that
the resulting state is a final state. Note, that the two instances of the c transition and
the state q2 denote the same objects in the automaton, they have been duplicated to
illustrate acceptance of the input data that contains two subtree accepted by the same
transition.

A = { {q1,q2,q3,q4,q5,q6,q7,q8}
, { f/3,a/0,b/0,c/0,g/2,g/1}
, {q4}
, { f (q1(X),q2(Y ),q3(Z))→ q4( f (X ,Y,Z))

,g(q5(X),q6(Y ))→ q1(g(X ,Y )
,c→ q2(c)
,a→ q5(a)
,b→ q6(b)
,g(q2(X))→ q3(g(X)) }

}

Acceptance Procedure The acceptance procedure recognizes, if a given tree is mem-
ber of the tree language represented by a given automaton. A tree t is in the lan-
guage L (A), if it is accepted by A. The acceptance procedure can be defined as
non-deterministic algorithm expressed by a set of rules. The rules relate so called
configurations of an automaton to each other. A configuration is a tree on which some
nodes are annotated with a state, more formally c ∈ T (Σ∪Q) – note, that Q is defined
as unary states, eg. a state can be seen as a (special) node in a tree with exactly one
child node.

The rules have the following general shape:

C1
...

Cn
t
t ′

(EXAMPLERULE)

where t and t ′ denote configurations. Ci denotes constraints on the configurations, part
of them or their sub trees. The style of rules presented here is inspired by Gentzen or
tableaux calculus rules and is often used in the context of type system formalization [4].
Whenever t is matched in the current configuration, t can be replaced by t ′. The rules are

2It corresponds loosely to what will later on be introduced as “aggregated acceptance path in the derivation
tree”.
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applied until no rule is applicable anymore resulting in a sequence of configurations. If it
is possible that more than one rules is applicable on one configuration (which is usually
the case), a tree of possible configurations exists with sequences of configurations as
paths through the tree.

The use of rules to express the acceptance procedure with finite automata is not
common, yet useful to introduce the rule formalism, that will be used throughout this
thesis in different places.

Rules for Acceptance Procedure based onthe Finite Tree Automata A given tree
t is member of a language L (A) for an automaton A = (Q,Σ,QF ,∆), if there is a
derivation of configurations based on the following rules with at least one closed branch
of the derivation tree.

q ∈ QF
t ∈ T (Σ)

q(t)
(ROOT)

The first rule states, that the given tree t is accepted, when a configuration is derivable
such that t is accepted with a final state q ∈ QF . A branch of configuration derivations
is succesfully closed. At least one successfully closed branch is necessary to prove
membership of a givrn tree in the language represented by the given automaton.

ui ∈ T (Σ)
f ∈ Σn

f (q1(X1), . . . ,qn(Xn))→ q( f (X1, . . . ,Xn)) ∈ ∆

q,q1, . . . ,qn ∈ Q
f (q1(u1), . . . ,qn(un))

q( f (u1, . . . ,un))
(REC)

The Rec rule relates two configurations, if the tree contains a (sub)tree matching the
left hand side of a transition in ∆. The (sub)tree is then replaced by the subtree on the
right side of the transition rule with all variables (eg. Xi) substituted with the bindings
of the left hand side. The only difference in the two configurations is the annotation of
nodes with states. This is due to the nature of the transitions – left and right hand side
are identical except of the change of intermediate state labeled branch parts.

Example 2 Given the tree f (g(a,b),c,g(c)) and the example automaton A presented
above, the following derivation justifies the recognition of the tree as an instance of the
language represented by A:
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Aggregated Acceptance Path of the Derivation Tree Given a path of rule appli-
cations that proves the membership of a tree in the language of the corresponding
automaton, the aggregated acceptance path is the tree resulting, when aggregating all
the configurations of the path to one configuration such that all state annotations inter-
laced with the path are part of this configuration. This artificial configuration gives the
information, which node was accepted with which transition. The transition can then
be seen as some sort of type annotation for the nodes of the tree. Later on (see ??), for
type checking Xcerpt, this is used to deduce the types of nodes, as the transitions are
shown to be related to grammar rules and therefore to grammar non terminal symbols
which in turn represent types or type names.

ε-rules It is possible to extend the non-deterministic regular tree automata with ε-
rules. Those are rules of the form q→ q′. Yet ε-rules are convenient in some cases (eg.
for construction of an automaton based on some regular expression like formalism as
shown in ??), they do not enhance or restrict the expressiveness of non-deterministic
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regular tree automata.3

deterministic finite tree automata Another common variant of non-deterministic
finite tree automata are deterministic finite tree automata. A tree automaton A =
(Q,Σ,Q f ,∆) is deterministic (DFTA) if there are no two rules with the same left-hand
side (and no ε-rules). Many text book approaches of standard operations on automata
like intersection and union require deterministic automata. It is always possible to get a
deterministic automaton of a non deterministic one, yet the resulting automaton may be
of exponential size with respect to the input.

1.1 Handling Ranked Trees
For XML and any ordered semistructured data model, using regular tree automata for
ranked trees is not possible without modificatio, as the data models are indeed unranked.
A common way to handle unranked trees with tree automata is to map the unranked
trees to ranked counterparts. A way to achieve this, is to lift tree nodes to a view, where
nodes are represented eg. by a node/3 item with the label as one child4 of node/3, the
first child of the unranked tree as second child of node/3 and the following sibling – if
present – of the current node in the context of its parent node as third child of node/3. As
node/3 is always of arity 3, it is necessary to provide an additional node type denoting
the end of a branch, eg. the end of a list of siblings or an empty child list – this node
will be called eob/0 for end of branch.

