
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

An Approach to Complex
Event Detection in the Web

Gastón E. Tagni

Computational Logic Masters Thesis

Dissertação apresentada na Faculdade de
Ciencias e Tecnologia da Universidade
Nova de Lisboa para obtenção do grau de
Mestre em Lógica Computacional.

Orientador: Prof. José Júlio Alferes

Lisboa
(2007)

ii

Acknowledgements

First of all, I would like to express my gratitude to my thesis supervisor Prof. José
Júlio Alferes, of the New University of Lisbon, for guiding me through the entire research
process.

I would also like to thank to the professors of CENTRIA for the assistance they
provided me during my year at UNL, specially to Prof. Luís Moniz Pereira, Prof. Carlos
Damásio, Prof. João A. Leite and Prof. João Moura Pires for everything they taught me. I
am also thankful for the support provided by Prof. Enrico Franconi of the Free University
of Bozen-Bolzano during the first year of the masters.

I gratefully acknowledge the financial support given by the European Commission
through the Erasmus Mundus Program, which made possible the completion of my stu-
dies at the Free University of Bolzano and the New University of Lisbon.

I would like to say thanks to my friends at UNIBZ, especially to Luciana, Magdalena
and Juan for their support and those wonderful moments we spent together. I also
thank my friends and colleagues at UNL, in particular Dejan, Jignesh, Freddy and Vivek
for their unconditional and valuable help and for sharing with me great moments.

I am especially grateful to my parents and brother for their constant support and
for being with me all the time, even at the distance.

I also thank Prof. Laura Cecchi and Prof. Pablo Filottrani from Argentina, for every-
thing they taught me and for giving me the opportunity to pursue my academic goals.

I would also like to say thanks to Ricardo Amador of CENTRIA, whose help and
suggestions during the implementation phase of the system were very important.

Last but not least, I thank Andrea. This thesis could not have been written in En-
glish without her help.

iii

iv

Summary

Reactivity, the ability to detect events and react to them accordingly by executing appropriate
actions, has long been studied in the field of Active Databases and more recently, in the
context of the World Wide Web.

A common approach for implementing reactive behaviour and evolution in the
Web is the use of reactive languages. Such languages use reactive rules for describ-
ing the reactive behaviour of a system and in particular, Event-Condition-Action (ECA)
rules. The declarative semantics of such rules specifies that upon event detection, if the
system’s state satisfies the stated conditions then a group of actions are executed.

One of the key aspects in the implementation of reactivity is thus the development
of event detectors. These systems are responsible for registering event expressions, de-
tecting the events specified by registered expressions and then notifying the interested
systems about the occurrence of events. Events can be broadly classified into atomic
and composite events. An atomic event is something that happens atomically (it occurs
completely or not at all) at a given point in time. On the other hand, composite events
are combinations of other events (atomic or composite). They represent situations that
occur when their constituent events occur and they are expressed by expressions of an
event algebra.

In this work, we present the implementation of a complex event detector for the
Web. It detects composite events specified by expressions of an illustrative sublan-
guage of the event algebra SNOOP. This notification system was implemented as a
component of the General Framework for Reactivity and Evolution in the Web [7], proposed
by the Evolution and Reactivity Working Group of the REWERSE 1 project. In addition,
we present a comparative analysis of some active languages and more specifically, of
the event detectors used by them. The aim of this analysis was to compare different
approaches for implementing such systems.

1http://rewerse.net

v

vi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions of this Work . 4
1.3 Outline of the Thesis . 5

2 Reactivity and Evolution in the Web 7
2.1 Introduction . 8

2.1.1 Specifying Reactive Behaviour: ECA Paradigm 8
2.1.2 Reactivity in the (Semantic) Web 9

2.2 General Aspects of Active Rules . 11
2.3 Related Work . 13

2.3.1 Research on Active Rules . 13
2.3.2 Update and Query Languages . 14

3 Event Detection: General Aspects and Techniques 15
3.1 Event Model . 16
3.2 General Aspects of Event Detection . 18
3.3 Techniques for Event Detection . 21

3.3.1 Detection of Primitive Events . 21
3.3.2 Detection of Primitive Events in XML 22
3.3.3 Techniques for Composite Event Detection 25
3.3.4 Composite Event Detection in XML 29

3.4 Related Works . 31
3.4.1 Event Detection in Active Databases 31
3.4.2 Research on Event Languages . 31
3.4.3 Event Detection in XML and RDF 32
3.4.4 Event Notification Systems . 32

4 Active Languages for the (Semantic) Web 33
4.1 RDFTL: A Trigger Language for RDF . 34

4.1.1 Definition of the Language . 34
4.2 Active XQuery Language . 36

4.2.1 Syntax of the language . 37

vii

CONTENTS

4.2.2 Underlying Update Model and Language 39

4.3 XChange Active Language . 40

4.3.1 Event Model and Event Messages 41

4.3.2 Event Queries . 42

4.4 A General Language for Reactivity in the Semantic Web 47

4.4.1 ECA Rules . 48

4.4.2 Rule Components and Languages 48

4.4.3 Interaction among Rule Components. Logical Variables 50

5 Comparative Framework 53
5.1 Definition of the Comparative Framework 54

5.2 RDFTL: RDF Triggering Language . 55

5.2.1 Supporting RDFTL ECA Rules in Distributed Environments . . . 56

5.2.2 Supporting RDFTL ECA Rules in Centralized Environments . . . 59

5.3 Active XQuery . 60

5.3.1 Semantics and Execution Model 60

5.4 XChange Active Language . 64

5.4.1 System Architecture . 64

5.4.2 Event Detection in XChange . 66

5.4.3 Working with Logical Variables . 68

5.5 Evaluation Results . 69

5.5.1 RDFTL . 69

5.5.2 Active XQuery . 72

5.5.3 XChange . 75

6 Implementation of a Complex Event Detector 79
6.1 Introduction . 80

6.2 Architecture for Implementing the ECA Framework 80

6.3 Implementation Aspects . 82

6.3.1 Architecture of the Event Detector 82

6.3.2 Event Model and Event Expressions 84

6.3.3 Markup Language for ECA Rules 85

6.3.4 Representing Event Expressions: Event Trees and Event Graph . 86

6.3.5 Registration of Event Expressions 87

6.3.6 Composite Event Detection . 88

6.3.7 Deletion of Registered Event Expressions 92

6.4 Evaluation of the Implemented System 93

7 Conclusion 99
7.1 Design and Implementation of Event Detectors for the Web 100

7.1.1 Event Languages . 100

viii

CONTENTS

7.1.2 Event Detection Semantics . 101
7.1.3 Techniques for Detecting Events 101
7.1.4 Representation of Events . 103
7.1.5 Extracting Information from Events 104
7.1.6 Communication of Events . 105

7.2 Future Work . 105

A Class Diagram 115

ix

CONTENTS

x

List of Figures

3.1 Ontology of atomic and composite events. 17

3.2 A possible classification of atomic events. 17

3.3 Two versions of an XML document. The older version is on the left-hand
side . 24

3.4 Combination of two event trees. 27

3.5 Combination of two Petri nets . 28

4.1 Path expressions grammar . 34

4.2 Triggers’ syntax in Active XQuery . 38

4.3 Definition of an Active XQuery trigger . 39

4.4 Definition of an Active XQuery trigger . 40

4.5 Event message containing information about the availability of a new
book. 42

4.6 Atomic event query to detect the event message defined in the previous
example. 43

4.7 Using Event Queries and Event Messages in event detection. 44

4.8 Rules an rule components. 49

4.9 Example of an ECA rule defined in the language. 51

5.1 System Architecture for Distributed Environments 56

5.2 System Architecture for Centralized Environments 59

5.3 XML tree showing the result of executing a "bulk" insert 62

5.4 Architecture of a Active XQuery Rule System 64

5.5 Architecture of a prototype Rule Engine for XChange active rules 65

5.6 A composite event query defined using the conjunctive operator. 67

5.7 Event query represented using an event tree 68

5.8 A composite event query defined using the conjunctive operator. 69

6.1 An architecture supporting the proposed ECA Framework 81

6.2 The architecture of the event detector . 84

6.3 A composite event expression. 86

6.4 An Event Graph sharing two Event Trees 87

6.5 Event graph before and after deleting expression B 93

xi

LIST OF FIGURES

A.1 Class Diagram . 116

xii

Chapter 1

Introduction

The actual World Wide Web can be seen as a large collection of information distributed
across different data sources. These data sources store the information using text for-
mats such as XML and HTML, and provide the users with mechanisms to retrieve and
access the data. In this sense, the Web is nowadays mostly a passive data repository,
providing no or very limited mechanisms for reactivity and automatic evolution of
information.

The development of advanced distributed web-based applications such as e-
commerce and business-to-business applications has suggested the need for tech-
niques that support reactive behaviour. That is, the ability to react to events occurring
throughout the web and act automatically by executing appropriate actions. Currently,
the majority of web-based applications supporting reactivity implement a limited form
of reactive behaviour. These systems are able to detect changes that occur locally at
the nodes where the data is stored, for example by using triggers in local databases.
Although this does provide a simple level of reactivity, a more global mechanism is
needed in order to give applications the ability to react to non-local events, that is,
events that occur at some other points in the web.

One of the key aspects for supporting reactivity and evolution in the Web is the
design and use of reactive languages [7,10,58,63]. Based on the Event-Condition-Action
(ECA) paradigm, these languages use active rules to implement reactive behaviour.
ECA rules are a simple but powerful mechanism to define reactivity in a declarative
manner. An ECA rule specifies that after the occurrence of an event, a set of actions
must be executed; provided that stated conditions hold. This execution model suggests
the need for the implementation of event detection engines, capable of detecting events
not only locally but also globally in the Web.

1

1. INTRODUCTION 1.1. Motivation

1.1 Motivation

The General Framework for Reactivity and Evolution in the Web [7], proposed by the Evo-
lution and Reactivity Working Group of the REWERSE 1 project, is an ontology-based
approach for describing (reactive) behaviour and evolution in the Web that follows
the ECA paradigm. As usual, ECA rules are defined by specifying their event, con-
dition and action components. However, and in contrast with other approaches to
reactivity, the framework allows for the composition of different (sub)languages for
the specification of each of these components; thus, the framework is able to deal with
the heterogeneity of languages and concepts found in the Semantic Web. For example,
two ECA rules stored in an ECA rule base might be defined by using different event
languages in order to specify their event components. In other words, the framework
does not fix the (sub)languages used for specifying the components of ECA rules.

The ECA framework is being implemented using a service-based, distributed archi-
tecture [7, 54] which associates every language with a Web Service that implements its
semantics. For example, a Web Service could implement the semantics of an event al-
gebra and hence provide composite event detection capabilities to other systems. The
architecture consists of a set of modules, each of them implementing a particular ser-
vice such as event detection, query evaluation and action execution, among others. Not
all the services belong to the ECA framework, in the sense that other modules might
exist that implement a particular service. From the architecture’s point of view, these
existing services that are integrated into the framework are called opaque services. This
heterogeneity of services is handled by the framework by making no assumptions on
the type of services that can be integrated with the architecture. However, in order for
the services to be able to interact and cooperate they must implement the communica-
tion by means of variables bindings. In other words, services communicates with each
other by means of variable bindings; i.e. by interchanging variable-value pairs that act as
input and output variables to the services. The implementation of this type of commu-
nication may require the use of appropriate framework-aware wrappers to help bridge the
gap between the functionality of the framework’s services and that of opaque services.

The prototype is being implemented incrementally. Consequently, in early stages of
the implementation some of the components may need to be simulated by “dummy"
modules. At the moment of writing this thesis, the architecture consists of the follow-
ing services or modules:

• ECA Rule Engine. This represents the most important component of the architec-
ture as it is in charge of handling ECA rules. The module’s functionality com-
prises registration of ECA rules, identification of the rule’s components, regis-
tration of the event part using appropriate event detectors, processing of vari-
able bindings (answers from other services and input data for invoking other

1http://rewerse.net

2

1. INTRODUCTION 1.1. Motivation

services), evaluation of query and condition parts and execution of actions by
invoking the appropriate action processors.

An ECA engine processes incoming rule registration requests and evaluates the
event part by invoking the appropriate event detector (based on the event lan-
guage used for specifying the event). After an event is detected, the ECA engine
processes the answer returned by the event detector (an event instance) and pro-
ceeds with the evaluation of the condition part, which may include the evaluation
of a query and the test of a boolean condition. After the condition part is success-
fully evaluated, the ECA engine invoke a service to execute the actions in the
action part of a rule. A first version of a prototype is presented in [65].

• Event Detector. Two types of event detectors are required for implementing an
ECA framework for the Web. First, atomic event detectors are used for detect-
ing atomic events. This type of events occurs at the database level. Second,
composite event detectors implementing an event algebra are used for detecting
composite or complex events in the Web. In order to detect composite events,
a composite event detector must be able to receive and process atomic events.
The communication between atomic and composite event engines can be im-
plemented using different approaches: straightforward, application-centered and
language-centered [54].

• Query Engines. In general lines, a Query Processor is responsible for the evaluation
of queries specified in the condition part of ECA rules. Here, existing query ser-
vices can be integrated into the architecture as opaque services. For example, an
XML query engine could be used for evaluating queries against XML reposito-
ries. A query engine evaluates query expressions, which can be specified using
one of different query languages (such as XQuery [20] or Xcerpt [66] or, alterna-
tively, they can be specified using the query language of the node the query refers
to).

• Action Engines. This component is responsible for executing actions specified in
the action part of ECA rules. An action engine implements an action language
(e.g., we can use Prova [50] as an action language); which is used for specifying
actions. As in the case of events, actions can be classified into atomic actions,
generic actions and composite actions. Atomic actions occur at the database level
and correspond to update operations expressed using an update language. Once
again, existing engines implementing update languages can be reused. Generic
actions are for example actions that send messages to other modules. Finally,
composite actions are a combination of the previous ones. This classification calls
for the implementation of different action engines.

• Event Brokers. Event brokers are responsible for detecting atomic events of a par-

3

1. INTRODUCTION 1.2. Contributions of this Work

ticular domain. For example, a composite event detector may need to be notified
about atomic events occurring at an online marketplace, e.g. insertion of new
products in the database. In this case, an event detector that is able to detect up-
date operations at the database level would provide the required atomic events.
In general, event brokers will be reused as opaque services as they will be devel-
oped for particular domains.

The main motivation for our work is the lack of an event detector that can be used
in the context of the ECA framework described before. At the moment of writing this
thesis, the framework simulates the event detection service using a “dummy" module.
Although this is enough for testing and implementing the basic operations of the ECA
engine, a more powerful event engine is desired. With this in mind, we proposed
ourselves to developed a complex event detector for the Web that could be, at the
same time, integrated into this framework.

1.2 Contributions of this Work

When implementing an event detector for the Web several issues must be considered.
First, the type of events that we want to detect is important as this determines the
strategy to be used for detecting them. In addition, the type of events (the ontology of
events) plays an important role in the selection of the event algebra to be used in order
to specify composite events. Second, different strategies for detecting a particular type
of event might exist and thus, an analysis considering the advantages and disadvan-
tages of each of them should be made. Third, several methods for computing event
data (data communicated by events) may exist. Another issues are the communica-
tion of atomic events between different systems, the notification of composite events
to interested systems and the registration of event expressions among others.

This in turn, prompted us to investigate different existing approaches to event de-
tection in the context of the Web. More specifically, we decided to study a number of
active languages by analyzing the techniques they use for implementing reactive func-
tionality. In particular, we were interested in the implementation aspects of the event
detectors used by these languages. The languages considered in this thesis and the
reasons for selecting them are outlined below.

• RDF Triggering Language The language proposed in [58] is specially interesting
because it allows the implementation of reactive behaviour on RDF repositories.
As such, it is focused on detecting events that reflect changes in the nodes of an
RDF graph.

• Active XQuery This language [10] provides the means for implementing reactive
functionality on XML repositories. Due to the fact XML has become a key tech-
nology for representing and exchanging information among systems in the Web,

4

1. INTRODUCTION 1.3. Outline of the Thesis

we decided to analyze the implementation of reactive functionality in this con-
text. As in the case of RDF, events in XML reflect changes in the content of XML
documents.

• XChange Active Language Compared with the previous two languages, XChange
[63] is a generic, declarative reactive language for detecting events that occur in
the Web.

In summary, the contributions of this thesis are the following:

• Comparative analysis The comparative analysis of different active languages con-
stitutes the starting point of the design and implementation of our event detector.
This analysis helped us to identify the key problems that arise when implement-
ing event detectors as well as the alternatives for solving them. Moreover, the
results of the comparison can be used as guidelines for the development of such
notification systems.

• Implementation of a Complex Event Detector The main contribution of our work is
the implementation of a complex event detector for the Web. Such notification
system was designed to work as part of the ECA framework mentioned before.
However, it can be easily integrated into existing systems as long as the com-
munication mechanism is implemented by means of logical variables (variable
bindings). This event detector detects composite events specified by expressions
of an illustrative sublanguage of the event algebra SNOOP.

1.3 Outline of the Thesis

The thesis is organized as follows. Chapter 1 (this chapter) introduces the topic of
the thesis, presents the motivations for this work and the goals that we try to achieve.
Then, in Chapter 2 we introduce the reader to the concepts of Reactivity and Evolution,
specially in the context of the (Semantic) Web. We describe general aspects of Reactiv-
ity and present the related works. Chapter 3 reports on the general aspects of event
detection. We explore several approaches to event detection in different scenarios and
present the related works. After this, in Chapter 4 we proceed to the presentation of
the Reactive Languages analyzed in this work. Then, Chapter 5 we evaluate the Active
Languages by focusing our attention on the event detection capabilities provided by
the languages processors. Chapter 6 presents the implementation of a complex event
engine that detects events in the context of the General Language for Reactivity and Evo-
lution in the Web [7]. Finally, Chapter 7 presents the conclusions and discusses future
works.

5

1. INTRODUCTION 1.3. Outline of the Thesis

6

Chapter 2

Reactivity and Evolution in the Web

Contents
2.1 Introduction . 8

2.2 General Aspects of Active Rules . 11

2.3 Related Work . 13

In this chapter we discuss the concepts of Reactivity and Evolution in the context of
the (Semantic) Web and introduce the ECA paradigm, which has been used for imple-
menting reactive behaviour in several domains. Then, we mention general aspects of
reactive rules and finally, we describe some related works.