Example 3 The unranked tree f [a,b[d],c] is mapped to the ranked counterpart

node( f ,node(a,eob,node(b,node(d,eob,eob),node(c,eob,eob))),eob)

A corresponding automaton has to recognize the ranked transcription of unranked
trees the regular way.

Example 4 An automaton accepting the former example could for example be:

A = { {q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11}
, {node/3,a/0,b/0,c/0,eob/0}
, {q11}
, { node(q3(X),q6(Y ),q6(Z))→ q7(node(X ,Y,Z))

, a→ q1(a)
, b→ q2(b)
, c→ q3(c)
, d→ q4(d)
, f → q5( f )
, eob→ q6(eob)
, node(q4(X),q6(Y ),q6(Z))→ q8(node(X ,Y,Z))
, node(q2(X),q8(Y ),q7(Z))→ q9(node(X ,Y,Z))
, node(q1(X),q6(Y ),q9(Z))→ q10(node(X ,Y,Z))
, node(q5(X),q10(Y ),q6(Z))→ q11(node(X ,Y,Z)) }

}
3For an equivalence proof see [2], page 20.
4A label l is mapped to a node l/0 in the ranked mapping.
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2 An Automaton Model for Unranked Regular Rooted
Graph Languages

In this section an automaton model for R2G2 is the inroduced. As R2G2 models
languages of unranked trees, handling of unranked ordered trees is essential for the
automaton model sought of.

As the class of tree grammars in use can be captured solely using automata operating
on unranked tree transcriptions of ranked ones, it is useful to introduce an automaton
model solely coping with such kind of languages. A new hypergraph based formalism
is introduced. This formalism has proven useful for didactic purpose along this thesis
as well as easy to implement. All methods involving data handling (eg. validation or
typing) with automata are formulated directly on the unranked data formalism. For
this reason, the automata are considered to be automata for unranked tree, opposed to
automata for ranked trees as presented in [2].

2.1 Labelled Directed Hypergraphs as Non-Deterministic Regular
Tree Automata

A non-deterministic regular tree automaton M is a 5-tuple (Q,∆,F,R,Σ) with label
alphabet Σ, states Q, final states F where F ⊆Q, transitions ∆ where ∆ ⊆ (Q×Σ×Q×
Q) ∪ (Q×Q) (regular transitions are of the domain Q×Σ×Q×Q and ε-transitions
are of the domain Q×Q) and a set of root transitions R whith R⊆ ∆.5

For an automaton A = (Q,∆,F,R,Σ) projection of the components is defined as QA =
Q, ∆A = ∆, FA = F , RA = R and ΣA = Σ. The union of two automata A1 and A2 is defined
as the pairwise union of its components, eg. A1 ∪A2 = (QA1 ∪QA2 ,∆A1 ∪∆A2 ,FA1 ∪
FA2 ,RA1 ∪RA2 ,ΣA1 ∪ΣA2). The difference of two automata is defined in a similar way,
yet consistency of all transitions must be retained, eg. all states and symbols involved
in transitions are defined in Q, respectively Σ. Useful functions for the construction of
automata are the addition and subtraction of transitions to (or from) an automaton defined
as follows: A1 +τ = A2 such that τ = (s, l,c,e) and A1∪({s,c,e},{τ},{},{},{l}) = A2
, A1− τ = A2 such that τ = (s, l,c,e) and A1 \ ({s,c,e},{τ},{},{},{l}) = A2.

For the sake of concreteness an example automaton for the following grammar G is
presented:

The language generated by the grammar

element A → a[ (B,B)+ ];
element B → b[ A∗ ];

is accepted by the following automaton

5Usually we need just one root transition, but for technical reasons it is convenient to have a set of root
transitions.
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A = ( { 0,1,2,3,4,5},
{ (0,a,2,1),

(2,b,5,3),
(3,b,5,4),
(4,2),
(5,a,2,5)},

{ 4,5},
(0,a,2,1),

{ a,b}) 4

0 1

5

2

3

a

a

b

b

Comparing Hypergraph Automata and Ranked Tree Automata Applied to Un-
ranked Data Transcription The hypergraph automaton model is a special notation
for fixed arity tree automata where fixed arity nodes of arity 3 are matched – one position
represents the label of the matched unranked node, one for the content list of this node
and one for the following sibling node in the content list in which this node is contained.
This is reflected in the hyperedges of arity 4 relating (1) the start state of the transition,
(2) the label, (3) the start state of the child list and (4) the start state of the list of
following siblings. The advantage of this approach is the arguably less bulky notation,
as the node abstraction is not explicit. The disadvantage is the need to redefine many
operations already available for ranked tree automata to hypergraph automata. From a
practical point of view the hypergraphs are arguably well suited as automata models for
type checking on Xcerpt.

Deterministic vs. Non-Deterministic Automata It is possible to restrict tree au-
tomata to deterministic tree automata – deterministic tree automata have always exactly
one matching transition from a given left hand side to a new state along a given node
label, while non-deterministic automata may have more than one matching transition.
The decision procedure for membership test is simpler using deterministic automata, as
all possible derivations (eg. paths of a decision tree) lead to a successfully closed branch.
If no derivation rule is applicatbe any more, the data tree is not member of the language
represented by the deterministic automaton. With non-deterministic automata, it is still
possible, that earlier in the derivation tree another decision (eg. another choice of a
transition) leads to a successfully closed branch. A deterministic algorithm checking
membership using non-deterministic automata has therefore to retract choices in dead
ends of the derivation tree, if further derivations are possible and membership has not
been proved at that moment. The property of not having to retract derivation choices
is called confluence. The decision procedure for membership test on deterministic
automata is a confluent system.