7

2. REACTIVITY AND EVOLUTION IN THE WEB 2.1. Introduction

2.1 Introduction

Reactivity, the ability to react to events that occur at a certain point in time and place and,
act accordingly to them by executing actions, has long been considered in the field of
Active database systems [61, 72]. Traditional databases are "passive" data repositories
that do not provide means for reacting to changes in the state of the database. As a
consequence of this, external applications are responsible for detecting changes in the
database and reacting accordingly to them by executing appropriate actions. In other
words, reactive behaviour must be implemented outside the DBMS. For example, con-
sider a book store catalog implemented using a database that stores information about
books and authors. In this scenario, whenever a book is deleted from the book table,
the author’s information should also be deleted from the corresponding author table.
In traditional databases this behaviour is implemented in the application programs ac-
cessing the database. Moreover, if users want to be notified about the insertion of a
new book, every application program using the database must include code so as to
detect such situation and notify the users.

In Active database systems, reactive behaviour is implemented inside the DBMS.
As pointed out in [62], an Active DBMS extends a "passive" DBMS with both a knowl-
edge and execution model so as to support reactive behaviour. The knowledge model
enables the description or specification of relevant situations to which the DBMS
should react and the actions to be executed in response to those situations. Addition-
ally, the knowledge model may allow the specification of conditions that must hold
when certain situations occur. The execution model instead defines how reactive be-
haviour is actually implemented in the Active DBMS. In the previous example, an
active database would implement the reactive behaviour inside the DBMS and thus,
application programs do not need to implement it. Furthermore, any application pro-
gram accessing the database would benefit from it. Active Databases demonstrated to
be very useful for a wide range of applications. They have been used for implementing
active views (maintenance of derived data), for enforcing integrity constraints and for
the implementation of alerters.

2.1.1 Specifying Reactive Behaviour: ECA Paradigm

A common approach for implementing reactive behaviour is the use of ECA rules 1.
Event-Condition-Action rules (ECA rules) are a simple but powerful paradigm for spec-
ifying reactive behaviour in a declarative manner. An ECA rule has the general form
on event if condition do actions and its declarative semantics specify that an action (or
set of actions) must be executed provided an event occurs and a set of conditions hold.
For example, using ECA rules we could specify that after a book has been inserted in
a database, the author’s information must be inserted in the corresponding author ta-

1ECA rules are also called active or reactive rules

8

2. REACTIVITY AND EVOLUTION IN THE WEB 2.1. Introduction

ble. An alternative form of ECA rules allows the definition of a post-condition, which
must be satisfied after the actions are executed. This leads to a type of rules called
Event-Condition-Action-Postcondition rules (or simply ECAP). However, the same be-
haviour can be obtained if the post-conditions are considered inside the action part.
Another type of active rules are the so-called production rules. These rules have the
form of Condition-Action rules and they specify that, when the condition becomes true
the actions are executed. In principle, production rules could be simulated by ECA
rules where the event part is always the constant true. However, this approach is not
valid due to the difference between their semantics. ECA rules execute every time the
specified event occurs; provided stated conditions hold. Instead, production rules of
the form condition-action execute only once, when the condition becomes true. If we
assume that the actions in the ECA rules are idempotent then ECA rules are equivalent
to condition-actions rules.

An alternative approach for implementing reactive behaviour is to use conventional
programming languages. In this case, application programs encapsulate the reactive
behaviour. Nevertheless, the use of ECA rules for expressing reactivity has some im-
portant advantages compared with the second approach, as mentioned in [12]. Firstly,
ECA declarative rules provide a clear separation of concepts. Events, conditions and
actions are easily identified and thus, evaluation and optimization of rules is easier to
perform. Secondly, the use of rule bases containing a set of related ECA rules facilitates
rules maintainability. Thirdly, ECA rules constitute an abstract paradigm suitable for
modelling different types of reactive applications.

Triggers, a restricted form of ECA rules, were used in the implementation of reac-
tive functionality in Active Databases. They operate at the database level by monitor-
ing changes in the database’s state and executing operations on it. Events specified in
triggers reflect changes in the database and coincide with the update operations sup-
ported by the DBMS. Their actions are executed inside the database and correspond to
the update operations of the database. Moreover, they are usually expressed using the
programming language supported by the database. Compared to ECA rules operat-
ing at the application-level, triggers are low-level ECA rules. Nowadays, all the major
DBMS vendors provide support for triggers.

2.1.2 Reactivity in the (Semantic) Web

As in the case of Active Databases, reactive behaviour in the (Semantic) Web can be
implemented through the ECA paradigm. Besides the advantages already mentioned,
ECA rules provide several additional benefits in this context. First, most of the real
world situations involve the occurrence of events thus, a mechanism that considers
events explicitly is needed in order to effectively model these situations. Second, active
rules in general are not only easily understood by humans but also by machines. Third,
events constitute a high-level communication paradigm which allows the exchange of

9

2. REACTIVITY AND EVOLUTION IN THE WEB 2.1. Introduction

data between systems. This event-based communication requires appropriate mecha-
nisms for dealing with events. Thus, ECA rules are more appropriate than production
rules of the form condition-action. Fourth, the condition and action parts of rules may
refer to remote data. Therefore, events can be used for transmitting data from one
system (Web site) to another. Finally, ECA rules have been extensively studied in the
field of Active Databases and hence, experience and results obtained in that area can
be adopted and adapted when necessary.

In addition to the implementation issues considered when implementing reactive
behaviour in active databases, the heterogeneous and distributed nature of the (Se-
mantic) Web rises new important issues that must be considered:

• First, in the (Semantic) Web, atomic events may be update operations executed
in some data repository or messages exchanged between two Web sites. In the
same way, composite events may be more than simple combinations of update
operations on data repositories. Composite events may reflect situations that oc-
cur globally in the Web, such as “the cancellation of an order at an online marketplace
followed by cancellation of delivery order at another site". That is, beside composite
events that occur at the data repository level (traditional databases and XML or
RDF repositories), we may have composite events that reflect situations occur-
ring in the Web; i.e. they may combine different events that occur at different
locations. In general, composite events may be high-level application-dependent
and -independent events. Therefore, the ontology of events calls for appropriate
event detection techniques and event algebras for expressing them.

• Second, actions in the (Semantic) Web can be composition of simple actions, i.e.
composite actions. In this case, the constituent actions may be executed at dif-
ferent locations of the Web and thus, the composite action is said to be executed
globally in the Web. Simple actions can be notifications, in the form of messages,
sent from one application to another. Also, an action can be an update or query
request sent from one application to another, possibly located at different loca-
tions. For example, as the result of placing an order at an online marketplace,
the virtual store’s Web site may send a notification to the customer, generate a
shipment order and request a bank transfer. In this case, these three actions can
be grouped to form a composite action called, e.g. processSaleOrder.

• Another important aspect is the specification of queries. In active databases,
queries are commonly evaluated inside a single node or system. In the Web,
queries may need to be evaluated in different nodes as they refer to portions of
data that are stored at different locations. Moreover, queries can be evaluated
against persistent data (databases) or against volatile data, i.e. event data. The
last method allows for extracting information carried in events.

10

2. REACTIVITY AND EVOLUTION IN THE WEB 2.2. General Aspects of Active Rules

In the Web, a common approach for specifying reactive behaviour is to use rule-
based reactive languages (also called active languages). Such languages use reac-
tive rules for describing the reactive behaviour of a system and in particular, Event-
Condition-Action (ECA) rules. Several proposals for describing reactive behaviour us-
ing active languages exist in the literature, such as Active XQuery [10], RDFTL [58],
the General Language for Evolution and Reactivity in the Semantic Web [53], an ECA
Language for XML [12] and XChange [63] among others.

2.2 General Aspects of Active Rules

In this section we briefly discuss some of the important aspects related with the use of
active rules for implementing reactive behaviour.

Languages for Active Rules

In order to effectively use Active rules, a language providing a syntax for specifying
such rules is needed. In the same way that Prolog provides a syntax for defining de-
ductive rules in terms of their head and body, a language for active rules must provide
the primitives to define rules in terms of their components. For example, we could con-
ceive an active language that uses primitives such ON, WHEN(IF) and DO(THEN) to
define an active rule of this form:

ON event WHEN condition DO actions

Furthermore, a language for expressing each of the components of a rule is needed.
That is, we need an event language providing the means for defining event expres-
sions, a condition language for defining boolean conditions (using e.g. boolean con-
nectives) and an action language whose expressions denote actions. In this respect,
most of the cases fix the language used for defining these components, i.e. the active
language at hand embeds a (sub)language for defining components of rules. Every
rule defined in the active language uses the same (sub)language for all its parts. An
alternative approach [7] is to allow the use of different languages for specifying the
components of rules. With this approach, a rule in a rule base may define an event
using one event language, while another rule may define an event using a complete
different event language. We will describe this approach in more details later in this
work.

Analysis of rules behaviour

An important aspect to be considered when dealing with ECA rules is the analysis and
optimization of a set of rules (rule set). A rule may trigger several other rules as its
actions may rise new events, which in turn activate other rules. These triggered rules

11

2. REACTIVITY AND EVOLUTION IN THE WEB 2.2. General Aspects of Active Rules

may in turn trigger new rules and thus, there is the possibility for an infinite execution
of rules. This ultimately affects the termination property of a set of rules. Moreover,
a rule may trigger itself indefinitely if the execution of its actions keeps the condition
true and rises the event associated with it. In the same way, conflicts among rules may
exist if an event triggers more than one rule at the same time. In general, the behaviour
of a set of rules is influenced by the type of events and actions that can be expressed
with the rules. The problems of rule termination and optimization of rules have been
extensively studied in the area of Active Databases [6, 13, 14, 16–18, 48].

Communication between components

During the processing of ECA rules two types of communications are involved from
a rule’s point of view. First of all, there is a vertical communication that happens be-
tween the ECA engine and the services or modules implementing the sublanguages
associated with the rules’ components. For example, the result of evaluating an event
expression is an event instance together with event data (event parameters). The event
parameters must be passed to the rule engine in order to continue with the execution
of the rule. This may be implemented following different approaches, like e.g. system
variables or variable bindings [7]. Second of all, there is horizontal communication that
happens between the components of a rule. This happens for example when the results
of an event evaluation are needed in the query part of a rule. Also, when a query ex-
pression is evaluated, the result of this evaluation may be required in the action part.
For example, if the action is to send an email to a person, the email address may come
from the database and thus, retrieved by evaluating a query on the database. The ap-
proach used in [7, 38] uses logical variables (variable bindings) as transition variables
for this purpose, something that is similar to the approach used in Logic Programming
and deductive rules. In summary, the implementation of rule engines, event detectors,
query evaluators and action engines must consider these two forms of communication
and provide efficient mechanisms for doing it.

Expressiveness of sublanguages

The expressiveness of the (sub)languages used for specifying the components of a rule
is very important. It determines for example, the type of events the rule can react to,
the type of queries that can be formulated and the type of actions that can be executed.

In the case of events, they can be classified into different categories such as low-
level events, high-level application-dependent events, application-independent events
and more generally, atomic and composite events. In order for applications to be able
to detect and react to such a variety of events, it is necessary to have event languages
which provide expressive sets of primitives for their specification.

In the same way, we may have an ontology of actions that considers low-level ac-
tions, high-level actions, application-dependent and -independent actions, among oth-

12

2. REACTIVITY AND EVOLUTION IN THE WEB 2.3. Related Work

ers. Therefore, there is a need for expressive action languages that provide the appro-
priate set of primitives for dealing with different types of actions.

As for queries, an application may need to evaluate atomic queries (similar to
atomic events) or composite queries. Queries can be evaluated on data repositories
such as XML or RDF. In this case, the query language supported by the data reposi-
tory can be directly used by the application. However, in the case of composite queries
there is the need for algebras which allow the specification of queries in terms of other
queries. Here, once again, the type of composite queries that can be expressed depends
on the set of primitives provided by the language.

2.3 Related Work

2.3.1 Research on Active Rules

In the Web, ECA rules are being used in different contexts. In XML for example, several
proposals for implementing reactive functionality on XML repositories exist. In [22],
the authors argue that active rules represent a natural paradigm for the implementa-
tion of reactive services on XML repositories and propose the use of ECA rules for
the rapid development of e-services. They also investigate the use of active rules in
the context of XSLT [34] and the query language Lorel [67]. More specifically, they
extend XSLT template expressions with event and condition parts in order to program
reactive behaviour. Related to this work is [23], which proposes the use of ECA rules
for detecting changes on XML repositories and reacting accordingly to them by send-
ing information to interested remote users. Along the same lines, the work presented
in [12] defines a language for specifying ECA rules on XML repositories. The moni-
tored events reflect modifications to XML documents stored in the repository and the
actions are update operations executed on the repository.

In the context of RDF, the ECA paradigm has been used for example in [58], where
the authors define an ECA language for implementing reactive functionality on RDF
repositories. In this case, events reflect modifications to the graph/triple representa-
tion of RDF documents and actions represent updates operations executed on the RDF
repository. As we will see later in this work, all the active languages studied in chapter
4 are based on the ECA paradigm.

The analysis of ECA rules has been first studied in the field of Active Databases
and a considerable amount of work exists [6, 13, 14, 16–18, 48]. More recently, the topic
has been investigated in the context of XML. For example, in [12, 15] the authors dis-
cuss triggering and activation relationships for ECA rules in the context of XML. More
specifically, they use the concepts of independence of XPath expressions and XPath
containment to determine triggering and activation relationships among rules. Trigger-
ing and activation relationships are important because they can be used for analyzing

13

2. REACTIVITY AND EVOLUTION IN THE WEB 2.3. Related Work

properties such as termination and confluence of a set of rules.

2.3.2 Update and Query Languages

In the context of the Web, active rules have been used for implementing reactive be-
haviour on top of XML and RDF repositories (see e.g. RDFTL [57,60], Active XQuery or
the approach used in [22, 23]). One of the characteristics of these approaches is the use
of query and update languages for specifying the condition and action part of rules
respectively. For example, actions can be update operations provided by the update
language supported by the repository at hand. Following the same approach, the ac-
tive language XChange [63] embeds the query language Xcerpt [3, 66], which is used
for accessing persistent data in the Web.

In some cases however, the underlying languages are not expressive enough as
to be able to model a particular situation. For example, the update language may not
include a move operation for moving complete subtrees in an XML document. In these
situations, a possibility is to extend an existing query or update language in order to
obtain a language that is more suitable for our needs.

Update languages are also used when specifying events in the event part of rules. In
this case, the event language matches the update language supported by the repository
and the event expressions are specified in terms of the update operations provided by
the language. For example, an insert event denoting the insertion of data in XML
or RDF documents corresponds to the insert operation found in the update language
being used. This approach is similar to the one used for triggers in active databases.

Although most of the research regarding manipulation of XML documents has
been focused on the development of query languages, several update languages for
XML have also been proposed. For example, XPathLog [73], an extension of the XPath
language [74], is a declarative, rule-based language for querying and manipulating
XML data. Another example is the XML-RL Update language [51] that extends XML-
RL, a declarative rule-based query language for XML, in order to provide Update
capabilities over XML documents. Other approaches to updating XML documents
include [70, 77]. The work on query languages for XML includes XML-GL [26] (a
graphical query language for XML), XQuery [20], XML-QL [37], XMLQuilt [29] and
Xcerpt [3, 66], among the most important ones.

The adoption of RDF as the standard language for representing information in the
Web calls for the implementation of query languages capable of extracting data from
RDF documents. Research on query and update languages for RDF includes RQL [49],
RDQL [75] and SPARQL [76], among the most important ones.

14

Chapter 3

Event Detection: General Aspects and
Techniques

Contents
3.1 Event Model . 16

3.2 General Aspects of Event Detection . 18

3.3 Techniques for Event Detection . 21

3.4 Related Works . 31

In this chapter we turn our attention to the detection of events. More specifically,
we define the concept of Event and classify them in an ontology according to their
types. After this, we report on the general aspects of event detection, exploring and
discussing different techniques used in the area of Active Databases and the Web. Fi-
nally, we present some previous works on this topic in the area of Active Databases as
well as in the Web.

15

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.1. Event Model

3.1 Event Model

An event is something that happens at a given point in time and at a given place, e.g.
a DBMS or a Web site. In other words, an event is a happening that is considered to be
relevant for some application. Events can be classified according to different abstrac-
tion levels. For example, they can be low-level events that usually occur at the database
level. These types of events reflect changes in the state of a database (relational or
object-oriented databases and XML/RDF repositories as well). These events, some-
times called database events, are usually raised by database operations like for example
insert or update operations of the SQL language. Common event types in this sce-
nario are method events (in Object-Oriented Databases) or transaction events, which
describe transaction behaviour. At another level of abstraction we have higher-level,
application dependent events such as the cancellation of a flight reservation at an airline
company’s Web site. Furthermore, events can be application-independent situations like
e.g. the reception of a message from another Web site or system. The events just described
are usually known as atomic events or primitive events 1.

Besides atomic events, we can also identify combinations (temporal-based or
structural-based) of other events. For example, the situation where the cancellation of
a flight is followed by the cancellation of a hotel reservation, which may occur at a travel
agency’s Web site. These type of events are usually referred to as composite events. That
is, a composite event is an event that is defined in terms of other (sub)events; every
(sub)event may be an atomic or composite event.

As we have seen, events can be classified into different classes and an ontology of
events can be defined. The definition of such ontology is important because it helps
to identify the classes or types of events that can be detected by an event detector and
their relationships. Figure 3.1 on the facing page depicts the ontology of atomic events
presented in [7]. Here, we extend it with the definition of composite events, leading to
an ontology for events in general.

Atomic events can be classified into application domain events and application-
independent events. The first class of events are defined by an application domain
ontology. The second class can be further classified into data-level atomic events and
application-independent domain events. Application-independent events are defined by
an application-independent domain ontology. Furthermore, we can identify different
types of atomic events. For example, explicit events and temporal events are also consid-
ered atomic. Explicit events, or sometimes called remote events are detected outside
the system (by other detectors) and signaled to the system by messages or any other
means of communication. Note that explicit events can be composite events for one
event detector but atomic for others. Temporal events are related to time and require
the use of a system’s clock in order to be detected. Figure 3.2 on the next page shows

1the terms primitive and atomic events are usually used to refer to the same type of events

16

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.1. Event Model

from

Atomic Event

Application Domain
Atomic Event

Application-Independent
Domain Atomic Event

Data-Level
Atomic Event

Application-Independent
Domain Ontology

Application Domain
Ontology

Data Model
Ontology

Application-Independent
Domain Atomic Event

from

from

Composite
Event

Event

Figure 3.1: Ontology of atomic and composite events.

a classification of atomic events. Note that every reactive application is free to define
any additional atomic event types that may need.

Atomic Event

Temporal Event Explicit Event

Figure 3.2: A possible classification of atomic events.

Application domain events. Also called application-dependent events, they are
events that belong to the domain of a reactive application. For example, the cancel-
lation of a flight in the domain of travel agencies is an application domain event. It
can be specified using the expression flightCancelled(flightNr,date,from,to). These events
are high-level, application-dependent events and they are defined in an application’s
ontology.

Data-level events. They represent changes in a database and are raised by database
operations. For example, in an object-oriented database, the execution of a method
raises an event (usually referred to as method events). In relational databases, insert op-
erations raise insert events. Data-level events are defined in the data model ontology.

Application-independent domain events. These events are not defined in the appli-
cation domain ontology but in other ontologies, like for example the messaging ontol-
ogy or the network communication ontology, etc.

17

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.2. General Aspects of Event Detection

3.2 General Aspects of Event Detection

In the context of Active Databases and the (Semantic) Web, an event detector is a soft-
ware system capable of detecting events that occur in a given environment. The sim-
plest scenario is a single system or database where all the events are local, i.e. they
occur and can be detected inside the system. A more complex scenario is a distributed
environment, where events may occur at different places and thus, need to be commu-
nicated among event detectors. This is the case of the (Semantic) Web where a set of
autonomous information systems interact with each other by exchanging information
about different domains. In this case, an event raised at one Web site may be relevant
at another Web site.

Basically, an event detector works as follows: It accepts event expressions from
subscribers describing the events to be detected. It stores the event definition and
then, when an event occurs and is detected, the event detector reports the occurrence
to the appropriate subscribers. The basic functionalities that should be provided by an
event detector are the folowing.

• Registration of event expressions. An event detector must provide a mechanism for
event registration, i.e subscribers (e.g. ECA engines or Active DBMS) must be
able to send event expressions to the event detector so as to specify the relevant
events they are interested in.

• Communication of event parameters. An event detector must provide a mechanism
for the computation and exchange of event parameters. An interface with sub-
scribers must also provide means for exchange of event-related information. For
example, for receiving predefined values for some of the parameters.

• Notification of to subscribers. After an event detector detects an event, subscribers
must be notified of its occurrence. A notification mechanism based on messages
for example should be implemented.

• Event detection. The detection of events itself can be implemented using differ-
ent techniques. Here, the type of events being monitored and the properties of
the environment (distributed versus non-distributed) play an important role. In
the case of composite event detection, a mechanism for detecting or receiving
notifications about atomic events must be in place.

Although it may seem simple, there are many aspects that should be considered
when implementing an event detector. Among the most important ones we identify
the following:

• Specification of events. Primitive or atomic events are usually specified by a
name and a list of parameters. For example, an event reflecting the availabil-
ity of a new book in an online book store can be specified by the expression

18

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.2. General Aspects of Event Detection

newBook(BTitle,BAuthor,BPrice). Here, newBook is the name of the primitive
event and BTitle,BAuthor,BPrice are the formal parameters. As for the case of
composite events, they are usually defined by expressions of an event alge-
bra, which provides composers for combining component events. For example,
in SNOOP, the event expression newBook(BTitle) ; newCD(CArtist) defines a
composite event. Here, ; represents the sequence operator, while newBook(BTitle)
and newCD(CArtist) are the constituent events.

• Event algebras. In the case of composite events two alternatives are possible.
On one hand, we could use model-independent event algebras such as SNOOP.
These event algebras can be used for modelling events in different target do-
mains. On the other hand, several implementations of event detectors define
their own event language, tailored to specific needs; mostly due to the types of
events the event detectors deal with. These event languages are usually based on
previous ones, e.g SNOOP, and extend the base language by adding new opera-
tors to model different situations, thus extending its expressivity. As an example,
the active language XChange [63] defines its own event algebra for specifying
events.

• Event detection at different levels. In the (Semantic) Web, we can identify two dif-
ferent levels where event detection takes place. At the lower-level or database level,
event detectors are concerned with the detection of events that reflect changes
in XML/RDF repositories or relational and object-oriented databases. Then, at
a higher-level, event detectors are concerned with the detection of application-
dependent events, like e.g. "the cancellation of a flight reservation". Note that
high-level, application-dependent events may be implemented as a combina-
tion of lower-level events and thus, a translation or derivation mechanism for
events may be needed. For example, a high-level event such as updateFlight-
Time(FlighNr,From,To,DepartureTime) may be implemented as a delete operation
followed by an insert operation in the database (although unlikely as the update
operation serve this purpose). Derivation of events also occurs between events
of the same level.

• Detecting primitive and composite events. In general, event detection requires two
types of event detectors. First, we need to implement primitive event detectors
capable of detecting temporal events and data-model events. Usually, primitive
event detectors make use of the facilities provided by the underlying system so as
to be able to detect temporal events. For example, using the operating system’s
primitives. Second, composite event detectors implement the semantics of the
event language’s operators and detect events by processing and combining the
incoming primitive events.

• Communicating event parameters. One of the most important aspects in event de-

19

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.2. General Aspects of Event Detection

tection, specially in distributed environments, is the ability to represent and com-
municate event-specific information. As we mentioned before, representation of
event-specific information is achieved by means of event parameters. Now, when
events are communicated between systems, the parameters values must be also
communicated. Furthermore, in the context of ECA rules, the condition and ac-
tion components may need to access the event-specific information. Thus, we
need to define a mechanism for exchanging the event-specific information, i.e
the event parameters. In general, event detectors are free to implement this using
different techniques, however, as we will see later in this work, the choice of a
particular technique influence the integrability of the event detector.

• Event Detection Semantics. While primitive/atomic events occur at a given point in
time (atomically), composite events occur over an interval; i.e. they have both a
starting and ending point. In other words, a constituent event initiates the com-
posite event and then, another constituent event finalizes it. As a result of this,
primitive events are detected at the same time they occur, i.e. the occurrence
time of a primitive event coincides with its detection time. On the other hand,
composite events can be detected according to two different semantics [4]. The
detection-based semantics detects composite events at the end of the interval over
which they occur. In other words, the detection time of a composite event corre-
sponds to the detection time of the last constituent event that has been detected.
Under this semantics the event’s occurrence and detection times are considered
the same. Conversely, the interval-based semantics detects composite events over
an interval. It considers the starting and ending point of the interval over which
a composite event occurs, whereas the detection-based semantics considers only the
ending time. With interval-based semantics an event’s occurrence time differs from
the event’s detection time.

Most event specification languages implement the detection-based semantics.
However, as mentioned in [4], the use of this semantics leads to incorrect detec-
tion of composite events in some cases. In general, the problem with detection-
based semantics is that it does not capture the correct semantics of some event
expressions; under certain combinations of events. This is due to the fact that
composite events are detected by considering only the ending time of their inter-
vals and discarding the starting time. Consider the following example.

Example 3.1 (Detection-based semantics and Interval-based semantics) Con-
sider the event expression in SNOOP E1 ; (E2 AND E3) and suppose that atomic
event instances e1, e2 and e3 occur at time t5, t3 and t6 respectively. Under
detection-based semantics, composite event E2 AND E3 is detected at time t6. Then,
the composite event E1 ; (E2 AND E3) occurs at time t6 as atomic event E1 occurs
before E2 AND E3; i.e the condition for ; is satisfied (t5 is less than t6). However, if

20

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.3. Techniques for Event Detection

we consider the time interval over which the composite event E2 AND E3 occurs (t3
to t6), the event E1 does not occur before t3 and thus, the detection is incorrect. On
the other hand, if we considered the interval-based semantics, the composite event E1 ;

(E2 AND E3) would not be detected as the event E1 does not occur before E2 AND

E3; i.e. t5 is not less than t3. Thus, in this case the composite event is not detected and
the result is as we expected.

3.3 Techniques for Event Detection

The techniques used for detecting events depend on the type of events one is inter-
ested in detecting and on the domain where events are being detected (e.g. Databases,
XML/RDF repositories or the Web). In general, we can classify the strategies for de-
tecting events into those used for detecting composite events and those for detecting
primitive/atomic events.

A strategy for composite event detection implements an event algebra’s semantics.
More specifically, it provides a set of data structures used for storing event data and a
detection model. A detection model specifies how simpler events (primitive or com-
posite) are combined in order to form composite events. It considers the semantics
of the event algebra’s operators as well as the restrictions (e.g. temporal restrictions)
imposed to the set of constituent events. Therefore, strategies for detecting composite
events are mainly influenced by the types of operators provided by the event algebra
and by the semantics of event detection implemented, e.g. detection-based or interval-
based semantics [4].

Conversely, a strategy for detecting primitive/atomic events does not implement
an event algebra and depends on the type of primitive events to be detected.

3.3.1 Detection of Primitive Events

The technique used for detecting primitive/atomic events depends on the type of
primitive events being considered. For example, in the context of Active Object-
Oriented Databases, a method event is a primitive event that describes invocations of
methods in objects; these events may refer to class methods or instance methods. A
common approach used for detecting this type of events is to implement a wrapper
that captures the method invocation signal and executes an action that raises the corre-
sponding event. For example, if the method update_salary(newSalary) has a method
event salary_updated associated with it, a wrapper would capture the invocation of the
method and raise the primitive event salary_updated. One possibility here is to mod-
ify the method’s code in order to introduce the raising sentence inside. However, this
would require to recompile the method’s class every time an event is associated with
the method. An alternative solution is to extract the raising sentence and put it in the

21

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.3. Techniques for Event Detection

wrapper outside the method’s code. This approach to primitive event detection was
used for example in the Active Object-Oriented Database System SAMOS [40].

Transaction events, which reflect execution of transactions in Active Databases,
can be detected by implementing a wrapper that captures transaction methods such
as init_transaction, end_transaction or commit_trsnsaction. This mechanism
is suitable for cases where transactions are implemented as classes (usually in OO
Databases). As for temporal events, an event detector needs to use the system’s clock
functions.

3.3.2 Detection of Primitive Events in XML

Event detection using DOM Event Model

A first alternative to detect events on XML repositories is to use the DOM (level 2)
Event Model [36]. It defines an API that provides programs with an event system so as
to detect events that occur in a document. Among the different types of events defined
by the DOM Event Model we find the so-called mutation events, which are insertion
and deletion of elements as well as insertion, deletion and update of attribute values
and PCDATA content. Mutation events occur when the structure of a document is
modified. Using the DOM Event Model it is possible to associate event listeners with
the nodes of a document and detect events by monitoring methods calls. This ap-
proach has been used in different implementations, like e.g. in [19] where the DOM
Event Model is used for supporting the detection of composite events on XML docu-
ments (DOM events are regarded as atomic events). An important disadvantage of this
alternative is that events are associated with document instances rather than with doc-
ument schemas. That is, high level, schema-dependent events like the ones proposed
in [19] must be translated into instance-dependent events.

Event Detection using Repository Operations

When the XML repository provides operations for data manipulation such as insert,
delete or update, external applications can use these operations in order to modify the
documents stored in the repository. In this case, event detection is performed inside the
repository by monitoring operations calls. That is, an event detector is placed on top
of an existing XML repository and every data manipulation issued to the repository
is catched by the event detector. This approach allows the detection of explicit events.
Examples of XML repositories providing this type of operations are [1, 2].

Alternatively, external applications may define their own set of events or external
events. In this case, if external events are not directly supported by the operations
provided by the XML repository, then they must be translated into a sequence of oper-
ations in the repository. For example, an external application may define a move event
that occurs when a subtree is moved from one position to another inside the document.

22

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.3. Techniques for Event Detection

In this case, if the repository does not provide a move operation reflecting this external
event, the event must be translated into a sequence of delete and insert operations. This
mechanism allows external events to be treated as explicit events.

The main disadvantage of this approach is the tight integration between the event
detector and the repository itself. This in turn affects the modularity and extensibil-
ity of the event detector. However, the advantage os this approach is that events are
detected as soon as they occur; i.e. when the data manipulation operation occurs.

XML-Diff Algorithms

In the context of the (Semantic) Web, manipulation of XML documents is sometimes
performed by applications outside the XML repository, i.e without using the repos-
itory’s data manipulation operations. For example, an application may retrieve an
XML document, modify it by means of application-defined operations and then send
it back to the repository for storage. In this case, XML repositories are unable to detect
changes in the stored documents as modifications to XML documents are performed
by external applications and hence, no repository operations are executed.

A solution to this problem is to detect changes by comparing two versions of the
same document. That is, one could implement or use an algorithm, usually called
XML-Diff, that compares the old and new versions of a document and computes the
sequence of transformations or operations that must be applied to the old version so as
to obtain the new version. Detection of changes in semi-structured data has previously
been studied in [30–32, 35] and several alternatives exist.

One possibility is to implement an XML-Diff algorithm that produces as output
an optional, one-to-one identity relationship between nodes of different versions. An
essential prerequisite for this is to have a mechanism for identifying nodes in XML
trees, e.g using XML ID attributes or their position in the tree. After this, events can
be detected (derived) by analyzing the relationship between nodes. For example, if
a node in the old version is not related with any node in the new version, then this
means that the node has been deleted from the document. In the same way, if a node
in the new version is not related to any node in the old version, this means that the
node has been inserted and thus, an insert event is detected. Let us illustrate this with
an example:

Example 3.2 XML-Diff with identity relationship. Consider the two versions of an XML
document (represented as a data tree) shown in Figure 3.3 on the following page. The result of
running the XML-Diff algorithm on them is the identity relationship depicted as arcs between
nodes in the figure. From this, an event detector can derive the deletion of nodes identified 4
and 5.

The previous alternative is applicable when the fragments of data being compared
can be uniquely identified. But, when no means for unique identification of data are

23

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.3. Techniques for Event Detection

version 1

1

2 3

4 5

1

2 3

version 2

Figure 3.3: Two versions of an XML document. The older version is on the left-hand
side

provided we need another approach. The work presented in [30] does not rely on the
usage of identifiers to uniquely identify fragments of data, although it can benefit from
them if they are provided. It implements an XML-Diff algorithm that generates an
edit-script. An edit-script contains the sequence of update operations that transform the
old version of a document into the new version of it. That is, entries in the edit-script
represent insertions or deletions of XML elements and insertions, deletions or updates
of attributes and PCDATA values. Note that there may be several equivalent edit-
scripts for two versions of the same document. Once the edit-script has been generated,
an event detector can use the information on it to try to detect (derive) the events that
have occurred. Events detected using edit-scripts are usually called edit-script events.

One important aspect that must be considered when detecting events using the
XML-Diff approach is the order of data. Compared to the object-oriented and rela-
tional models where order of data is not important, the order of elements in XML is
relevant (e.g. an XML schema may restrict the structure of elements), while order of
attributes is not. An XML-Diff algorithm implementing an order-independent seman-
tics was proposed in [33]. The algorithm generates a minimum-cost edit-script which,
besides traditional data manipulation operations, includes move and copy operations;
thus providing more meaningful results. Moreover, rather than assuming the existence
of node identifiers to match nodes of both trees, the algorithm compares the content of
nodes in order to match them (although the algorithm can benefit from the existence
of node identifiers). A much simpler version of this algorithm is presented in [30]. It
implements an order-dependent semantics and thus the order of data is relevant. Also,
copy operations are not considered by the algorithm.

Another alternative is the implementation of the XML-Diff algorithm presented
in [35]. The distinctive feature of this implementation, not present in previous ap-
proaches is the use of deltas to represent changes. A delta is an XML document rep-
resenting changes between two versions of the same document. Furthermore, the al-
gorithm supports an additional move operation on subtrees, in addition to the classic
operations supported by other approaches. The algorithm works by detecting and

24

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.3. Techniques for Event Detection

matching subtrees that remained unchanged between two versions of the same docu-
ment. It then considers ancestors and descendants of matched nodes in order to match
more nodes. The matching of nodes relies on the use of XML ID attributes to identify
nodes.

3.3.3 Techniques for Composite Event Detection

Two aspects are important when detecting composite events. The first one is related
with the representation of event expressions. For this several techniques exist which
model event expressions with different data structures. Here, the choice of one of
them is influenced by the efficiency and the type of information to be stored in the data
structures. The second aspect is how to process and combine incoming atomic events
in order to evaluate event expressions, i.e detect composite events. In this case we have
two alternatives:

• Non-incremental evaluation This technique evaluates the composite expressions
every time a new atomic event is signaled to or detected by the system. That is,
upon atomic event reception the event detector checks which of all the composite
expressions use the current atomic event. When another atomic event arrives,
the detector checks every composite expression again. However, in every case
the event detector must check if all the constituent atomic events of a composite
event have occurred. Moreover, the temporal conditions (or any other condi-
tion) among constituent events must also be checked. This technique requires
the event detector to process the same atomic event more than once.

• Incremental evaluation The alternative to the previous technique is to perform an
incremental evaluation of a composite expression. With this approach, the se-
quence of constituent events is processed incrementally in a step-by-step fashion.
This is analogous to the bottom-up techniques used by compilers with the differ-
ence that, instead of a string of symbols the event detector processes a sequence of
atomic events. When an atomic event is detected, the event detector checks which
composite expressions the atomic event contributes. If another atomic event ar-
rives, the event detector process only the current atomic event, i.e ignoring the
previous ones as they were already processed. The advantage of this approach
is that atomic events are processed only once. Clearly, incremental evaluation is
preferred to non-incremental evaluation.

Several techniques exist for implementing incremental detection of composite
events. Note that several implementations exist that use the same technique but, al-
though the efficiency and the additional data structures may differ, the general idea of
the technique is always the same.

25

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.3. Techniques for Event Detection

Using Event Trees

Several event detectors, like [19, 28, 38, 52, 56, 78], model event expressions using event
trees. In the tree-based approach, event expressions of an event algebra are represented
as trees. Leaf nodes denote atomic or primitive event types, internal nodes represent
the language’s operators and the tree’s root is the outermost operator of the expression.
In general, leaf nodes represent the type of events (event types) that can not be detected
by the system (composite event detector). That is, events are detected outside the sys-
tem and then signaled to the composite event detector. The work presented in [56]
follows this approach, where leaf nodes represent external events occurring outside
the system and detected by other event detectors. When these events are signaled, the
composite event detector uses them to detect composite events. Due to its algebraic
nature, event expressions can be easily represented using trees. Furthermore, trees are
a simple and efficient way of representing complex expressions and several algorithms
exist and can be reused to work with trees.

One of the main advantages of using event trees to model event expressions is that
we can combine or reuse event trees. Instead of representing every event expression
with a separate event tree, an event detector may reuse other event trees and aggregate
them in an event graph. In other words, if two event expressions A and B use the same
subexpression C, the event tree representing the expression C is shared by the event
trees representing the expressions A and B. Thus, an event graph is a collection of
event trees, where leaf nodes can be shared by different internal nodes and operator
nodes can also be shared by different nodes. Let us illustrate this with an example.