While deterministic automata are favorable for membership testing, their creation
from regular expressions may be of exponential complexity. Generation of non-
deterministic finite automata based on regular expression as language specification
can be done in polynomial time.6 As R2G2 uses regular expressions to specify content
models, the translation of R2G2 to deterministic finite automata may be of exponential
complexity.

Fortunately, all necessary operations for type checking, eg. intersection, emp-
tyness test, subset test, can be implemented in polynomial complexity directly on
non-deterministic automata. This will be shown along this chapter when introduced.

6With respect to the size of the regular expression.
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2.2 Membership Test for a Tree using Hypergraph Automata
An algorithm able to test membership of unranked trees in a language represented by
a hypergraph based automaton is presented. In contrast to the standard approach for
ranked tree as shown in [2] and introduced earlier, this algorithm is able to operate
directly on the unranked tree model without prior transcription of data instances to
a ranked tree representation. Calculus rules are used to explain the algorithm in a
non-deterministic way. Rules are of the following shape:

C1
...

Cn
e1 : a1 en : an

e : a
(EXAMPLE)

Ci denote constraints on e, a, ei, ai and e, ei are trees or content lists of trees, ie.
sequences of trees that all share the same parent node. By a, ai either states or transitions
of an automaton are denoted. An expression e : a will also be called a configuration
of the automaton. The rules relate configurations of automata. Two different kinds of
configuration exist: (1) configurations of shape t : τ where t is a tree and τ is a transition,
(2) or [t1, . . . , tn] : S where [t1, . . . , tn] is a list of trees and S is a state of the automaton.

τ ∈ RA
(s, l,c,e) = τ

se ∈ FA
t : τ

(ROOT)

The ROOT rule matches the root of the data tree, if there is a transition in the set of
root transitions from which on a whole derivation tree can be found.

c ∈ FA

[ ] : c
(END)

The END rule accepts an empty list, if the configuration involves an empty list and a
state of the set of final states.

τ ∈ ∆A
τ = (s, l,c,e)
[t1, . . . , tn] : c
l[t1, . . . , tn] : τ

(NODE)

n≥ 1
τ ∈ ∆A

τ = (s, l,c,e)
t1 : τ [t2, · · · , tn] : e

[t1, t2, . . . , tn] : s
(LIST)

In a successful derivation, applications of the NODE and the LIST rule are interwoven
and all branches end with an application of the END rule while the root of the derivation
tree is an application of the ROOT rule. A tree without possible derivation is not valid
with respec to the given automaton, multiple derivations may exist.
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Example of a Tree Recognition using a Hypergraph Automaton Given the tree
a[b[],b[a[b[],b[]]]] and the automaton A as presented in the former example (example
??, the following derivation is a possible recognition:

Operational Semantics of The Recognition Rules The rules presented above give
an abstract description of a recognition algorithm. Neither the control flow nor decision
in case of ambiguity are captured by the rules. It is possible, that an automaton can
recognize a data tree using different derivations, a concrete algorithm should be designed
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to either choose one of those derivations, maybe driven by other parameters.
Exemplary, a simple algorithm choosing one rule is sketched now:

Algorithm 2.1: MEMBERSHIPTEST(A = (Q,Σ,∆,S,F),e : a,ρ)

comment: ρ denotes the set of rules

comment: e denotes either a tree or a list of trees

comment: either a ∈ Q or a ∈ ∆

comment: To check a tree t, call MEMBERSHIPTEST(A,t:s,R) with s ∈ S

for

C1
...

Cm
e1 : a1 en : an

eρ :aρ
∈ R

do



if C1∧·· ·∧Cm = true

then


if MEMBERSHIPTEST(A,e1 : a1,ρ) = true
∧·· ·∧
MEMBERSHIPTEST(A,en : an,ρ) = true

then return (true)
return ( f alse)

2.3 Recognition of a Rooted Graph using Hypergraph Automata
The recognition of rooted graphs is defined in analogy to the recognition of trees – a
rooted graph is recognized by an automaton, if it is in the language accepted by this
automaton. There is a certain correlation of the acceptance of a word by an automaton
with the recognition of equality of two words: for each word, it is easy to obtain an
automaton such that exactly this word is accepted. Therefore, this automaton provides a
way to decide about equality of two words. The most precise way to judge about equality
of two graphs is graph isomorphism. The decision procedure for graph isomorphism
has exponential complexity. Assuming, that we base a recognition procedure for graphs
on graph isomorphism – a graph is accepted, if it is isomorph to a graph in the language
accepted by the automaton – then the whle process has to have exponential complexity,
as otherwise the graph isomorphism itself would have sub exponential complexity (eg.
it could be reformulated by means of graph recognition)

A weaker kind of membership relation between graphs will be chosen: the simulation
relation – a graph is accepted by an automaton, if there is an instance in the language
accepted by the automaton that simulates the graph.