Example 3.3 (Event Trees and Event Graphs). Consider the event expres-
sions (in the SNOOP event algebra) A = newBook(BAuthot,BTitle)

AND newCD(CTitle,CArtist) and B = newCD(CT,CA) ;

newMovieDVD(DTitle,DGenre). Figure 3.4 on the next page depicts the event
graph representing both expressions. Expression A is represented by the event tree A, while
event expression B is modelled by the event tree B. Note that the leaf node representing the
primitive event newCD is reused by both event trees.

The advantage of aggregating event trees is twofold. First, it allows for reducing
the space required to store the information about an event expression. Second, it facil-
itates the detection of composite events as a primitive event instance can be used for
detecting two different composite events.

Using event trees, event parameters can be stored at the leaf nodes an propagated
to their corresponding parents when a primitive event is detected and signaled to the
system.

The detection of composite events follows a bottom-up process that starts when an
atomic event instance is signaled to the system. The event detector processes every
incoming primitive event and stores its parameters in the appropriate leaf node. After

26

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.3. Techniques for Event Detection

newBook newCD newDVD

Event Tree B

AND ;

Event Tree A

Figure 3.4: Combination of two event trees.

this, the detector activates the parent nodes and passes the parameters’ values to them.
At this point, the event detector executes the algorithm implementing the operator’s
semantics. Event instances are propagated from the leaves up to the event tree’s root.
When an event instance reaches the root of an event tree, the event detector signals
the composite event together with the parameters. Note that additional computations
and data structures can be performed and employed by a particular implementation.
Moreover, the semantics of the language’s operators influences the behaviour of an
event detector. However, the general processing of an event detector using event trees
is basically the same. For example, when an atomic event is signaled to the system and
stored at the appropriate leaf nodes, an optional condition checking can be performed
in order to validate the event instance.

Using Petri nets

Another technique used for implementing composite event detection is based on Petri
nets. Petri nets are a well-known formalism used for modelling complex systems and
specially the computations carried out by them. In the context of event detection, Petri
nets are used for modelling complex events definitions and for implementing compos-
ite event detection in an incremental way. One of the advantages of using Petri nets
for event detection is that they can easily model the flow of parameters values from
constituent events to composite events.

As an example of the use of this formalism, we have the work presented in [41],
which modifies Colored Petri nets obtaining the so-called S-PN or SAMOS Petri nets
(used for implementing event detection in the SAMOS system [40]).

Without giving too many details 2, a S-PN comprises a set of places, which can be
input places or output places. Both types of places model event expressions (also called
event patterns or event definitions). Input places model constituent events of compos-
ite events, while output places model composite events. In addition to this, a S-PN also
includes a set of auxiliary places used for modelling dependencies among events (e.g.
time restrictions among constituent events). In order to represent event parameters,

2Additional information can be found in [68, 69]

27

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.3. Techniques for Event Detection

S-PN use a data structure called token. A token stores the values of the parameters as-
sociated with the event pattern modelled by the place where the token is stored. Note
that a place may contain several tokens. For example, when a primitive event occurs,
the values of its parameters are saved in a token and the token is stored at the place
representing the event definition of the event that has just occurred. Additionally, S-
PN use arc and guard expressions. Arc expressions allow to compute the parameters of
composite events based on the parameters of their constituent events. They contain
variables, which are used for communicating tokens between places and transitions;
i.e. variables store tokens information. Guard expressions instead, are used for ex-
pressing conditions or restrictions on constituent events.

Petri nets can also be combined to represent composite events. In other words, Petri
nets representing constituent events can be combined (reused) into another Petri net
that represents a composite event.

Example 3.4 Combining Petri nets. Consider the event expression E2 = E1
AND newDVD(DTitle,Director), where E1 = newBook(BTitle,Author) AND
newCD(Artist,Year). The Petri net depicted in Figure 3.5 models the composite
event expression E2. It combines a Petri net for E1 and a Petri net for expression
newDVD(DTitle,Director). In the figure, circles represent places (colored circles are output
places) while vertical bars represent transitions. Parameters for primitive events are stored in
their respective circles.

newBook

newCD

newDVD

E1 = (newCD AND newBook)

E2 = (E1 AND newDVD)

Figure 3.5: Combination of two Petri nets

Composite event detection using Petri nets is achieved by processing incoming
primitive events. After a primitive event is signaled, the composite event detector
marks the appropriate input place with a token. The token contains the event’s param-
eters values. After that, the event detector checks which transition can be fired. Note
that a transition fires when all its input places are marked, i.e contains tokens, and its
guard condition is satisfied. Once a transition fires, all its output places are marked. At
this moment, the composite event modelled by each output place is detected and the
parameters’ values are stored in the tokens.

The main advantage of using Petri nets for implementing composite event detec-
tion is that, as with the tree-based approach, they allow the implementation of opti-
mization techniques for event expressions. Common (sub)expressions within a single

28

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.3. Techniques for Event Detection

event expression or among different event expressions can be reused by combining
single Petri nets (see example 3.4). Also, rewriting techniques can be implemented in
order to transform complex event expressions into simpler equivalent ones. Rewrit-
ing techniques are specially interesting when event expressions are registered with an
event detector as equivalent expressions need not to be registered twice. However, as
pointed out in [47], Petri nets are more inefficient than other approaches.

Using Finite State Automata

An alternative technique for detecting composite events expressed by expressions of
an event algebra is to use Finite State Automata. This formalism has been used for ex-
ample in [44], where event expressions are implemented using finite state automata.
The approach is based on the fact that event expressions are equivalent to regular ex-
pressions and hence, they can be executed or recognized by finite state automata. The
approach uses Deterministic FSA as they are more efficient than the non-deterministic
ones and can handle negated events in a better way.

In the same way that finite state automata recognize strings of symbols, a finite
state automaton (FSA) detects composite events by recognizing the event expressions
that represent them. That is, the input string for such automaton is the sequence of
incoming primitive events. After a primitive event is signaled to the system, the FSA
"reads" or processes the incoming primitive event and moves to the next state. Now, if
the next state is an accepting state, then the event represented by the FSA is detected.
The construction of a FSA is similar to that for regular expressions and it depends on
the form of the event expression being implemented (or to be recognized); taking into
account the operators used in it.

The automata-based strategy works fine when primitive events do not include pa-
rameters. However, when events include parameters and parameter computation is
required, additional data structures must be considered. The solution implemented
in [44] uses multiple automata in order to represent events that contain parameters.
The disadvantage of this approach is that the resulting automata may contain a large
number of states; thus reducing the efficiency of the event detection process. Addi-
tionally, by combining equivalent states it is possible to reduce the number of states
required to represent an event expression; this in turn allows the optimization of event
expressions.

3.3.4 Composite Event Detection in XML

Although composite event detection has long been considered in the context of Active
Databases, its application to the XML context is not trivial and requires further inves-
tigation before existing approaches can be effectively adapted. The work presented
in [19] considers three important aspects that characterize XML documents and pro-

29

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.3. Techniques for Event Detection

poses an approach to detect composite events in XML that takes these aspects into
account. More specifically, they identify the following features:

• Temporal and hierarchical order of events. Although in most of the cases events are
ordered according to their time (occurrence time), an alternative approach is to
order events according to their hierarchical structure. For example, if we con-
sider an XML document where element is a child of element <a>, the event
produced by the insertion of element is hierarchically related to the insertion
of element <a>. Hierarchically related events are the most common type of events
in XML.

• Schema-based events. A schema may restrict the number of elements inside an-
other element (using occurrence constraints [39]). An important class of events that
should be detected is the class of schema-based events. These events occur when
an update operation satisfies these constraints, i.e when a constraint is satisfied.
Approaches considered so far do not take these types of events into account.

• Hierarchy of event types. Event types can be hierarchically related and this can be
exploited in order to allow for more expressive event type definitions. This also
help to provide more reusable event types.

The approach presented here refines the event algebra SNOOP [28] by defining an
abstract model for XML data, for XML events and for event types. Additionally, the
underlying language is extended by defining a new parameter context, called hierar-
chical context, which allows the detection of composite events when their constituent
events are hierarchically related, i.e ordered by their hierarchy rather than by their oc-
currence time. The language is also extended by the introduction of a new multiplicity
operator, which allows the detection of schema-based events. Finally, a third extension is
provided by the definition of new operators modifiers that extend the expressiveness
of event type definitions.

Events reflect manipulation of nodes in an XML tree. Primitive events can be in-
sertions and deletions of element, attribute and text nodes and updates of attribute and
text nodes. A primitive event type is specified by the operation that causes the event
and by the path type expression that identifies the node in the XML tree where the event
occurs. Path type expressions identify nodes in the XML tree using type information,
i.e at the schema level. They are based on path expressions. Composite events are de-
fined by expressions of the language, using the language’s operators and combining
primitive and composite events.

Detection of primitive events is implemented using the DOM (level 2) Event Model.
Instead, composite event detection is implemented using event trees, taking into ac-
count the operators’ semantics and the hierarchical relationship between event types.

30

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.4. Related Works

3.4 Related Works

In this section we take a look at the research activities done along four areas of interest:
Event Detection in Active Databases, Event Languages, Event Detection in the contexts
of XML and RDF and Event Notification Systems.

3.4.1 Event Detection in Active Databases

Event detection has been extensively studied in the field of Active Databases [61, 72],
where the goal is to detect changes in the database’s state. In this area, event detection
was studied in the context of active rules for databases or, also calledtriggers. A consid-
erable number of work has been done in the field of Object-Oriented Databases. For
example, [44,45] considers the specification of events in active OODB and proposes the
use of Event-Action rules, a variation of the classical Event-Condition-Action rules where
the condition part is embedded in the event part. The authors show that the expressiv-
ity of expressions in the language is equivalent to that of regular expressions; when
event expressions are evaluated over a stream of events. This leads to the use of finite
state automata for implementing event detection. Also related is the work done in [42],
which investigates composite event detection in the context of the system COMPOSE.
Further research in this area was done in [40, 43, 71].

3.4.2 Research on Event Languages

Regarding event languages, SNOOP [28, 55] is one of the first attempts to define an
event algebra for specifying events in active databases. The language provides a set of
composers for combining atomic and composite events and thus, specifying situations
that occur when; not one but a combination of events occur. Along the same lines, the
work done in [68] investigates the specification and detection of events in the context
of Object-Oriented Databases, more specifically in the OODBMS SAMOS [40].

As for distributed environments, the work presented in [52] defines a Generalized
Event Monitoring language that allows for the specification of hight-level, abstract com-
posite events. They are defined by combining simpler events that occur at different
places; temporal constraints can be used for combining constituent events.

More recently, approaches to implement reactive functionality on the Web have
been investigated. Most of the proposals define their own event algebra in order to
model events or situations of a particular target domain. For example, the works done
in [10, 19] investigate event detection in the context of XML. They define event lan-
guages for specifying events that reflect modifications on XML repository. Of particu-
lar importance is the approach taken in [19] where the authors consider the specifica-
tion and detection of composite events on XML documents. Moreover, they argue that
the definition of composite events whose constituent events are hierarchically related

31

3. EVENT DETECTION: GENERAL ASPECTS AND TECHNIQUES 3.4. Related Works

has to be considered too. Furthermore, specification of events reflecting modification
on RDF repositories has been addressed in [58]3.

3.4.3 Event Detection in XML and RDF

Recently, interest in event specification and detection has moved to the Web environ-
ment. In this context, event detection techniques are being investigated as they consti-
tute the basis for implementing reactivity in the Web. Some of the approaches previ-
ously studied in the field of Active Databases are being reused in the context of XML
and RDF repositories. However, due to the richer set of events that can be specified
and detected in XML and RDF documents, those methods must be adapted. Change
detection on XML documents and hierarchically structured data has been investigated
in [30–33, 35]. More recently, event detection has been studied in the context of XML
and RDF repositories. As we will see in this thesis, event detection in this context was
considered in [10, 58].

3.4.4 Event Notification Systems

Besides Active Databases, several other event notification systems have been imple-
mented. These types of systems are important as they support the development of
event-based services, specially in distributed environments such as the Web. Along
these lines, the EPS system [56] is a general-purpose Event Processing System that de-
tects composite events expressed by event expressions. The READY system [46] is a
notification service that provides asynchronous notification of simple and composite
events. Another example is the Situation Manager, a component of the Amit system [5],
is a run-time monitor that processes incoming events (obtained from event sources),
detects situations (combination of events) and then reports them to the interested sub-
scribers.

3some of these languages are being considered in this thesis

32

Chapter 4

Active Languages for the (Semantic)
Web

Contents
4.1 RDFTL: A Trigger Language for RDF 34

4.2 Active XQuery Language . 36

4.3 XChange Active Language . 40

4.4 A General Language for Reactivity in the Semantic Web 47

This chapter presents a description of the active languages considered in this work.
Each of the languages is described in terms of the event language used for specifying
event expressions, the type of events that can be expressed with them and the mecha-
nisms used to exchange information among the rules’ components.

33

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.1. RDFTL: A Trigger Language for RDF

4.1 RDFTL: A Trigger Language for RDF

RDF Trigger Language [58] is an event-condition-action language designed to provide
reactive capabilities to RDF repositories. Using RDFTL we can define ECA rules on
RDF metadata so as to be able to detect changes in RDF documents and react accord-
ingly to them by executing the appropriate actions. For example, an ECA rule defined
in the language may detect insertions of triples in a RDF document and acts accord-
ingly by updating a triple in the same or another RDF document in the RDF repository.
Changes and events occur at a local RDF repository and no means for distributed event
detection or action execution is provided. That is, events occur locally at the system
where the rule is defined. However, we will see that an architecture for supporting
RDFTL rules in P2P networks has been developed.

The distinctive feature of the language is that reactive rules operate over the graph
representation of an RDF document. In other words, the event and actions parts of an
RDFTL rule refer to the nodes and triples of an RDF graph that were modified by the
execution of an insert/delete/update operation. Other approaches have considered
rules that operate over the XML serialization of the RDF document.

4.1.1 Definition of the Language

Since ECA rules in RDFTL operate over the RDF graph representation of the RDF data
model, we need a mechanism to specify the fragments of an RDF document (RDF
graph) addressed by each of the rules’ components. In RDFTL this is accomplished
by embedding a path-based query (sub)language that operates over the RDF graph.
Using this query language we can express the event and condition parts of an ECA
rule. For example, a path expression in the path language may be used to define an
event expression denoting the insertion or deletion of certain nodes in the RDF graph.

Path Language

The syntax of the path-based language is similar to the syntax of the XPath [74] lan-
guage, although its expressivity is more reduced. Every path expression denotes a set
of nodes and this set can be filtered out by a boolean expression defined over qualifiers
and path expressions. The abstract syntax is shown in Figure 4.1.

E ::= resource“(”uri“)” (/P)?
P ::= P/P | P“[”Q“]” | target(arcname) | source(arcname)
Q ::= Q and Q | Q or Q | not Q | P | P = string | P 6= string

Figure 4.1: Path expressions grammar

Here, resource(uri) is the resource denoted by the URI given as parameter, tar-
get(arcname) denotes the set of object nodes in a RDF graph related by property arcname

34

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.1. RDFTL: A Trigger Language for RDF

to the subject nodes in the context and source(arcname) denotes the set of subject nodes
in the graph related by property arcname to the object nodes in the context.

Rules in RDFTL

In RDFTL, ECA rules are defined by specifying their event, condition and action parts.
Conforming to the semantics of active rules, the event part specifies the event that is
being monitored in the system, the condition checks whether the system is in a particu-
lar state and the action part defines the set of actions to be executed if the event occurs
and the condition holds. The general form of ECA rules in the language is defined
by the following grammar, where VariableName is any valid name for a variable. The
event, condition and action parts are defined below. For a complete definition of the
language’s grammar the reader is referred to [58].

R ::= "on" [VariableDefinition "in"] EventPart

"if" [VariableDefinition "in"] ConditionPart

"do" [VariableDefinition "in"] ActionPart

VariableDefinition ::= "let" VariableName ":=" PathExpression

[, VariableDefinition]

The condition and action parts of a rule may refer to a system variable called $delta.
This variable is used as a communication mechanism between the components of a
rule. The information about the inserted or deleted nodes as well as the inserted,
deleted or updated arcs is passed from the event part to the other parts of a rule by
using this variable. Depending on the type of event the content of the variable may
differ. Moreover, depending on whether the variable is referenced in the condition or
action parts, the rule execution model differs.

Events and Event Expressions In RDFTL, an event can be the insertion or deletion
of resources (nodes in the RDF graph), the insertion or deletion of triples and the up-
date of triples. Events are defined by event expressions with the following syntax and
semantics.

• (INSERT | DELETE) e [AS INSTANCE OF class] [USING NAMESPACE ns]. In this ex-
pression, e is a path expression of the path language embedded in the ECA lan-
guage and denotes the set of nodes that were inserted or deleted. Optionally, we
can define the name of the RDF Schema class to which the inserted or deleted
nodes belong. An event defined by this expression occurs when the set of new
(for an insert expression) or deleted (for a delete expression) nodes is included in
the set of nodes that result from the evaluation of the path expression e and the
inserted or deleted nodes belong to the class class, if defined. Here, the variable
$delta contains the set of inserted or deleted nodes.

35

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.2. Active XQuery Language

• (INSERT | DELETE) triple. This expression defines an event that occur whenever
a triple is inserted or deleted. Here, triple is an expression of the form (sub-
ject,predicate,object) and denotes the triple to be deleted or inserted. Any of these
components can be replaced by the symbol "_". For example, the triple pattern
(subject,predicate,_) can be used to denote insertions/deletions of triples with any
value in its object part. In this case, the variable $delta contains the set of subject
nodes of the inserted or deleted triples.

• UPDATE updtriple. This expression defines an event that occur when a triple on the
RDF graph is updated. Updates in this case are considered changes in a triple
object’s value. Here, updtriple is an expression of the form (subject,predicate, oldob-
ject −→ newobject) and denotes the triple whose object value has been changed
from oldobject to newobject. As in the previous case, the wildcard symbol "_" can
be used in any of the parts. Variable $delta contains the set of subject nodes of the
inserted or deleted triples.

Condition part A condition is a boolean expression built using boolean connectives
and path expressions.

Action part Actions in RDFTL can insert or delete resources (subject or object nodes)
and insert, delete or update triples. The action part of a rule contains a sequence of one
or more actions.

4.2 Active XQuery Language

Active XQuery [10] is an active language for XML repositories whose main purpose
is to provide XML repositories with reactive capabilities. It does this by extending
the XQuery language [20] with active rules or triggers adapted from the trigger concept
in SQL3. In other words, rules in the language emulate the trigger definition and so
they provide the means for detecting changes over XML repositories. Triggers in Ac-
tive XQuery specify the events to be detected, the conditions that must hold in order to
execute each trigger and the set of actions to be executed upon event occurrence.

The language assumes the existence of an update model for XML which provides
a basic set of update operations over XML repositories. In particular, the definition of
triggers it is based on the model proposed by [70]. This approach extends the XQuery
language with a set of primitive operations for modifying the structure and content of
XML documents.

36

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.2. Active XQuery Language

4.2.1 Syntax of the language

Triggers in Active XQuery can be decomposed into different components. Among the
most important ones we have the event, condition and action components.

The Event component. It identifies the event being monitored by the trigger, i.e the
happening that makes the trigger to be fired or triggered. The language regards events
as the result of the execution of triggering operations, which correspond to the update
primitives of the underlying update language. In order to define an event we must
indicate the triggering operation associated with it and the fragment of XML affected
by the execution of the operation. The affected XML fragment is described by one or
more XPath expressions. Each of these expressions may refer to different documents
and when evaluated over XML instances they produce a sequence of nodes. As it is
with the SQL3 trigger concept, the language allows the definition of before-triggers and
after-triggers. The difference between them is the triggering order of the trigger w.r.t the
event associated with it. In the first case, the trigger’s condition and action parts are
considered before the event actually occur. In the other case, the event must occur first
in order to evaluate the trigger’s condition part and then execute the trigger’s actions.

The syntax used to define events in the language is as follows.

(BEFORE|AFTER)

(INSERT|DELETE|REPLACE|RENAME)+

OF FragExpression (,FragExpression)*

The keywords insert, delete, replace and rename denote the triggering operations as-
sociated with the event and the trigger. Keywords before and after define before-triggers
and after-triggers respectively. FragExpression is the XPath expression denoting the af-
fected XML fragment.

The Condition component. The condition part is optional and defines the conditions
that must hold in order to execute the trigger’s actions upon event occurrence. Con-
ditions are specified by XQuery’s Where clauses and introduced by the keyword when.
Below is the syntax used to define a trigger’s condition.

WHEN XQueryWhereClause

The Action component. It defines the set of actions to be executed on the system
when the event occurs and the conditions hold. Actions include updates operations of
the underlying update language and possible external actions like sending a message
to another system. It is worth mentioning that the execution of a trigger may cause
another triggers to be triggered. The syntax for defining trigger’s actions is as follows.

DO (XQueryUpdateOperation|ExternalOperation)

37

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.2. Active XQuery Language

In addition to these components, an Active XQuery trigger have an optional trigger-
ing granularity associated with it. This property influences the trigger’s execution and
classifies triggers into statement-level triggers and node-level triggers. A statement-level
trigger executes once for each set of nodes resulting from the evaluation of the above
XPath expressions. On the other hand, node-level triggers execute once for each node
in that set.

A trigger may also define and use variables in order to support the exchange of
information among its components. These variables, called transition variables, can be
referred to in the condition and action parts of a trigger. For example, the system-
defined transition variables OLD_NODE and NEW_NODE denote the XML fragment affected
by the execution of a triggering operation. The content of these variables depends on
the type of trigger being executed. With node-level triggers, both variables denote the
node that was inserted, deleted, renamed or replaced by an update operation. With
statement-level triggers, these variables refer to the set of nodes affected by an update
operation; i.e. each variable contains a set of nodes. In both cases, the NEW_NODE vari-
able denotes the new state of the affected fragment and the OLD_NODE denotes the old
state of the affected fragment. Additional transition variables can be defined by an
XQuery-Let-clause.

Finally, an optional priority can be associated with every trigger. Priorities help to
establish an execution order among a set of triggers, especially when several triggers
are triggered by the same event.

The complete syntax of triggers in the language is shown in Figure 4.2. Here, line
1 defines the trigger’s name. Line 2 defines the optional trigger’s priority. Lines 3 to 5
introduce the event part. Line 6 expresses the trigger’s granularity. Line 9 defines the
transition variables, while in line 8 we specify the trigger’s condition and in line 9 we
define the trigger’s action part.

1 CREATE TRIGGER NameOfTrigger
2 [WITH PRIORITY signedIntegerNumber]
3 (BEFORE|AFTER)
4 (INSERT|DELETE|REPLACE|RENAME)+
5 OF XPathExpression (,XPathExpression)*
6 [FOR EACH (NODE|STATEMENT)]
7 [XQueryLetClause]
8 [WHEN XQueryWhereClause]
9 DO (XQueryUpdateOperation|ExternalOperation)

Figure 4.2: Triggers’ syntax in Active XQuery

Let us see an illustrative example in order to grasp the trigger concept just defined.

Example 4.1 (Active XQuery trigger). Consider an XML document (movies.xml) contain-
ing information about movies. Let us suppose that we want to detect insertions of movies in

38

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.2. Active XQuery Language

the database and then, if the movie’s year is 2002, insert the movie title into another XML
document (listing.xml). The structure of the documents is defined below.

<!-- movies.xml -->

<movies>

<movie id="1">

<title>Ice Age 2</title>

<year>2006</year>

</movie>

<movie id="3">

<title>Mission Impossible 3</title>

<year>2006</year>

</movie>

...

</movies>

<!-- listing.xml -->

<listing>

<title>Ice Age 2</title>

<title>

Mission Impossible 3

</title>

...

</listing>

Now, in order to detect changes in the content of the first document we define a trigger
called new-movie that detects insertions of <movie> elements and act accordingly by inserting,
for every new movie, a <title> element in the second file. The trigger definition is shown in
Figure 4.3.

CREATE TRIGGER new-movie
WITH PRIORITY 1
AFTER INSERT OF document("movies.xml")//movie
FOR EACH NODE
LET $newMovieTitle := NEW_NODE/title
WHEN NEW_NODE/year/text() = ’2006’
DO (FOR $listing IN document("listing.xml")//listing

UPDATE $listing
{INSERT <title>$newMovieTitle/text()</title>})

Figure 4.3: Definition of an Active XQuery trigger

4.2.2 Underlying Update Model and Language

As we mentioned before, Active XQuery assumes the existence of an update model that
provides a data manipulation language for expressing updates on XML repositories.
The event language defined here matches the underlying update language, and allows
in this way the definition of events that reflect the effects of update operations. Active
XQuery uses an Update language proposed in [70]. This language extends the XQuery
language with primitives for supporting updates on XML repositories. The structure
of updates follows the syntax given in Figure 4.4 on the following page:

39

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.3. XChange Active Language

FOR $bindings IN XPathExpression, ...
LET $binding := XPathExpression, ...
WHERE predicate1,...
UPDATE $binds {subOP {,subOP}*}
Where subOP is defined as follows:
DELETE $child
RENAME $child TO name
INSERT content [BEFORE | AFTER $child]
REPLACE $child WITH $name
FOR $binding IN XPathExpression,...

Figure 4.4: Definition of an Active XQuery trigger

4.3 XChange Active Language

XChange [11, 24, 38, 63] is a high-level, rule-based, active language for programming
reactive behaviour and distributed applications on the (Semantic) Web.

One of the most important aspects of the language is the distinction between volatile
data (event data) and persistent data (web data). Volatile data refers to information of
the events that occur in the web, whereas persistent data refers to data stored at the
database level (XML, RDF or any other database model). Moreover, volatile data can
not be modified and it is best communicated in a pull manner. In contrast, web data
can be updated and is communicated in a push manner. In order to deal with both,
persistent and volatile data, XChange embeds an event language and a query language.
On one hand, XChange uses the web query language Xcerpt [64] to access persistent
data and express the condition part of ECA rules. On the other hand, an event language
based on Xcerpt, is used for querying volatile data and implementing the event part of
rules. For additional information regarding the query language Xcerpt see [64].

XChange uses the well-known Event-Condition-Action rules (ECA) paradigm to
describe the reactive behaviour of applications. In XChange, a reactive program is a set
of active rules. An XChange-enabled rule engine processes incoming events by evalu-
ating event queries (expressed using the embedded event language) on the stream of
events. If the evaluation produces a result (an answer), an event has been detected and
the rule is fired. The next step in rule execution is to evaluate the condition part of a
rule. In XChange this is done by evaluating a web query (expressed using the embed-
ded query language). If the query evaluation produces an answer, the rule’s condition
is true and the action part is executed. As we see, XChange relies on the existence of
an event language, a web query language and additionally, an update language for
actions. Moreover, the three (sub)languages are fixed in XChange, which means that
users have no choice but to use these (sub)languages.

The communication among XChange programs (located at different sites) follows
the P2P model, where peers in a network can communicate with each other and no

40

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.3. XChange Active Language

centralized control is needed. Moreover, events are propagated in the Web following
a push strategy. This means that after detecting an event, a web site communicates the
event (event data) to all interested web sites.

4.3.1 Event Model and Event Messages

An event is something that occurs (a happening) in a web site at a point in time. In
XChange, events can be low-level events such as an update to an XML/RDF repository or
high-level, application dependent events such as the cancellation of a flight from Lisbon to
New York in the Web of travel agencies.

Events in XChange are classified into two classes: atomic events and composite events.
An atomic event is defined as before, i.e a happening or something that occurs in a
system (web site). A composite event or situation is a combination of atomic and com-
posite events. Atomic events can be further classified into two (sub)classes: implicit
events and explicit events. Implicit events are local events, i.e internal happenings in a
web site. They occur locally at a node and reflect local updates, changes in the system’s
state or queries executed on a local data source. On the other hand, explicit events are
events that occur at some node in the web and are sent to another node (or posted
internally at the same node). In this sense, explicit events are implicit events propa-
gated from one node to another (possibly the same). For example, consider two web
sites A and B. The insertion of a tuple in a local database at web site A is regarded as
implicit event at A. It occurs inside A and it is processed locally at A. But, if as a result
of the insertion operation in A, a reactive program sends a message to B with infor-
mation about the occurred event (event data), the event is considered explicit at node
B. Furthermore, atomic and composite events differ from each other in what regards
to occurrence time. Atomic events have a single occurrence time, which in XChange
is their reception time. Instead, composite events have a duration; i.e. they have a
beginning time and an ending time. The beginning time is the reception time of the
first constituent event that occurs while the ending time is the reception time of the
last constituent event that occurs.

XChange uses event messages for representing and communicating events between
web sites (possibly the same). An event message is an XML document that defines an
envelope for an arbitrary XML content. The envelope contains information regarding
the message’s id, the sender and receipt of the message, as well as the event’s
occurrence and reception time. The arbitrary content is any valid XML document
representing the event-specific information. In other words, event messages contain
information about events that have occurred somewhere in the web. Using event
messages, XChange-enabled web sites are capable of sending and receiving events.
Let us consider an example 1.

1In all the examples we use the declaration xmlns:xch="http://pms.ifi.lmu.de/xchange"

41

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.3. XChange Active Language

Example 4.2 (Event message). Consider an XML repository at Amazon.com, containing
information about books. For each book, the web site stores the book’s authors, the book’s title
and its price. In this example, an event could be the insertion of a new book. After the event has
been detected, an event message containing information about the new available book is sent
to every interested web site. Figure 4.5 depicts the structure of the event message (using the
term-based representation of event queries and event messages [64]).

xch:event{
xch:sender {"http://www.amazon.com"},
xch:recipient {"http://www.tagni.com.ar"},
xch:raising-time {"2006-07-10T19:01:00"},
xch:id {"1"},
book {
title {"The Jordan Rules"},
author {"Sam Smith"},
price {"19.90"}

}
}

Figure 4.5: Event message containing information about the availability of a new book.

An event message’s structure conforms to the following DTD.

<!DOCTYPE xchange:event [

<!ELEMENT xchange:event (xchange:sender,xchange:recipient,

xchange:raising-time,xchange:reception-time)

xchange:id, %event-data>

<!ATTLIST xchange:event xmlns:xchange CDATA #FIXED

"http://xcerpt.org/xchange">

<!ELEMENT xchange:sender (#PCDATA)>

<!ELEMENT xchange:recipient (#PCDATA)>

<!ELEMENT xchange:raising-time (#PCDATA)>

<!ELEMENT xchange:reception-time (#PCDATA)>

<!ELEMENT xchange:id (#PCDATA)>

]>

4.3.2 Event Queries

In the same way event algebras use event expressions to define events (primi-
tive/atomic or composite events), XChange uses a concept called event queries. Event
queries are queries against event data. More specifically, an event query specifies
or describes a pattern for the event representation (event message) to be queried.
In XChange, event queries are used for event detection and data extraction. Events

42

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.3. XChange Active Language

(atomic or composite) are detected when event queries are evaluated against an incom-
ing stream of events, i.e a sequence of event messages. Data extraction is achieved by
specifying variables in event queries. Event queries variables are instantiated during
query evaluation and their values are part of the answer. Moreover, multiple occur-
rences of the same variable act as join variables, in the same way as logical variables in
Logic Programming.

In order to detect atomic and composite events the language provides atomic and
composite event queries respectively. In XChange, an atomic event is an answer to an
atomic event query, whereas a composite event is an answer to a composite event
query.

Atomic event queries

An atomic event query describes or specifies a pattern for the representation of a single
incoming event (event message). Every atomic event query is an Xcerpt query term [24,
64] with an optional absolute temporal restriction specification. Temporal restrictions
are used for filtering the sequence of incoming event instances. Event instances whose
reception time does not satisfy the temporal restrictions are discarded.

Example 4.3 (Atomic event query). In order to detect an incoming event message like the
one defined in the previous example, we could define the atomic event query showed in Fig-
ure 4.6. When an event is detected, variable Title will be instantiated with the book’s title.
The keyword before introduces the absolute temporal restriction.

xch:event {{
xch:sender {http://www.amazon.com},
book {{
title { var Title}
}}

}} before 2006-07-31T23:59:59

Figure 4.6: Atomic event query to detect the event message defined in the previous
example.

Composite Event Queries

Composite event queries allow the detection of temporal combinations of atomic
events, i.e composite events or situations. They are specified by a combination of
atomic event queries and event query constructs (operators). Figure 4.7 on the next page
illustrates the use of event queries and event messages in event detection.

43

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.3. XChange Active Language

Site C

Site B
Site A

stream of events
(event messages)

event queries

Query
matching

Figure 4.7: Using Event Queries and Event Messages in event detection.

Variables in XChange

Variables in XChange are treated in the same way as logical variables in Logic Pro-
gramming, i.e they act as place holders for data. The language allows the definition or
declaration of variables inside event queries, in which case they are used for retrieving
data items (sub terms) from queried data terms. Variables can also be declared outside
atomic event queries and in this case, they are bound to atomic events (to the answers
of the event queries). Finally, variables in XChange can be defined outside a compos-
ite event query in which case they are bound to composite events (actually, they are
bound to answers of composite event queries).

XChange also uses variables to implement the communication among the compo-
nents of an ECA rule. In this case, variable bindings computed during event evaluation
can be used in the condition or action parts of a rule, restricting in this way the possible
bindings for the free variables appearing in these parts (same as in deductive rules in
Prolog).

Event Query Constructs

The set of event query constructs provided by XChange includes absolute and relative
temporal restrictions, conjunctions, temporally ordered conjunctions, inclusive disjunctions,
exclusions, quantifications and multiple inclusions and exclusions. For a complete descrip-
tion of the event query constructs and their declarative semantics the reader is referred
to [63].

• Temporal restrictions Incoming event instances (event messages) can be filtered out
by defining temporal restrictions on them. For example, a Web site may decide
to accept only those event instances whose reception time is less than a given
value. Event messages that do not satisfy the imposed temporal conditions are
discarded. XChange provides two types of temporal restrictions: absolute and
relative. An absolute temporal restriction restricts an event reception time to an ab-
solute time interval or point in time. Absolute temporal restrictions are defined
using the keywords before and in. For instance, the event query defined in the
previous example uses an absolute temporal restriction. On the other hand, a

44

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.3. XChange Active Language

relative temporal restriction restricts an event reception time to a relative interval.
They are defined using the keyword within.

• Temporally ordered conjunctions A temporarily ordered conjunction specifies a
composite event where the order of occurrence of its component events is of im-
portance. That is, they impose a restriction on the order in which constituent
events occur. XChange provides two variants of this operator. The first one is
a non-cumulative version where an answer to such event query contains only in-
stances of the constituent event queries. All other event instances are discarded.
The second one, a cumulative variant, regards a valid answer as the one that con-
tains, besides the instances that match the constituent queries, all event instances
that occur in-between. An example of both types of queries is given below. Ev-
ery time an answer to the composite event query is found, variables Title and
Artist are instantiated. The non-cumulative version is defined as follows:

andthen [

book {{ author {var Title} }},

newCD {{ artist {var Artist} }}

]

A cumulative version of the same event query is defined as follows (note the use
of double angle brackets to indicate that the order of the answers is relevant):

andthen [[

book {{ author {var Title} }},

newCD {{ artist {var Artist} }}

]]

• Exclusions An exclusion query specifies that no instance of the excluded query
should occur in a given time interval in order to detect the exclusion query. Ex-
clusions event queries require the specification of a detection window, which can
be defined by either a finite time interval or a composite event query (remember
that composite events have a duration). Exclusions queries are defined using the
pair of keywords without and during. The following exclusion query detects the
non-occurrence of books notifications during the interval defined the two dates.
Note that this type of event queries is evaluated at the end of the finite interval.

without {

book {{ author {"Borges"} }}

} during [2006-07-10T23:59:59 .. 2006-07-31T23:59:59]

45

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.3. XChange Active Language

Evaluation of exclusion event queries is performed at the end of the time inter-
val. In the example above, if at the of the interval (i.e on 2006-07-31T23:59:59) no
notification of a book whose author is "Borges" has been received, the exclusion
event occurs.