A simulation preorder is a relation between [graphs] associating systems
which behave in the same way in the sense that one system simulates the
other. Intuitively, a system simulates another system if it can match all of
its moves .7

7From http://en.wikipedia.org/wiki/Simulation preorder.
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A first advantage of using the simulation preorder as base of the membership test in
the recognition procedure is, that the decision procedure can be achieved in polynomial
time. Second advantage, Xcerpt is based on a non standard unification called simulation
unification, which itself is based on simulation preorder. In [5] the simulation preorder
on so called ground query terms – of which data trees and graphs are a subset – is
presented including also complexity results. Ground Xcerpt query term simulation
has been shown to be a useful relation between trees or graphs. Arguably simulation
preorder reflects well a notion of “expected result” for many applications of querying
Web and Semantic Web data.

(Possibly Infinite) Tree Representations of Graphs As the recognition procedure is
defined for trees so far, it is arguably useful to base the handling of graph shaped data on
tree recognition. Note, that trees are a special kind of graphs, so trivially those graphs
are already handled. For directed, acyclic graphs it is always possible to find a spanning,
finite tree, where nodes accessible from one node chosen as a root using different paths
are duplicated in the tree representation. In general, a graph can be spanned by different
trees, capturing different possible graph traversals. As the root in a rooted graph is
fixed, there is only one possible such spanning tree. Cyclic graphs can conceptually be
represented using infinite trees where infinite always means finite in breadth (a node in
a finite graph can only have finite many successors, so can the corresponding node in
the tree) and branches of infinite depth for cycles.

By applying the tree approach for recognition on acyclic graphs, an algorithm is
achieved that possibly checks the same nodes multiple times, but that always terminates.
It is possible, that the same node is checked multiple times using different or the same
automama transitions. Arguably it is reasonable to remember acceptance results of
nodes with corresponding transitions, as not only the testing of validity of a certain node
in a context can be obmitted, but also the testing of all child nodes can be skipped. The
process of remembering earlier calculations in this state is called memoisation.

By applying the tree approach to cyclic graphs, the recognition process gets stuck
in non termination. However, the explained extension of memoisation guarantees
termination. This is due to the fact, that any data tree node can in worst case only be
tested against finite many transitions of the automaton, as the automata are finite.

An Algorithm for the Recognition of Rooted Graphs The former algorithm for tree
recognition is now extended by memoisation to recognize rooted directed graphs. A
graph is recognized by an automaton A, if it is simulated by a graph in the language
L (A). The set of rules will not be affected by this change, but the algorithm for the
application of the rules on a given data tree. This emphasizes the declarative nature of
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the rules and the fact, that conceptually trees and graphs are handled in a similar way:

Algorithm 2.2: MEMBERSHIPTEST(A = (Q,Σ,∆,S,F),e : a,ρ)

global memo
comment: ρ denotes the set of rules

comment: e denotes either a graph node or an adjecence list of graph nodes

comment: either a ∈ Q or a ∈ ∆

comment: To check a graph t call MEMBERSHIPTEST(A,t:s,R); s ∈ S and memo = {}
if e : a 7→ b ∈ memo

then return (b)

else



memo← memo∪{e : a 7→ true}

for

C1
...

Cm
e1 : a1 en : an

eρ :aρ
∈ ρ(2DO : is− it−ρ−or−R)

do



if C1∧·· ·∧Cm = true

then


if MEMBERSHIPTEST(A,e1 : a1,ρ) = true
∧·· ·∧
MEMBERSHIPTEST(A,en : an,ρ) = true

then return (true)
memo← memo\{e : a 7→ true}
memo← memo∪{e : a 7→ f alse}
return ( f alse)

2.4 Calculus for a Translation of R2G2 Definitions into Automata
Yet the presented automaton model is well suited as execution model for recognition
of trees and graphs on regular rooted graph languages, it is not convenient as language
definition formalism for the end user of applications of such problems – eg. for document
schema authors and programmers. R2G2 arguably is an appropriate formalism for this
task. An algorithm for translation of R2G2 language definitions into hypergraph based
automata is presented now. The techniques used are a combination of two classical
text book approaches: (1) content models – represented as regular expressions – are
translated using the approach presented in [3], Chapter 3 8 for translation of regular
expressions into non-deterministic automata, (2) grammar rules are translated using a
standard technique for the construction of NFA’s as presented in [?], Chapter 1.9

The rules are shaped as follows:

8See the proof of theorem 3.7.
9See the proof of the theorem on page 35.
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C1
...

Cn
A1 | t1 7→ (i1,o1) · · · An | tn 7→ (in,on)

A | t 7→ (i,o)
(EXAMPLERULE)

In addition, a global lookup function, called L, is used to map each type name (as
found in the grammars), to a transition, therefore L⊆ N×T where N is the set of type
names in a R2G2 grammar as defined in ??. The basic expressions related in the rules
are of shape A | t 7→ (i,o). A, Ai denote automata. t, ti denote terms or lists of terms.
Usually the t’s above the line in a calculus rule are decompositions of the t below the
line. (i,o) is a tuple of states, they have to be part of the automaton A in the same context
expression, ie. i and o have to occur in A in the context expression A | t 7→ (i,o) .
Additionally, the rules may contain constraints – denoted Ci in the example rule – over
the components of the expressions encountering in a rule.