• Quantifications Using quantifications in event queries we can restrict the number
of instances of a quantification event query in a given interval. Again, the in-
terval can be specified by a finite time interval or a composite event query. For
example, we can define an event query that detects at least, at most or exactly
N instances of an event. The following event query detects an event when exactly
2 notifications of a new book are received at a web site during the given interval.

atleast 2 {

book {{ author {var Author} }}

} during [2006-07-10T23:59:59 .. 2006-07-31T23:59:59]

XChange also provides a method for defining existential quantified variables.
Variables not declared as existentially quantified require equality when occur-
ring more than once in an event query. For example, the previous event query is
successfully evaluated only if the two required answers produce the same bind-
ing for variable Author. Alternatively, if a variable is declared as existentially
quantified this restriction is dropped and every successful evaluation of the vent
query may produce a different binding for the variable. Variables declared as
existentially quantified are defined outside the event query where they are used.
An event query using an existential quantified variable is defined as follows:

atleast 2 any var Author{

book {{ author {var Author} }}

} during [2006-07-10T23:59:59 .. 2006-07-31T23:59:59]

• Multiple inclusions and exclusions Multiple inclusions and exclusions are used for
detecting occurrences of N event queries out of M defined event queries. It is
used for expressing a generalized exclusive disjunction of event queries. As with
the previous constructs, an interval must be specified. The following event query
detects two occurrences of any of the event queries specified during the given
interval.

2 of {

book {{ author {"Borges"} }},

book {{ author {"Cortazar"} }},

book {{ author {"Allende"} }},

} during [2006-07-10T23:59:59 .. 2006-07-31T23:59:59]

46

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.4. A General Language for Reactivity in the Semantic Web

4.4 A General Language for Reactivity in the Semantic

Web

The reactive language proposed in [7] is also based on the ECA paradigm but, contrary
to previous active languages, it allows for the integration and combination of different
(sub)languages for specifying the components of active rules. The language is defined
by means of an ontology that identifies its key concepts.

The language is based on an underlying model of the Web where, instead of a set of
interconnected data sources we have a set of autonomous Information Systems. These
systems are capable of detecting events that occur at different (remote) locations, up-
dating persistent data, communicating changes to other systems and reacting to (local
or remote) events. These properties, together with the open and heterogeneous na-
ture of this environment, call for a declarative language for specifying reactivity and
ultimately, evolution in the Semantic Web.

Although some reactive languages have already been proposed (like those pre-
sented and studied in this work), they exhibit some important problems, specially
regarding the heterogeneity of (sub) languages and the types of events and actions
that can be specified with them. More specifically:

• Most of the existing reactive languages allow for the specification of a restricted
set of actions. In most cases, only updates operations over XML or RDF reposi-
tories are permitted. However, the vision of the Semantic Web considered in [7]
requires the ability to express more complex actions such as sending messages
across the network or the combination of simpler actions. Here, languages for
specifying combination of actions may be required.

• Existing language consider only simple events such as the results of updates
operations over data sources. However, the properties outlined before call for
more complex and possibly composite events. Here, only the active language
XChange presented before considers composite events whose constituent events
are generic events reflecting local or remote situations. Note that, although there
are several approaches for composite event detection and event algebras for spec-
ifying composite events, none of these approaches are active languages. How-
ever, some of them could be extended and then embedded into an active lan-
guage.

• Heterogeneity is an important aspect that should be considered in an active lan-
guage for the (Semantic) Web. Existing approaches do not consider this aspect,
specially heterogeneity at the sub language level (event, query and action lan-
guages). For example, XChange fixes the languages for each of the components
of an ECA rule.

47

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.4. A General Language for Reactivity in the Semantic Web

The aim of the reactive language proposed in [7] is to overcome these problems and
allow the combination of different languages for events, conditions and actions. This
in turn will provide the means for specifying more complex events and actions so as to
implement reactivity and evolution in the (Semantic) Web.

In the following sections we describe the most important aspects of the language
and in particular, we focus our attention in the event component of ECA rules. For a
detailed description of the ECA general reactive language presented here the reader is
referred to [7].

4.4.1 ECA Rules

ECA rules in the language are composed by an event, a condition and an action part.
The condition part is optional, as it can be integrated with the event or action parts.
Additionally, the language allows the definition of an optional fourth component that
specifies the post conditions that must hold after the action part is executed. This leads
to a variant of ECA rules called ECAP rules.

Each of the components in a rule may be specified using a different (sub)language,
i.e. they may be described using different languages. For example, we could define
an ECA rule where its event part is specified using an event algebra (e.g. SNOOP),
its condition part uses a Web query language (e.g. XQuery [20] and the action part
is specified using an update language such as XUpadate [77], XPathLog [73] or XML-
RL [51]. Moreover, different rules in a rule set may use different (sub)languages for
the specification of their parts. Thus, heterogeneity at the rule part level is achieved
by associating each rule part with a language and by defining a mechanism for the
communication among components of a rule.

Finally, rules in the language are represented in the (Semantic) Web by using an
XML-based Markup Language for ECA Rules (ECA-ML). ECA-ML represents event,
condition and action components and associates them with the particular language
used for the specification of the rule component. In this way, a rule engine for this
ECA general language processes each component according to the language specified
in the component definition.

Figure 4.8 on the facing page depicts the ontology for ECA rules in the language.

4.4.2 Rule Components and Languages

Languages for specifying event, condition and action parts are constituted by con-
structs and composers. Constructs can be combined by using composers in the same
way operands are combined by operators in arithmetic expressions. Constructs rep-
resent classes of atomic events, conditions or actions. For example, in the event al-
gebra SNOOP we may conceive a basic construct for representing the atomic event
that occurs when a new book is added to a database. This construct can be defined

48

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.4. A General Language for Reactivity in the Semantic Web

ECA Rule

Condition part

Language

Action part

Rule part

Rule

Event part

{ordered}

rulepart rulepart

rulepart

rulepart

+event +action+condition
0..1

0..1

0..1

1..*

Figure 4.8: Rules an rule components.

as newBook(BookTitle,BookPrice). In this case, newBook is the construct’s name and both,
BookTitle and BookPrice are its parameters. A construct’s arity is the number of param-
eters it contains. Composers, on the other hand are used for combining constructs and
other composers. The constructs to which a composer is applied are the composer’s
arguments and define its cardinality. Additionally, they can contain parameters. For
example, the operator (composer) ANY in SNOOP can be used to define a compos-
ite event like ANY(2,E1,E2,E3). Here, the number 2 is the composer’s parameter and
E1,E2,E3 are the composer’s arguments.

Rule components can be specified in different ways:

• Opaque expressions An event, condition or action component can be specified by
an opaque expression. Opaque expressions are expressions written in some lan-
guage (e.g. Prolog, Java, etc.) and associated with a set of logical variables. For
example, the action component of a rule may contain an opaque expression writ-
ten in Java that, when executed (evaluated) sends a notification by e-mail.

• Constructs and Composers By using the set of constructs and composers of the
(sub)language associated with a rule component, it is possible to define an ex-
pression that specifies such rule component. For example, event expressions of
the SNOOP event algebra can be used for specifying the event part of rules. Note
that such an expression must be marked up using some sort of markup language
(e.g XML).

• Composition of specifications Another way to specify a rule component is by com-
bining several other specifications using different languages.

49

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.4. A General Language for Reactivity in the Semantic Web

4.4.3 Interaction among Rule Components. Logical Variables

ECA rules may define and contain references to variables (logical variables). They act
as place holders for data and can be instantiated (bound) by any rule component and
used (referenced) in different parts of a rule. Rule parts communicate and exchange
information with each other by means of logical variables, thus achieving heterogene-
ity at the rule part level. Moreover, variables can be shared among different rules in a
rule set. In general, variables can be declared:

• Locally at a rule part Variables can be defined inside a rule part acting as a local
variable for the component.

• Globally at rule level Alternatively, a variable can be defined at the rule level and
hence, shared among the components of the rule.

• Globally at rule set level If we consider a set of ECA rules, a variable can also be
defined at the rule set level. Here, the variable is shared among all the rules in
the set, thus acting as a constant.

Figure 4.9 on the next page shows an illustrative example of an ECA rule defined
in the language 2. In this example, variables Author and To are declared globally to the
rule, while variable ValidYear is declared locally at the condition component.

2Namespace declaration has been omitted for simplicity

50

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.4. A General Language for Reactivity in the Semantic Web

<eca:rule>
<eca:variable name="Author" value="Jorge Luis Borges"/>
<eca:variable name="To" value="email@server.com"/>
<eca:event language="http://www.snoop.org">
<eca:variable name="Title"/>
<eca:specification>
newBook(Author,Title,Year)
</eca:specification>

</eca:event>
<eca:condition language="http://www.languages.org/conditionLanguage">
<eca:specification>
<eca:variable name="ValidYear">$Year = ’2006’</eca:variable>
</eca:specification>

</eca:condition>
<eca:action language="http://www.languages.org/actionLanguage">
<eca:variable name="Title"/>
<eca:specification>
if ($ValidYear)
sendEmail($To,$Title)

</eca:specification>
</eca:action>
</eca:rule>

Figure 4.9: Example of an ECA rule defined in the language.

51

4. ACTIVE LANGUAGES FOR THE (SEMANTIC) WEB 4.4. A General Language for Reactivity in the Semantic Web

52

Chapter 5

Comparative Framework

Contents
5.1 Definition of the Comparative Framework 54

5.2 RDFTL: RDF Triggering Language . 55

5.3 Active XQuery . 60

5.4 XChange Active Language . 64

5.5 Evaluation Results . 69

The implementation of active languages requires, among other things, the implemen-
tation of ECA rule engines for processing active rules of the language. A key compo-
nent of such systems is an event detector that implements the event language used in
the active languages and hence, it detects events specified by expressions of the event
language. This chapter is devoted to the study of those event detectors that have been
implemented or proposed for the active languages considered in this work. We based
our study on a comparative framework that we propose for comparing the prototype
implementations. We proceed by first defining the criteria that we have considered in
order to evaluate the systems. After that, sections 5.2 to 5.4 describe the architectures
and prototypes for each of the active languages. Then, in section 5.5 we present the
evaluation results.

53

5. COMPARATIVE FRAMEWORK 5.1. Definition of the Comparative Framework

5.1 Definition of the Comparative Framework

The active languages introduced in chapter 4 are based on the ECA paradigm. As we
have already mentioned, these languages allow the specification of active rules and
each rule comprises three components, namely an event part, a condition part and an
action part. In order to specify which is the event that fires a rule, the condition that
must hold and the action to be taken upon event detection, a (sub)language for each
of these components is needed. In other words, each of the components is specified
by a (sub)language. As we have seen, an event language allows the definition of event
expressions, each of which denotes a composite or atomic event. Finally, in order to
actually detect the events specified by event expressions what we need is an event de-
tector.

As we have already described in chapter 3, several systems have been developed
to provide passive databases with reactive capabilities and, in recent years, interest
for reactive behaviour has shifted from the database community to the Web commu-
nity. In the vision of the Web presented in [7], autonomous systems interact with each
other exchanging information and changes (events). The exchange of events reflect-
ing changes in the nodes of the Web is a key aspect in the implementation of reactive
applications in the Web. Moreover, the interaction among event detectors is also im-
portant as they can detect remote events that occur globally in the Web. For example,
imagine a situation where a reactive system (Web site) uses an event detector to detect
composite events about book selling. This event detector may need to contact (interact
with) another detectors in order to perceive atomic events. Furthermore, depending on
the type of atomic events an event detector is interested in, the atomic event provider
may be different. This scenario requires an event detector to be able to interact with
possibly multiple event detectors, exchanging not only event instances but also event
definitions.

The comparative framework that we propose in this work aims at studying and
comparing the use of event detectors in the context of active languages. We want to
analyze the interaction between event detectors and systems implementing a particu-
lar active language. We intent to study different event detectors so as to identify the
key aspects of their implementation and in this way, formulate guidelines for the im-
plementation of event detectors in general, and in particular, for the implementation
of an event engine to be integrated in the ECA framework [7]. These guidelines may
suggest the use of a particular technique for detecting events and also, allow the im-
provement of existing approaches. We also pretend to investigate the possibility of
reusing existing event detectors.

The key aspects that we consider in our comparative framework are the following:

• Technique used for detecting events. If the active language provides an implemen-
tation of an event detector, we want to study the technique used for detecting

54

5. COMPARATIVE FRAMEWORK 5.2. RDFTL: RDF Triggering Language

events. Otherwise, based on the characteristics of the event expressions and a
possible architecture for a rule engine, we want to investigate which technique
could be used.

• Types of events. A taxonomy of events is more than important as the type of
events involved in a system determines the techniques to be used. For exam-
ple, detection of events in the context of XML or RDF repositories may require
different techniques. In the same way, detection of global events in the (Semantic)
Web may require a combination of techniques. Moreover, atomic and composite
events are detected using different approaches.

• Event parameters. Here we want to focus our attention on how the event param-
eters are handled by an event detector. This includes how event parameters are
computed and communicated to other rule-parts or remote event detectors.

• Communication of atomic events. A key aspect for composite event detectors is the
perception of atomic events. Thus, studying how atomic events are provided to
composite event detectors is very important.

• Integration and reuse. We want to investigate the possibilities of reusing existing
event detectors in order to detect events expressed in each of the active languages.

5.2 RDFTL: RDF Triggering Language

The implementation of a system supporting RDFTL ECA rules in centralized and dis-
tributed environments is presented in [57–60]. The system is implemented as a set of
services that together provide a passive RDF repository with active capabilities. The
main component of the system is an ECA Rule engine, which coordinates the execution
of RDFTL ECA rules. Event Detection, Condition Evaluation and Action Execution services
are provided by different components that interact with the ECA engine. The system
assumes the existence of an RDF repository capable of providing Query and Update
services. This means that the updates operations executed in rules’ actions are actually
data manipulation operations provided by the underlying Update service. The query
service is used for evaluating RDFTL Path expressions. Before continuing, it is worth
mentioning that the execution of updates follows the same approach used in [59] for
ECA rules on XML repositories. According to this, when an update operation is ex-
ecuted, the system annotates the inserted fragments in the RDF graph (for an insert
operation) or, it annotates the deleted fragments without actually deleting them (for a
delete operation); the delete operation is postponed until the end.

In this section we briefly describe the system architecture for both centralized and
distributed environments, the rule registration and execution mechanisms, as well as
the general aspects of the system. In particular, we are interested in analyzing the

55

5. COMPARATIVE FRAMEWORK 5.2. RDFTL: RDF Triggering Language

event detector used in the system according to the different criteria of our comparative
framework. We first describe the prototype for supporting RDFTL ECA rules in dis-
tributed environments. Then, we proceed to describe a prototype implementation for
centralized environments.

5.2.1 Supporting RDFTL ECA Rules in Distributed Environments

In the distributed approach, RDF/S descriptions are distributed across a set of passive
RDF repositories. Each RDF repository is extended by a set of services providing the
passive repository with active capabilities. The system architecture for distributed en-
vironments comprises two types of nodes: peers and super-peers. RDF/S descriptions
are distributed across the peers (sites) of a network by storing fragments of them at
different peers. Each peer has a local RDF repository which stores a fragment of the
global RDF/S descriptions. This is similar to the data distribution approach in dis-
tributed databases, where portions of a table are distributed across different sites of a
network. Each super-peer supervises a set of peers and stores a fragment of the global
RDF/S descriptions. For example, an RDF document containing information about
books and movies may be fragmented over two peers, both perhaps being controlled
by the same super-peer. We could store the information about books in one peer and
the information about movies in the other peer. Figure 5.1 depicts the architecture for
supporting RDFTL ECA rules on distributed environments. An ECA Engine includes
an Event Handler (EH), a Condition Evaluator (CE), a Rule Base (RBase), an Action Sched-
uler (AS) and an Execution Scheduler.

Peer A Peer B

RDF

ECA Engine

ex. scheduler AS

RBaseEH CE

Super-peer

Peer C

Super-peer

RDF

RDF

RDF

RDF

ECA Engine

ex. scheduler AS

RBaseEH CE

Event
DetectorEvent

Detector

Event
Detector

Figure 5.1: System Architecture for Distributed Environments

Besides storing fragments of RDF descriptions, peers and super-peers store frag-
ments of a global RDFS schema. This information is used for supporting registration,
propagation and processing of ECA rules in the system, as well as evaluation of condi-
tions. Additionally, each super-peer has a rule base where RDFTL ECA rules are stored

56

5. COMPARATIVE FRAMEWORK 5.2. RDFTL: RDF Triggering Language

using an XML format. Rules in the system might be triggered, considered (evaluated)
and executed at different sites of the network. However, distributed event detection
and update execution is not yet supported by the system. That is, rules stored at a
super-peer’s rule base can only be triggered by events occurring within a single peer’s
local RDF repository. In the same way, actions of a rule are executed at a single local
repository, although different (sub)actions of a rule may be executed at different peers.
For example, if a rule’s action part contains two actions, one of them could be executed
at one peer’s local repository and the other at another peer’s local repository. Only
conditions can be evaluated at different sites.

Furthermore, each super-peer contains an ECA Rule Engine implemented as a Web
Service that provides a passive RDF repository with active capabilities. The rule en-
gine comprises several components including an Event Handler, a Condition Evaluator,
an Action Scheduler and an Execution Schedule. In addition, each peer in the network
contains an Event Detector whose functionality is complemented by the Event Handler
in the ECA Rule Engine.

• Event handler The event handler is responsible for receiving and processing no-
tification from the event detector about the occurrences of events. Whenever a
change to the local RDF repository in a peer (in the SP’s peers group) is per-
formed, the event detector detects the event and notifies the event handler. Then,
the event handler tries to determine which rule in the rule base should be trig-
gered. Note that the event handler does not detect events. It just implements
triggering of rules based on the occurred events.

• Condition evaluator This component evaluates the condition of the triggered rules.
It does this by sending a query to relevant peers. If the condition is true, the rule
is fired or executed.

• Action scheduler This component is responsible for selecting the actions from the
fired rules that must be executed.

• Execution schedule This a repository for update operations. Each update operation
belongs to the underlying update language and does not contain reference to any
variable.

• Event detector This component is responsible for event detection in the system.
We will see this component in details later in this section.

Rule Registration and Execution

Whenever a rule is registered at a peer it is sent to its super-peer for storage. Then, the
super-peer sends the rule to all the relevant super-peers for storage (using the infor-
mation in the annotated RDFS schema). Every time a SP receives a rule from one of

57

5. COMPARATIVE FRAMEWORK 5.2. RDFTL: RDF Triggering Language

its peer it annotates the rule with the peer’s ID. This information will be used later for
determining triggering of rules. For additional information about the distribution of
rules and how this is performed in the system, the reader is referred to [57, 59, 60].

When an update operation is executed at a peer, the corresponding super-peer is
notified of any event that may have occurred. After this, the super-peer checks which
are the rules that might have been triggered. If a rule could be triggered, the ECA en-
gine at the super-peer evaluates the event query (RDFTL Path expression) of the rule’s
event part. If the result of this evaluation (a set of nodes) contains any annotated nodes,
then the rule is triggered and the ECA engine proceeds to evaluate the condition. At
this point, the ECA engine generates an instance of the condition for each possible
value of the system variable $delta (instantiated by the event detector), provided the
variable is referenced in the condition part. If the condition is evaluated to true, the
super-peer sends each instance of the action part (depending on whether or not the
variable $delta is used in the action part) to the corresponding peers for execution
(this is done by using the information of the annotated RDFS schema). Additionally,
instances of the action part are also sent to the relevant super-peers for execution. In
this way, execution of update operations may raise events and cause a local or remote
action schedule to change.

Event Detection Service

In the distributed environment, each peer provides an event detection service. This ser-
vice is implemented by a local event detector that detects changes in the peer’s local
RDF repository. Every time an event is detected, the event detector determines the
event’s occurrence time, the type of event and the portion of metadata affected by the
event. After this, it notifies the event handler in the corresponding super-peer by send-
ing this information.

The technique used for detecting events is based on the monitoring of updates op-
erations. An event detector is implemented as a wrapper placed on top of an RDF
repository. Every update request sent to the RDF repository passes through the wrap-
per and then is redirected to the repository. After the update operation is executed, the
event detector determines the event type, the event’s occurrence time and the affected
fragment. After this, the event handler is notified by the event detector. Additionally,
the event detector notifies its local Peer Indexing service so as to update its RDFS schema
information in order to reflect the changes.

The event detector determines the event type based on the type of operation ex-
ecuted on the RDF repository. An event’s occurrence time is the time at which the
update operation is performed, while the affected RDF fragments are determined by
evaluating the event’s RDFTL Path expression on the RDF repository (using the Query
service provided by the underlying repository).

58

5. COMPARATIVE FRAMEWORK 5.2. RDFTL: RDF Triggering Language

5.2.2 Supporting RDFTL ECA Rules in Centralized Environments

In a centralized environment, an ECA Rule engine for processing RDFTL rules is in-
stalled on top of an RDF repository. The ECA Engine implements a set of services that,
together with the repository’s Query and Update Service, provides a passive RDF repos-
itory with active capabilities. Compared to the previous approach, in this centralized
scenario there is no need for keeping annotated versions of an RDFS schema, as the
RDF descriptions are not distributed. Therefore, registration and processing of rules is
simpler than in the previous case.

RDF

ECA EngineAction
Scheduler

Condition
Evaluator Event

Detector

RBase

Wrapper
Sch.ManagerExecution Sch.

Query and
Update Manager

ParserRegistration Unit
Rule Registration

interface

Figure 5.2: System Architecture for Centralized Environments

The architecture of the ECA Engine for the centralized scenario is illustrated in
Figure 5.2 1. This architecture, with appropriate changes to manage XML documents,
was previously used for implementing reactive capabilities on top of XML repositories
[59]. The most important components of the system are:

• Execution Schedule This is a sequence of updates operations to be executed on
the RDF repository. None of the operations contains a reference to the system
variable $delta.

• Schedule Manager This component is responsible for selecting the next operation
to be executed on the repository and sending an execution request to the reposi-
tory’s Query and Update Service.

• Event Detector This component is responsible for detecting changes in RDF docu-
ments stored in the RDF repository. Detection of events is implemented by mon-
itoring update requests. Every update operation sent to the repository for execu-
tion passes through the ECA Engine. After the operation is executed, the Schedule

1The figure is a modified version of the one in [59]. It has been adapted to the RDF scenario

59

5. COMPARATIVE FRAMEWORK 5.3. Active XQuery

Manager passes the control to the Event Detector, which based on the type of oper-
ation determines the type of event that has occurred. Additionally, the event de-
tector is responsible for determining for each rule that might have been triggered
the set of affected nodes. This is done by submitting the rule’s event expression
to the repository’s Query and Update Service. If the result contains any new or
deleted node, then the rule must be triggered. The set of affected nodes for each
triggered rule is stored in the system variable changes.

• Condition Evaluator After a rule is triggered, the Condition Evaluator submits the
rule’s condition part (path expression) to the repository’s Query Service for eval-
uation. Here, if the variable $delta appears in the condition part, the evaluator
creates an instance of the rule’s condition part for each value of the changes vari-
able. Each instance is then submitted for evaluation.

• Action Scheduler When a rule is fired, the action scheduler reformulates the ac-
tion(s) in the rule’s action part and sends the individual actions to the Execution
Schedule for storage. Reformulation of actions consists, among other things, of
replacing every reference to the variable $delta by the current node of the delta
set (set of affected nodes).

In addition to these components, the system includes a Registration Unit that inter-
acts with a Parser in order to allow registration of RDFTL ECA Rules and a Rule Base
component for storing ECA Rules (as in the previous approach, rules are stored using
a XML-based Markup language).

5.3 Active XQuery

The description of the language presented in chapter 4 made no mention to the trig-
ger execution model. In this section, we describe the general aspects regarding the
execution of triggers defined with the language. In particular, we want to focus our
attention

Recall that the language allows the definition of active rules for implementing re-
active functionalities on XML repositories. That is, rules in the language are used for
expressing actions that must be taken when events (changes in the XML repository)
occur, provided stated conditions hold. In this way application programs are able to
monitor changes in XML documents and react accordingly to them. These changes are
the result of updates operations executed on the XML repository.

5.3.1 Semantics and Execution Model

In Active XQuery, triggers are executed according to the immediate execution model [21].
This execution model processes the triggers immediately after their corresponding

60

5. COMPARATIVE FRAMEWORK 5.3. Active XQuery

events occur. In other words, rules are considered as soon as the events that fire them
are detected in the system. This execution model contrast with the deferred execution
model where rules are triggered based on an event history (also called edit-script) that
keeps track of the changes made to XML documents. For example, under the imme-
diate model, whenever an event occurs, the system selects those triggers whose event
component matches the event and then fires the triggers. Under the deferred model,
every event is stored in an event history. Later, the system inspects the event history
and fires the corresponding triggers.

The language adapts the execution model of SQL3 triggers. However, due to the
hierarchical structure of XML documents and the "bulk" nature of update statements,
the SQL3 trigger execution model must be revised in order to be successfully adapted.
More specifically, update instructions may affect an arbitrarily large fragment of XML
(thus the term "bulk"). In other words, a single update statement may insert, delete
or replace a large portion of XML content. For instance, in example 4.1 (section 4.2.1),
the update instruction UPDATE {INSERT $movie}, where $movie is defined as $movie

IN document(movies.xml)//movies/movie, inserts a whole subtree into the XML doc-
ument. The main problem with bulk statements is that triggers whose event compo-
nents refer to internal portions of the affected fragments are never triggered by update
statements. Let us illustrate this with an example.

Example 5.1 Bulk statements and triggers. Consider the XML document movies.xml in-
troduced in the example 4.1 (section 4.2.1) and the UPDATE statement S1. The document
newmovies.xml contains a list of new movies that will be added to the first document. Fig-
ure 5.3 on the following page depicts the tree representing the XML document obtained after
the operation is executed. The dashed line represents the affected new fragment.

S1: FOR $movies IN document("movies.xml")/movies

$newMovie IN document("newmovies.xml")/new-movies/movie

UPDATE $movies {INSERT $newMovie}

CREATE TRIGGER new-title

WITH PRIORITY 1

AFTER INSERT OF document("movies.xml")//title

FOR EACH NODE

LET $newMovieTitle := NEW_NODE/title

DO (execute some action)

Now, let us suppose that the system contains a trigger called new-title that monitors the
insertion of <title> elements in movies.xml. When the update instruction inserts a new movie
in the database, the system is unable to trigger this rule. This is because the trigger’s event
component does not match the update event. In other words, the insertion of <title> elements
is hidden in the INSERT operation and can not be detected. Remember that in Active XQuery
events correspond to update operations.

61

5. COMPARATIVE FRAMEWORK 5.3. Active XQuery

<movies>

<movie> <movie>

<title> <title><year> <year>

id=1 id=2

"Ice age 2" "2006" "Superman" "2006"

Figure 5.3: XML tree showing the result of executing a "bulk" insert

Expansion of update instructions

To overcome the problem with bulk statements, Active XQuery uses an expansion
mechanism that decomposes bulk statements into a sequence of equivalent smaller
granularity updates. These new updates, when executed on the repository, produce
the same results as the original update operation. Each of these smaller updates can
be thought of as an autonomous update primitive that modifies a portion of the XML
content. The expansion mechanism makes triggers sensitive to events that occur when
portions of the affected fragments are changed.

The strategy, which implements the so-called loosely bundling semantics [21], receives
as input a bulk statement and produces a sequence of updates interleaved with direc-
tives to the rule engine. These directives are used by the rule engine to execute after
and before triggers in combination with the generated update primitives. The decom-
position algorithm proceeds with a combined depth-first and breadth-first visit of the
involved fragments. All the insert operations related to XML nodes with the same fa-
ther are performed at the same time, i.e encapsulated in the same UPDATE{} operation.
Attribute nodes are inserted first. Nodes with a complex structure are further decom-
posed. Finally, nodes with PCDATA content are inserted together with their content.
Delete operations can be treated similarly, while replace operations can be simulated
with a combination of delete and insert operations.

Example 5.2 Decomposition-based strategy. Consider the update statement S1 introduced
in example 5.1. Its decomposition generates the following two smaller updates S2 and S3.

evalBefore(S2)

name: S2

FOR $x IN document("movies.xml")/movies,

$newMovie IN document("newmovies.xml")/new-movies/movie

UPDATE $x {INSERT </movie>}

evalBefore(S3)

62

5. COMPARATIVE FRAMEWORK 5.3. Active XQuery

name: S3

FOR $x IN document("movies.xml")/movies,

$newMovie IN document("newmovies.xml")/new-movies/movie,

$curfragment IN $x/*[empty($x/*[AFTER $curfragment])]

UPDATE $curfragment {INSERT new_attribute(id,"2")

INSERT <title>Superman</title>

INSERT <year>2006</year>

}

evalAfter(S3)

evalAfter(S2)

The directive evalAfter(S3) tells the rule engine to compute the set of after triggers trig-
gered by the execution of the update S3. evalBefore(S2) is used in the same way but, with
before triggers.

Executing triggers and update instructions

Execution of triggers and update statements proceeds as follows. When an update
statement is sent to the system, the Decomposition Module decomposes the bulk state-
ment into a sequence of smaller updates (also called expanded statements) and direc-
tives to the rule engine (EvalBefore and EvalAfter directives). Before the decomposition
process takes place, the set of relevant fragments is computed by submitting a query to
the Query Engine. Relevant fragments are used for decomposing the bulk statements
and for instantiating the transition variables NEW_RF and OLD_RF; used for exchanging
data among the components of a rule. In other words, relevant fragments specify the
fragment of data to be inserted, deleted or updated and where, in the target XML doc-
ument, this fragment is or will be.

After the relevant fragments (RF) and the sequence of expanded statements and
directives (SIL) are computed, the Rule Engine starts an iterative process to execute
each of the elements in SIL. If an EvalBe f ore(Sn) directive is found, the rule engine
selects from the rule repository the before triggers activated by the expanded update Sn.
If an EvalA f ter(Sn) directive is found, the rule engine selects the after triggers activated
by Sn. In both cases, the set of activated triggers is processed by the rule engine. Finally,
if the element in SIL is an expanded update, the rule engine executes it.

When a trigger is processed, the rule engine computes the transition variables, eval-
uates the condition and, if the condition is true, the rule engine executes the trigger. For
a detailed explanation of the triggers execution model and pseudo-code of the execu-
tion algorithm the reader is referred to [10, 21].

The proposed architecture for a prototype implementation is depicted in Figure 5.4
on the next page. The main components of the system for executing Active XQuery
rules are the Decomposition Module, the Rule Engine and the Query Engine. Addition-

63

5. COMPARATIVE FRAMEWORK 5.4. XChange Active Language

ally, the architecture comprises a Rule base and an XML repository. Event detection,
condition evaluation and action execution are performed inside the rule engine.

Decomposition Module

RBase

Active XQuery Rule
Engine

Data Extraction

StatementExpansion

Update Op

XML

Query
Engine

RelFrag ---------

--------- Expanded statements

and directives

Figure 5.4: Architecture of a Active XQuery Rule System

5.4 XChange Active Language

In the previous chapter (section 4.3), we introduced the active language XChange with-
out mentioning how the language is actually implemented. This section presents the
prototype implementation of a system for processing XChange Active Rules. We start
by describing the system architecture and then we move to the event detection func-
tionality implemented by the system. In particular, we are interested in the technique
used by the event detector for detecting events, the representation of event expres-
sions, the processing of event parameters as well as any other important aspect that
may serve for the evaluation of the event detector.

5.4.1 System Architecture

The architecture of a system implementing the language XChange, described in [38],
is composed by three main components: an Event Detector, a Condition Handler and an
Action Handler. The event detector is in turn composed by an Event Receiver and an
Event Handler. Figure 5.5 on the facing page depicts the architecture of the prototype
implementing the XChange Rule Engine.

• Event Detector. The event detector is the principal component in the system as it is
responsible for detecting the events that trigger active rules. Event queries (event
expressions) registered with the system denote the set of events to be detected
by the event detector; they belong to the event language defined in XChange.
The event detector detects events by evaluating registered event queries against

64

5. COMPARATIVE FRAMEWORK 5.4. XChange Active Language

the incoming stream of atomic events (event messages). If a sequence of atomic
events satisfies an event query (i.e., it is an answer for the event query) the event
(composite or atomic) denoted by the event query is detected. Whenever an event
is detected, the event detector notifies the condition handler; sending the event
(composite or atomic) and the substitution set for the variables defined in the cor-
responding event query. The functionality of the event detector is implemented
by two (sub)components, an event receiver and an event handler. The event receiver
is responsible for dealing with incoming atomic events (event messages); it com-
putes the event’s id and reception time and then passes the atomic event to the
event handler. The event handler, on the other hand, is responsible for detecting
events and then notifying the occurrence of them to the condition handler.

• Condition Handler. This module is in charge of evaluating the conditions of those
active rules that were triggered by the occurrence of an event. The condition
handler, through the condition channel, receives notifications of successful event
query evaluations together with the corresponding substitution set. Variables in
the substitution set are used for evaluating the condition part of the triggered
rules.

• Action Handler. This component is responsible for the execution of rule actions. It
receives a notification from the condition handler about the evaluation of a rule’s
condition and then proceeds to execute the list of actions.

Event Detector

Event
Receiver

Event
Handler

Event Channel

Condition
Handler

Action
Handler

Condition
Channel

Action
Channel

Figure 5.5: Architecture of a prototype Rule Engine for XChange active rules

The communication among components of the system is implemented using com-
munication channels; following the First-in, First-out (FIFO) communication model.
These communication channels are used for exchanging event messages and informa-
tion about the evaluation of rules conditions. The system implements three communi-
cation channels, the Event Channel, the Condition Channel and the Action Channel.

• Event Channel. This channel communicates incoming atomic events (event mes-
sages) to the event handler. It receives atomic event messages from the event
receiver and forwards them to the event handler.

• Condition Channel The condition channel is used by the event detector to commu-
nicate successful event query evaluations to the condition evaluator; it comprises

65

5. COMPARATIVE FRAMEWORK 5.4. XChange Active Language

the sequence of events that answered the event query together with the substitu-
tion set for the free variables in the query.

• Action Channel This channel is used by the condition handler to pass information
about successful condition evaluations to the action handler.

5.4.2 Event Detection in XChange

Event detection in XChange is based on the evaluation of event queries. Every time
an atomic event (its representation as event message) arrives at the system, the event
detector must evaluate all the partial event queries registered with the system. Evalu-
ation of event queries depends on the type of event query being evaluated, i.e. atomic
or composite event queries. In order to evaluate event queries, the event handler con-
siders the event query to be evaluated, the current atomic event and, in case of a com-
posite event query, some of the previously received atomic events; which are stored in
the system. The result of evaluating an event query is an answer to the event query;
once again, the answer depends on the type of event query being considered. In any
case, if the evaluation process is successful the event handler obtains a modified par-
tial event query and a list of composite events 2. Whenever an event is detected the
event handler notifies this to the condition handler, which in turn initiates the con-
dition evaluation process of the triggered rules. During the event query evaluation
process atomic events whose life-span has expired are discarded.

• Answers to atomic event queries. Answers to atomic event queries are atomic
events; represented as event messages (XML documents). The atomic event must
satisfy the temporal restrictions that might be defined in the event query. An-
swers to atomic event queries consist of the single atomic event that matches the
event query’s structure and a maximal substitution set for the free variables defined
in the event query.

• Answers to composite event queries. An answer to a composite event query is a
composite event. For composite event queries, answers consist of the sequence
of atomic events used for answering the constituent event queries and a maximal
substitution set for the free variables defined in the event query. Additionally, a
composite event query answer includes the the beginning and ending time of the
composite event.

Evaluation of Atomic Event Queries

In order to evaluate an atomic event query, the event detector tries to match the event
query with a single incoming event message. This process is implemented using an
method called simulation unification [25]. Basically, what this method tries to do is to

2note that an atomic event is a special case of a composite event with only one constituent event

66

5. COMPARATIVE FRAMEWORK 5.4. XChange Active Language

find the event query’s structure in the event representation. If the event query and
the current event match, the evaluation process returns an answer to the event query;
otherwise, no answer can be computed.

Evaluation of Composite Event Queries

Evaluation of composite event queries is used for detecting composite events. A com-
posite event is detected when the event query specifying the event is answered by a
sequence of atomic events (a combination of them). More specifically, composite event
queries are evaluated in an incremental manner. This means that every time an answer
to a composite event query’s constituent query is found, the event detector saves the
information about the atomic event used for computing the answer. Let us illustrate
this with an example.

Example 5.3 Incremental evaluation of composite event queries. Consider the com-
posite event query depicted in Figure 5.6, which denotes an event that occurs when both a book
written by "Borges" and a movie directed by "Spielberg" are available at an online marketplace.
For simplicity, we write event queries without the envelope information. The figure also shows
the sequence of atomic events received by the event detector at a given point in time.

and {
book {{ author {"Borges"} }},
movie {{ director {"Spielberg"} }}

}

book{author{"Borges"}}, movie{director{"Spielberg"}}

Figure 5.6: A composite event query defined using the conjunctive operator.

After the first atomic event is received, the event detector finds an answer for the constituent
event query book {{ author {"Borges"} }}; this information is saved by the event detector.
When the third atomic event is received, the event detector is able to answer the event query
movie {{ director {"Spielberg"} }}. At this moment, the event detector knows that both con-
stituent event queries were answered and thus, the composite event query is answered and the
composite event has occurred. Note that using incremental evaluation the event detector is able
to memorize the results of previous evaluations.