L(N j) = (s, l,c,e)
ρ j = element N j → l[· · · ]

A1 | ρ1 7→ (i1,o1) · · · An | ρn 7→ (in,on)
({},{},{(s, l,c,e)},{e},{})∪A1∪·· ·∪An | ρ1, · · · ,ρn,root =N 7→ (i j,o j)

(GRAMMAR)

L(N) = (s, l,sre,e)
A | re 7→ (sre,ere)

A∪ ({s,e},{L(N)},{},{},{l}) | element N→ l[ re ] 7→ (s,e)
(RULE)

A | re 7→ (sre,ere)
A∪ ({s,e},{(s, l,sre,e)},{},{ere},{l}) | l[ re ] 7→ (s,e)

(TYPETERM)

L(N) = (s′ , l,c,e′ )
A∪ ({s,e},{(s, l,c,e)},{},{},{}) | N 7→ (s,e)

(TYPENAME)

A1 | re1 7→ (sre1 ,ere1) A2 | re2 7→ (sre2 ,ere2)
A1∪A2∪ ({},{(ere1 ,sre2)},{},{},{}) | re1,re2 7→ (sre1 ,ere2)

(RESEQ)

A = ({s,e},{(s,sre1),(s,sre2),(ere1 ,e),(ere2 ,e)},{},{},{})
A1 | re1 7→ (sre1 ,ere1) A2 | re2 7→ (sre2 ,ere2)

A1∪A2∪A | re1|re2 7→ (s,e)
(REDISJ)

A | re 7→ (sre,ere)
A∪ ({},{(sre,ere)},{},{},{}) | re? 7→ (sre,ere)

(REOPT)

A | re 7→ (sre,ere)
A∪ ({},{(ere,sre)},{},{},{}) | re+ 7→ (sre,ere)

(REPLUS)

A | re 7→ (sre,ere)
A∪ ({},{(sre,ere),(ere,sre)},{},{},{}) | re∗ 7→ (sre,ere)

(REKLEENE)

TODO:
? possibly the rules need more explanation...
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2.5 The Emptyness Test
The emptyness test finds out, if for an automaton, there may be any data instance
accepted by this automaton, if therefore the language accepted by the automaton is non
empty. For an automaton to accept finite trees, it is obviously neccesary to find paths
along the hyper edges ending in final states. For infinite trees or graphs containing loops,
this property can be relaxed, as such data instances can be accepted by loops without
final state in the automaton. Automata constructed from R2G2 definitions arguably
always accept non empty languages for three reasons: (1) As they have a root transition
by definition (based on the mandatory root declaration). (2) Along the breadth axis of
the automata there is always either an end state at the end of each path or the path is a
loop containing an end state. This is due to the fact, that the last state constructed by
regular expression decomposition is always an end state, or a looping ε-edge is added
to an end state terminated path to express repetition. (3) Along the depth axis there is
either an end state due to empty content, or a transition to a state representing another
grammar rule. This state again is part of a non empty breadth axis and either of a final
state terminated depth axis or of a depth axis recursively fulfilling reason 3. A depth
axis loop without final state can therefore only accept infinite trees or graphs containing
an appropriate loop.

Nevertheless, automata representing only empty languages exist in practise: inter-
section of two automata can lead to an automaton accepting only empty languages,
eg. by construction of an automaton without start transition or by construction of an
automaton with root transitions with all outgoing edges ending only in branches without
loops and final states. Detection of automata representing empty languages is important
for type checking.
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An algorithm for detection of emptyness for a given automaton is sketched now:

Algorithm 2.3: ISEMPTY(A = (Q,Σ,∆,S,F))

memoisation←create a lookup table of truth values with index over Q
comment: memoisation is defined in each call of ISEMPTY().

procedure RECURSIVETRANSITIONTEST(δ = (s, l,c,e))
return (DEPTHTEST(c)∧BREADTHTEST(e))

procedure RECURSIVETRANSITIONTEST(δ = (s,e))
return (BREADTHTEST(e))comment: handling of ε-transitions.

procedure BREADTHTEST(v)
if v ∈ memoisation

then return (memoisation[v])
memoisation[v]← true
for (v, l,c,e) ∈ ∆

do


if RECURSIVETRANSITIONTEST((v, l,c,e)) = f alse

then

memoisation[v]← f alse
return ( f alse)
exit

return (true)

procedure DEPTHTEST(v)
if v ∈ memoisation

then return (memoisation[v])
memoisation[v]← f alse
for (v, l,c,e) ∈ ∆

do


if RECURSIVETRANSITIONTEST((v, l,c,e)) = f alse

then

memoisation[v]← f alse
return ( f alse)
exit

memoisation[v]← true
return (true)

main
for δ ∈ S

do

if RECURSIVETRANSITIONTEST(δ ) = f alse

then
{

return ( f alse)
exit

return (true)

2.6 Intersection of Regular Rooted Graph Automata
Calculating the intersection of two regular languages is a common exercise in text
books about theoretical computer science and automata theory and it is also of high
practical use. Given eg. two language definitions for two versions of a data format, the
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intersection reflects a kind of conservative transitional data format providing guaranteed
backward and forward compatibility. In type checking of the Xcerpt query language,
non empty intersection can play an important role for checking selection constructs:
given a query with multiple occurences of the same variable, the occurences may have
different types. If the types have empty intersection, no data exists conforming the
type constraint of the variables, therefore the selection may never select any valid data
with respect to the types and is therefore arguably useless. Note, that different type
annotations may either occur due to a query programmers annotation or due to type
inference. Checking consistency of such concurrent type annotations in Xcerpt query
terms can also be handled using an emptyness test for the type intersection.

Intersection of Regular (String) Languages Using DFAs The presented approach
is a classical text book approach as found in [3]. It serves as introduction to a technique
of calculating intersection and will be modified to non-deterministic and then to regular
graph automata.

It is easily possible to construct the intersection of L1 and L2, if union and com-
plement are defined, as generally L1 ∩ L2 = L1∪L2 holds. A direct construction is
presented, as neither union, nor complement is presented by now, and is not strictly
necessary for type checking of Xcerpt later on. A direct construction is achieved by
simulating parallel execution of the two deterministic finite automata representing L1
and L2. This corresponds to the construction of the product automaton:

Let deterministic automata be defined as 5-tuples (Q,Σ,∆,s,F) with Q as the states
of the automaton, Σ as the alphabet of the corresponding language, s the start state
and F ⊆ Q as the final states. The transitions ∆⊂ Q×Σ×Q are defined such that for
every v ∈ Q and for every l ∈ Σ there is a transition (v, l,v′) ∈ ∆ and no other transition
(v, l,v′′) ∈ ∆ with v′,v′′ ∈ Q and v′ 6= v′′.

For L1 accepted by A1 =(Q1,Σ1,∆1,s1,F1) and L2 accepted by A2 =(Q2,Σ2,∆2,s2,F2),
the intersection L1∩L2 is accepted by A∩ = (Q1×Q2 , Σ1∩Σ2 , ∆∩ , (s1,s2) , F1×F2)
where ∆∩((p, p′),a,(q,q′)) = (∆1(p,a,q),∆2(p′,a,q′)).

See Figure 1 for an example on how to get a product of two automata.
An algorithm for the construction of an automaton A∩ = (Q∩,Σ∩,∆∩,s∩,F∩) from

two automata A1 = (Q1,Σ1,∆1,s1,F1) and A2 = (Q2,Σ2,∆2,s2,F2) is presented now:

Algorithm 2.4: INTERSECTIONDFA(A1,A2)

Σ∩← Σ1∩Σ2
s∩← (s1,s2)
Q∩← Q1×Q2
F∩←{(v1,v2) ∈ Q∩ | v1 ∈ F1∧ v2 ∈ F2}
for (v1, l,v′1) ∈ ∆1

do
{

for (v2, l,v′2) ∈ ∆2
do

{
∆∩← ((v1,v2), l,(v′1,v

′
2))

Extending the Approach to Non-Deterministic Finite Automata The presented
approach has the drawback to require deterministic automata, that may have exponential
size of a corresponding non-deterministic automaton. The automaton model focused
on in this thesis are usually non-deterministic ones. Fortunately, the approach can be
extended to non-deterministic automata without exponential blowup in time or space.
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Figure 1: The product automaton on the right accepts the intersection of the language of
the two automata on the left.

The difference between deterministic and non-deterministic automata in a nutshell
is (1) non-deterministic automata may have spontaneous state transitions along so called
ε-edges without consumption of an input symbol, and (2) while each symbol in Σ has
exactly one outgoing transition from each state in deterministic automata, any number
of such edges may occur in the non-deterministic case.

Let non-deterministic automata be defined as 5-tuples (Q,Σ,∆,s,F) with Q as the
states of the automaton, Σ as the alphabet of the corresponding language, s the start state
and F ⊆ Q as the final states. The transitions are defined as ∆ ⊆ ((Q×Σ×Q)∪∆ε)
with ∆ε ⊆ (Q×Q).

To simulate the parallel execution of two automata in a product automaton with an
epsilon transition (a,e) in one automaton, it is necessary to provide an epsilon edge for
any product state (a,v) to the corresponding state (e,v). This reflects the possibility of a
spontaneous transition every time the automaton with a ∈ Q is in state a, independent
of the state of the other automaton.

To handle the arbitrary amount of edges with one label from a state, no further
change is necessary, as the deterministic algorithm already relates all edges of one
automaton with all edges of the other one, as long as the transition labels match. In the
deterministic case, by definition only one edge per state and label exists, therefore the
same algorithm behaves as defined for the deterministic case.

An algorithm for the construction of an automaton A∩ = (Q∩,Σ∩,∆∩,s∩,F∩) from
two non-deterministic automata A1 = (Q1,Σ1,∆1,s1,F1) and A2 = (Q2,Σ2,∆2,s2,F2) is
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presented now:

Algorithm 2.5: INTERSECTIONNFA(A1,A2)

Σ∩← Σ1∩Σ2
s∩← (s1,s2)
Q∩← Q1×Q2
F∩←{(v1,v2) ∈ Q∩ | v1 ∈ F1∧ v2 ∈ F2}
for (v1, l,v′1) ∈ ∆1

do
{

for (v2, l,v′2) ∈ ∆2
do ∆∩← ∆∩{((v1,v2), l,(v′1,v

′
2))}

for (v1,v′1) ∈ ∆1

do
{

for v2 ∈ Q2
do ∆∩← ∆∩∪{((v1,v2),(v′1,v2))}

for (v2,v′2) ∈ ∆1

do
{

for v1 ∈ Q1
do ∆∩← ∆∩∪{((v1,v2),(v1,v2))}

Extending the Approach to Graph Automata The main difference of string- and
graph automata is the shape of the transitions – triples for string automata and quatru-
ples for graph automata. Fortunately, the calculation of an automaton accepting the
language intersection of two automata, is easily derivable from the string automaton
case. Informally, the only difference is the handling of the third state.

Algorithm 2.6: INTERSECTIONNDFTA(A1,A2)

Σ∩← Σ1∩Σ2
let (a1, l1,c1,e1) = s1
let (a2, l2,c2,e2) = s2
s∩← ((a1,a2), l,(c1,c2),(e1,e2))
Q∩← Q1×Q2
F∩←{(v1,v2) ∈ Q∩ | v1 ∈ F1∧ v2 ∈ F2}
for (va1 , l,vc1 ,ve1) ∈ ∆1

do
{

for (va2 , l,vc2 ,ve2) ∈ ∆2
do ∆∩← ∆∩{((va1 ,va2), l,(vc1 ,vc2),(ve1 ,ve2))}

for (v1,v′1) ∈ ∆1

do
{

for v2 ∈ Q2
do ∆∩← ∆∩∪{((v1,v2),(v′1,v2))}

for (v2,v′2) ∈ ∆1

do
{

for v1 ∈ Q1
do ∆∩← ∆∩∪{((v1,v2),(v1,v2))}

Figure 2 illustrates the cross product of two automata. The automata accept the
languages defined by the grammar (for the upper left automaton)
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Figure 2: The product automaton on the right accepts the intersection of the graph
language of the two automata on the left.

root A;
element A = a[ A* ];

and the grammar (for the lower left automaton)

root A;
element A = a[ A|B ];
element B = b[ ];

The resulting automaton accepts the language represented for example by the gram-
mar

root A;
element A = a[ A ];

The resulting intersection automaton contains some unreachable states and transi-
tions, that could easily be removed using some minimization algorithm or simply by
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applying a reachability algorithm. As this is not essential to the tractability of type
checking later on, automata minimization will not be considered.

2.7 Automata Based Subset Test for two Regular Rooted Graph
Languages

Given a regular language, testing if it is a subset of another regular language, is an
important task e.g. in type checking. If eg. it is possible to infer the type of a variable
used in the output or construction part of a query (maybe the type is implied by a
selection), this variable is well typed with respect to a given type, if the inferred type is
a subtype of the type given by the programmer.

Another very practical use case is schema checking for special document schemata:
if one wants to make a schema for HTML documents of a certain shape, e.g. a webpage
supporting the corporates look and feel by using certain navigation elements, testing
that this schema represents a subset of HTML is desirable.

The approach for subset testing presented here is based on simulation preorder
as defined in [5]. A simulation preorder is a relation between state transition systems
associating systems which behave in the same way in the sense that one system simulates
the other. Formally, given a state transition system with states S, a simulation preorder
is a binary relation R ⊆ S× S such that if (p,q) ∈ R, then for each transition p a→ p′

there is a transition q a→ q′ such that (p′,q′) ∈ R.
For string language automata (DFA’s or NFA’s) A1 and A2, simulation preorder is

specialised in such a way, that A1 and A2 are in simulation preorder – written A1 � A2
later on – if each initial state of A1 simulates in an initial state of A2 and for each final
state of A1 there is a final state in A2 in which it simulates. For automata defined as
A = (S,T,F,s0,Σ) where S is the set of states, T ⊆ S×Σ× S is the set of transitions,
s0 ∈ S is the start state and F ⊆ S is the set of final states, the definition of the simulation
preorder over label equality can be written as:

A1 � A2 ⇒ ∀(s, l,e) ∈ TA1∃(s′, l′,e′) ∈ TA2 .(s, l,e)� (s′, l′,e′)
(s, l,e)� (s′, l′,e′) ⇒ l = l′ ∧

∀(e, l,e) ∈ TA1∃(e′, l
′
,e′) ∈ TA2 .(e, l,e)� (e′, l′,e′)

Extending the definition of automata simulation to graph automata simulation is
strait forward: the recursive � condition is tested along both dimensions of the hyper
edges as used in the tree automata:

A1 � A2 ⇒ ∀(s, l,c,e) ∈ TA1∃(s′, l′,c′,e′) ∈ TA2 .(s, l,c,e)� (s′, l′,c′,e′)
(s, l,c,e)� (s′, l′,c′,e′) ⇒ l = l′ ∧

∀(e, l,c,e) ∈ TA1∃(e′, l
′
,c′,e′) ∈ TA2 .(c, l,c,e)� (c′, l′,c′,e′) ∧

∀(e,
→
l ,
→
c ,
→
e ) ∈ TA1∃(e′,

→
l
′
,
→
c
′
,
→
e
′
) ∈ TA2 .(e,

→
l ,
→
c ,
→
e )� (e′,

→
l
′
,
→
c
′
,
→
e
′
)

2.7.1 An Algorithm for Subset Graph on Tree Automata

As a sketch for implementation and for complexity analysis of the presented simulation
relation on tree automata, the following algorithm is proposed. The algorithm is applied
to two automata A1 and A2:

• a two dimensional matrix of truth values of size |TA1 |× |TA1 | is initialized in such
a way, that for each transition pair (τ1,τ2) ∈ TA1 ×TA1 the corresponding field in
the matrix is true, if the labels of τ1 and τ2 are identical and f alse otherwise.

20



• set each matrix field with value true to f alse, if ((s1, l,c1,e1),(s2, l,c2,e2)) is the
corresponding transition pair and either s1, c1 or e1 is a final state but not the
corresponding s2, c2 or e2.

• modify the matrix until a fixpoint is reached by

– set each matrix field with value true in the matrix with corresponding
transition pair ((s1, l,c1,e1),(s2, l,c2,e2)) to f alse, if for any transition τ1 =

(e1,
→
l ,
→
c1,
→
e1) in A1 there is no corresponding transition τ2 = (e2,

→
l ,
→
c2,
→
e2)

in A2 such that the field (τ1,τ2) in the matrix is true.

– set each true field in the matrix with corresponding transition pair ((s1, l,c1,e1),(s2, l,c2,e2))
to f alse, if for any transition τ1 = (c1, l,c1,e1) in A1 there is no correspond-
ing transition τ2 = (c2, l,c2,e2) in A2 such that the field (τ1,τ2) in the matrix
is true.

• If for any transition τ1 ∈ A1 there is no correspondig transition τ2 ∈ A2 such that
(τ1,τ2) in the matrix is true, then the language accepted by A1 is not a subset of
the language accepted by A2.

Example 5 The condition A1 ⊆ A2 is to be tested using the presented algorithm.

A2 = ( { 1,2,3,4,5,6,7,8,9},
{ (1,a,3,2),

(3,a,3,4),
(4,a,3,6),
(6,b,6,7),
(7,c,8,9),
(6,b,5,6),
(5,a,3,6),
(3,a,3,6)},

{ 2,6,8,9},
(1,a,3,2),

{ a,b,c})

A1 = ( { 10,11,12,13,14,15},
{ (10,a,12,11),

(12,a,12,14),
(14,b,15,14),
(13,a,12,15)},

{ 11,13,14},
(10,a,12,11),

{ a,b})

A run of the algorithm is visualized with a table representing the matrix. The
edges of A1 are used as column labels and the edges of A2 as row labels. Final states
are emphasized using a bold font. The cells contain a series of ones (1) and zeros
(0) representing the truth values true and f alse a field has in various stages of the
computation. Note, that if a 0 occurs in the cell, the 0 is the ultimate value of this cell,
as the algorithm only changes true values, in case of conflicts, to f alse values. 4 states
of computations are represented, so either a cell contains 1,1,1,1 and is thereby true,
or it contains less enties where the last state is 0, eg. 1,1,0. The stages represented are:

1. after performing the label check,

2. after checking, that final states in transitions of A1 fall on final states of corre-
sponding transitions of A2

3. first iteration of checking following transitions in both dimensions (two cells
changed truth value)

4. second (and last) iteration of checking following transitions in both dimensions
(no cells changed truth value)
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↓ A2 A1→ (10,a,12,11) (12,a,12,14) (14,b,15,14) (15,a,12,13)
(1,a,3,2) 1,1,1,1 1,1,0 0 1,1,1,1
(3,a,3,4) 1,0 1,0 0 1,0
(4,a,3,6) 1,1,1,1 1,1,1,1 0 1,1,1,1
(6,b,7,6) 0 0 1,1,0 0
(7,c,8,9) 0 0 0 0
(6,b,5,6) 0 0 1,1,1,1 0
(5,a,3,6) 1,1,1,1 1,1,1,1 0 1,1,1,1
(3,a,3,6) 1,1,1,1 1,1,1,1 0 1,1,1,1

After the last iteration, the columns are checked for consistency, ie. each column
should contain at least one true cell, so a table cell with 1,1,1,1. As this is the case, A1
is an automaton accepting a sublanguage of the language represented by A2.

An Upper Bound Complexity for Subset Test The presented algorithm shows, that
the subset test has an upper bound of polynomial time and space complexity. The
space complexity is determined by the matrix that is of the size of the product of the
number of transitions of both automata, ie. O(|∆1|× |∆2|). The time complexity is the
sum of initializing the matrix (including label test and final state condition) and the
iterative refinement of the matrix. The refinement process must terminate, as either
no change is made to the matrix and then the refinement is over, or at least one cell
changes truth value from true to f alse. Truth values are never altered from f alse to true
again. Assuming the worst case, that on each iteration process just one cell is altered,
we need |∆1|× |∆2| iterations, each iteration has a complexity of O(|∆1|× |∆2|). The
final step is the consistency check of the columns, which also takes O(|∆1|× |∆2|) time.
The total costs therefore are O( (k +(|∆1|× |∆2|))× (|∆1|× |∆2|) ) with k as factor for
initialisation cost and consistency check of one cell.

3 Current Work
Currently the complexity of the various algorithms presented here is being analysed.
Further, research on how to represent unordered content models and on how to reason
on them is going on. Constraint solving techniques on diophantic solutions of linear
equation systems will be used for this purpose.

Some hypothesis about the complexity of some of the forlerly presented algorithms
is presented below.

3.1 An Upper Bound Complexity for Membership Test of Tree Shaped
Data

Let N be the number of nodes in the tree and M the number of types. Each node may
have at most 1 type, as the algorithm stops on success. On each node we may have to
check-and-fail M types, and on each subnode as well. If subnode membership failed,
maybe we have to check with other types again, possibly rechecking the subnodes.
Maybe this gives exponential complexity. Note, that according to [2] there are better
ways (with polynomial complexity).
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3.2 An Upper Bound Complexity for Membership Test of Graph
Shaped Data

The complexity is the same as in the tree case, modulo complexity for memoization.

3.3 An Upper Bound Complexity for Intersection of two NDFTA
Polynomial complexity, as we just have to build the cross product of both automata.

3.4 An Upper Bound Complexity for the Emptyness Test

* taversal of the graph ands seeking for an end-state-closed path
=> size of automaton

3.5 An Upper Bound Complexity for The Non-Deterministic Au-
tomaton Generated out of an R2G2 Instance

Cost of the single Rules:

* grammar : const. + rules

* rule : const. + re

* re : decompose

* seq(r1,r2) : r1+r2+(1*epsilon)

* disj(r1,r2) : r1+r2+(4*epsilon)

* opt(r) : r+1*epsilon

* plus(r) : r+1*epsilon

* kleene(r) : r+1*epsilon
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