Evaluation of Event Queries using Event Trees

Composite event queries registered with the system are internally represented using a
tree-based approach. Leaf nodes implement atomic event queries, while inner nodes
implement the event language’s composers; an internal node represents a composite
event whose constituent events are represented by the node’s children. Figure 5.7 on

67

5. COMPARATIVE FRAMEWORK 5.4. XChange Active Language

the following page illustrates the event tree associated with the event query shown in
Figure 5.6 on the previous page.

In the prototype implementation, every time an atomic event arrives, the event
handler evaluates every partial event query registered in the system. The process of
evaluating composite event queries (i.e. detecting composite events) is implemented
by a recursive function. The function takes as parameters the current atomic event
and a partial event query. Its output is an updated partial event query together with
a set of composite events. This function operates by recursively traversing the event
tree representing the event query being evaluated. If the current node is an operator
node, the function is applied to every child. After processing every child node, the
function determines the composite events for the current operator node based on the
constituent composite events obtained from each child. Every time the function pro-
cesses a node, the set of returned events are sent to the node’s parent. If the node is the
root of the event tree, the event detector notifies the condition evaluator; this means
that an XChange active rule must be triggered.

AND

book{{author{"Borges"}}} movie{{director{"Spielberg"}}}

Figure 5.7: Event query represented using an event tree

5.4.3 Working with Logical Variables

As we mentioned at the beginning of this section, the result of evaluating an event
query is an answer to the query. Besides the sequence of atomic events that match the
event query’s pattern, an answer includes a maximal substitution set. This set specifies
the assignment of values for the free variables appearing in an event query; it is a set
of pairs of the form (variable,value).

During the evaluation of an event query, the event detector must compute, for every
operator node in the event query’s tree, the set of valid composite events. This is done
by considering the constituent composite events returned by the operator’s children.
Additionally, the binding of variables appearing in the constituent event queries must
be computed. Instead of using substitution sets, the prototype implementation works
with constraints among variables. Intuitively, if a variable appears more than once in
the same or different constituent event queries then they must have the same value. In
order to implement this mechanism the prototype discussed here invokes a constraint
solver provided by the language Xcerpt. Let us illustrate this with an example.

Example 5.4 Computing variable bindings. Consider the composite event query de-

68

5. COMPARATIVE FRAMEWORK 5.5. Evaluation Results

picted in Figure 5.8 and the stream of incoming atomic events S1 = book{author{"Dan
Brown"},title{"The Da Vinci Code"} }, movie{director{"Spielberg"},title{"The Da Vinci
Code"}}. The event detector matches the operator’s left-hand side event query with the first
event message; producing the binding {X = "The Da Vinci Code"}. This information, to-
gether with the atomic event just detected is propagated to the node’s parent. When the sec-
ond atomic event arrives, the event detector matches it with the second event query; pro-
ducing in this case the binding {X = "The Da Vinci Code"}. After this, the event detector
tries to compose a composite event for the and-operator by checking the constraints among
variables. Since the value for the variable X is the same in both event queries, a composite
event is detected with variable binding {X = "The Da Vinci Code"}. On the other hand, if the
stream of atomic events is S2 = book{author{"Dan Brown"},title{"The Da Vinci Code"} },
movie{director{"Spielberg"},title{"A.I."}}, the constraints among variables will not be sat-
isfied as {X = "The Da Vinci Code"} when the left event query is evaluated and {X = "A.I."}
when the right query is evaluated.

and {
book {{ author {"Dan Brown"},title{var X} }},
movie {{ director {"Spielberg"},title{var X} }}

}

Figure 5.8: A composite event query defined using the conjunctive operator.

5.5 Evaluation Results

In this section we present the results of the comparative analysis. We proceed by de-
scribing the proposed event detectors for each active language according to the criteria
defined in our comparative framework.

5.5.1 RDFTL

Types of Events

RDFTL fixes the event language used for defining events. Detectable events reflect
changes in RDF repositories caused by the execution of update operations. More
specifically, we can distinguish between two classes of events. The first class is called
node-oriented events and reflects changes to the nodes in the graph-based/triple repre-
sentation of an RDF document. The second class of events is the so-called triple-oriented
events which reflect modifications to RDF triples. Triples can be inserted, deleted or up-
dated; the update of a triple changes the object value of the triple.

The event language does not allow the specification of composite events, i.e. only
primitive events can be detected. Moreover, the type of primitive events that can be

69

5. COMPARATIVE FRAMEWORK 5.5. Evaluation Results

specified (detected) is closely related to the type of update operations supported by
the RDF repository. Furthermore, as no standard update language for RDF exist yet, if
the RDF repository changes, the event language have to be modified so as to match up
with the update language.

Technique for Detecting Events

In both distributed and centralized scenarios events are detected by monitoring the
update operations sent to the RDF repository. The event detector acts as a wrapper that
receives the update operations and then redirect them to the repository. Based on the
type of operation the event engine is able to determine the type of primitive event.
This approach is quite simple and effective and most importantly, it does not depend
on the type of update operations supported by the RDF repository, i.e. everything sent
to the repository is catched.

Although the technique for detecting events in both scenarios is the same, the func-
tions performed by the event detector are not. In the distributed scenario, the event
engine’s work is complemented by an event handler. Event detectors are located at
each peer, whereas event handlers are located at super peers. The event detector de-
tects events and then notifies the event handler. The later is responsible for determin-
ing the triggered rules. On the other hand, in the centralized scenario, triggering of
rules is performed by the event detector. Notice that the first approach is better than
the second one as the task of an event detector should remain as simple as possible.
That is, ideally an event detector should only detect events, compute the event param-
eters and the event’s occurrence time. Then, another module should be responsible for
determining which rule should be trigger. This approach keeps the event detector as
simple as possible and promotes modularity, extensibility and optimization of tasks.

Event Parameters

Besides the event’s occurrence time and the event type, event parameters include the
affected portion of an RDF document, i.e. the set of RDF nodes or triples that were
inserted, deleted or updated by a RDF repository operation. Event parameters are
computed by the event detector using the Query Service provided by the underlying
RDF repository. After an event is detected, the event engine evaluates the RDFTL Path
expression defined in the update operation. The result of the evaluation is stored in the
system variable $delta.

In the centralized scenario, event parameters are easily accessed by rule compo-
nents through the use of the system variable $delta. Regarding exchange of event pa-
rameters in distributed scenarios, the documentation does not mention how it is done.
However, a different approach is needed as the event parameters are computed at the
peer level and consumed at the super-peer level. As a consequence, communication
by means of a system variable is not appropriate and a message-based communication

70

5. COMPARATIVE FRAMEWORK 5.5. Evaluation Results

is required. A possible solution is to use an XML-based markup language to mark up
the information and then, the event engine could send a message to the event handler
with this information. Another solution could be to leave the computation of the af-
fected fragments to the event handler. In this case, the event engine would still send a
message with the event type and the event’s occurrence time to the event handler (us-
ing the same approach as before). Then, the event handler could evaluate the triggered
rule’s event part in order to obtain the affected fragments.

Processing and Communication of Atomic Events

The prototype was built under the assumption that rules can only be triggered by
events that occur locally, i.e. at a peer’s single RDF repository. As a consequence
no distributed event detection is possible. That is, an event occurring at a remote lo-
cation can not trigger a local rule. This implies that there is no event communication
or exchange among peers or super-peers. However, although not directly supported,
distributed event detection is indirectly supported by the system. Following a rule
propagation approach, rules are stored in all the relevant locations. That is, if a rule
might be triggered by events occurring at remote locations, the system propagates and
stores the rule at those locations; for this, each SP and peer keep information about
distribution of rules across the network. Therefore, distributed event detection is in-
directly supported in the system. Rules are still triggered by local events but, several
copies of the rule exist in those places where an event may trigger the rule. This also
implies that no exchange of events among peers or super-peers exist.

Although planned for future extensions, the support for distributed event detection
and execution of actions opens up new issues. Among the most important ones we
identify the following:

• References to external fragments If events occurring at one location may trigger rules
stored at another locations, a mechanism for referring to fragments of metadata
in remote RDF documents must be in place. A possibility here is to consider the
expression resource("uri") of the RDFTL Path expressions when defining an
event expression.

• Remote detection of events Clearly, a mechanism for detecting remote events must
exist. Here, the most common approach is to implement an event engine that
accepts event expressions form subscribers and then, when an event occurs, it
notifies the interested subscribers by sending a message with the event param-
eters. Every peer in the network would have an event detector like this one.
Notice that there is also the need for a method to locate the appropriate event
detector. One possibility is to delegate this task to the ECA engine; based on the
event expression the ECA engine would send the expression to the appropriate
event engine in order to evaluate it.

71

5. COMPARATIVE FRAMEWORK 5.5. Evaluation Results

• Exchange of events Related with the previous issue is the mechanism used for ex-
changing events among peers. The event detectors in the network must agree on
a representation format for events. A possibility is to use an XML-based markup
language, e.g. like with XChange messages [38] or ECA-ML in [7].

Integration and Reuse

Two problems hinder the possibility of integrating and reusing the current event de-
tector prototype in other systems. First, the event detector is implemented as wrapper
on top of an RDF repository, detecting events by monitoring the update operations.
That is, the event engine is tightly coupled with the RDF repository. A solution could
be to implement an event detector as a wrapper for RDF repositories in general. How-
ever, a second problem arise. Due to the fact that there is no standard update language
for RDF yet, different repositories may support different update languages (and hence
event languages). Thus, an event engine suitable for one event language (i.e. RDF
repository) may not be appropriate for another. If a standard RDF update language is
in place then, it could be possible to implement an event engine for RDF repositories
and integrate it with an ECA engine. In this case, the ECA engine would control the
execution of update operations and, after an update is executed, it could invoke the
event engine with information about the operation just executed.

5.5.2 Active XQuery

Types of Events

The event language used by Active XQuery relies on the existence of an update lan-
guage for XML. With this event language, only atomic events can be specified and
detected in the system, i.e. there is no support for definition of composite events as no
composers for combining atomic events are provided. Therefore, and as in the case of
RDFTL, the expressivity of the event language clearly depends on the expressivity of
the update language.

Furthermore, triggers are associated with updates operations executed on the XML
repository at hand. As a consequence, the type of atomic events is closely related to
the type of the update operations supported by the update language. The current
formulation of the language allows the specification of events that reflect insertion,
deletion, rename and replacement of fragments of XML, which are specified by XPath
expressions.

As pointed out in [19], an important type of events that should be detected are the
schema-based events. These events occur when update operations satisfy the constraints
imposed by an XMLSchema, i.e when a constraint is satisfied. The current proposal
does not consider this type of events.

72

5. COMPARATIVE FRAMEWORK 5.5. Evaluation Results

Technique for Detecting Events

Events (modifications to XML data) are detected by the system when the rule engine
executes directives. An evalAfter directives tells the rule engine to compute the set of
AFTER triggers for a given expanded update. The statement given as parameter to the
COMPUTE_AFTER_ONFLICT_SET function represents the update operation that have just
changed the XML repository’s state and thus, raised an event. This means that, when
the rule engine executes an evalAfter directive it knows that the XML repository was
affected by a data manipulation operation and so, it is time to take the appropriate
actions. In the case of evalBefore directives, the difference is that such directives tell the
rule engine to compute the set of BEFORE triggers. In this case, the parameter given to
the COMPUTE_BEFORE_ONFLICT_SET function denotes the update operation that is about
to change the repository’s state, and thus about to rise an event. So, before executing
the update operation, the rule engine must execute the corresponding BEFORE triggers.

An important characteristic of the technique used for detecting events is that there
is no clear separation between the event detector and the ECA rule. There is actually no
event engine responsible for monitoring the repository, computing event parameters
and notifying occurred events. As such, directives play a central role in the detection
of events. The approach to event detection proposed here is similar to the one where
update operations are monitored by the system. Although the lack of an event detec-
tor as a separate module makes more difficult to extend and optimize its functionality,
it seems quite natural to use this technique in this scenario. Specially when the sys-
tem have to deal with BEFORE triggers, which must be triggered before the operations
are actually executed. In this case, the system receives update operations and either
immediately before or after their execution, an event is raised.

Event Parameters

In the system, the type of atomic events is implicitly determined by the type of ex-
panded statement being considered (the type of update operation). This information
is used by the rule engine when computing the set of triggered rules (conflict set for
AFTER and BEFORE triggers). Based on the statement passed as parameter to the COM-
PUTE_BEFORE_CONFLICT_SET or COMPUTE_AFTER_CONFLICT_SET functions,
the rule engine searches the rule base for the correspondent AFTER or BEFORE triggers
whose event component matches the type of statement being considered.

The information about the XML fragments affected by an update operation is stored
in the transition variables OLD_NODE(S) and NEW_NODE(S) 3. These variables are instan-
tiated during the processing step of each triggered rule; using information of the rel-
evant fragments computed during the expansion process. Variables are accessed by
using pointers, thus reducing the storage requirements. Regarding the time of occur-

3which variable to use depends on the trigger’s granularity

73

5. COMPARATIVE FRAMEWORK 5.5. Evaluation Results

rence of events, the rule engine does not actually compute it. However, if needed it can
be set up after the directive is processed. In any case, event parameters are computed
by the ECA rule engine.

The communication among rule components is by means of transition variables.
These transition variables act as global variables that can be accessed by the functions
implementing condition evaluation (condition part of rules) and action execution (ac-
tion part of rules). Besides the already mentioned OLD_NODE(S) and NEW_NODE(S) vari-
ables, the language supports also the definition of transition variables at the rule level.
That is, using XQuery Let clauses, it is possible to define variables whose scope is the
trigger where they are defined; they can be referred to in the condition and action parts
of triggers. As in the case of OLD_NODE(S) and NEW_NODE(S) variables, these variables
are instantiated when each of the triggered rules is being processed, i.e. before evalu-
ating the trigger’s condition and executing the trigger’s actions. In both cases, the rule
engine is responsible for instantiating transition variables.

Processing and Communication of Atomic Events

The proposed system does not contemplate distributed event detection. Therefore,
there is actually no exchange of events among systems. The reactive functionality is
implemented on top of a single XML repository thus, events occur and are detected
locally.

However, there is the possibility to specify an external operation in the action part
of rules. External operations might be useful for sending messages to other systems
about the occurrences of local events. Currently, the system does not support the exe-
cution of external operations and this is planned for future extensions. This possibility
opens up a series of important issues that should be considered; among these we iden-
tify the following.

• Specification of remote events There must be a way of expressing interest in remote
events, i.e. the event part of rules must allow the specification of events that occur
at other locations. BEFORE triggers must be investigated very carefully.

• Perception of remote events If external operations executed as part of active rules in
one node may inform other system about local events, there is the need for im-
plementing a mechanism for receiving such notifications. Here, as with RDFTL
we must define a format for exchanging event parameters and event instances
among systems; XML-based markup language may help.

Integration and Reuse

Since the event detection functionality is tightly coupled with the ECA rule engine (it
depends on the execution of directives), it is not possible to decouple it form the ECA
engine. In the same sense, reuse of other event detectors is not possible.

74

5. COMPARATIVE FRAMEWORK 5.5. Evaluation Results

5.5.3 XChange

Types of Events

Compared with other approaches, specially with those providing reactive functionality
over XML or RDF repositories, the event language embedded in XChange is more
expressive and general. The event language allows to model a considerable number
of situations, ranging from low-level data manipulation in databases or XML/RDF
repositories to high-level, application dependent situations.

Furthermore, the event language allows the specification of both atomic/primitive
and composite events. Atomic events represent happenings in the Web. They can
be the result of data manipulation operations executed on databases (local or remote)
or messages received from other locations in the Web; they carry information about
events that occur outside a system. On the other hand, composite events are defined in
terms of atomic or composite events using the language’s composers. These composers
allow to specify temporal restrictions on a composite event’s constituent events and
temporal combinations of a sequence of atomic events.

Technique for Detecting Events

Event detection is based on evaluation of event queries against a stream of incoming
atomic events. Each time an atomic event (its representation as event message) arrives,
all the registered partial event queries are evaluated. Atomic event queries are eval-
uated by using a method called simulation unification. On the other hand, composite
event queries are evaluated in an incremental manner, considering the tree-based rep-
resentation of event queries. The event detector evaluates a composite event query
by recursively traversing the event tree and evaluating the constituent event queries.
Some important aspects of event query evaluation are the following:

• Incremental evaluation By using incremental evaluation, the event detector needs
not to evaluate constituent event queries that were previously evaluated, thus
reducing the computations needed to evaluate event queries (see example 5.3).
Moreover, incremental evaluation allows to keep the evaluation cost per incom-
ing atomic event constant. Incremental evaluation requires the answers to event
queries to be stored in the system. In the prototype implementation, this is ac-
complished by storing event data (e.g. event parameters) at the nodes of the
event tree that represents the event query being evaluated.

• Event tree-based representation The tree-based representation of event queries
has some important properties. First, it allows to reuse or share common
(sub)expressions within the same event query or between different event queries.
For example, two or more event queries registered with the event detector may

75

5. COMPARATIVE FRAMEWORK 5.5. Evaluation Results

use a common (sub)expression. Instead of creating separate event trees, an alter-
native is to construct an event graph that combines both event trees and stores
the common (sub)expression only once. This alternative has been used in many
event detectors (e.g. [19, 27, 56]).

Second, composite event expressions can be optimized by rewriting them into
equivalent expressions using the language’s operators properties. Notice that
the techniques for rewriting event expressions vary depending on the event op-
erators, i.e. techniques for SNOOP event expression may not be applicable to
XChange event queries and vice versa. Optimization techniques help to reduce
the computations and storage needs required for evaluating event queries.

Third, the tree-based representation is suitable for the implementation of sev-
eral tasks related to event query processing. For example, the current prototype
implements a deletion mechanism for deleting from event trees event instances
whose time has expired.

• Storage for event data The event detection technique used in this prototype requires
the use of suitable data structures for storing event data. For example, operator
nodes must provide storage for the constituent events of the composite event they
represent. In this case, the required data structures depend on the composer’s
semantics.

Event Parameters

For both atomic and composite events, event parameters are computed during event
query evaluation. However, the techniques used for computing them differ from each
other. In the case of atomic events, event parameters are computed during the evalu-
ation of atomic event queries by the simulation unification method. As we said before,
the result of evaluating an atomic event query contains the instantiation of the free
variables appearing in the event query. These free variables constitute the event pa-
rameters. As for composite events, event parameters are computed based on the event
parameters of their constituent events. In the current prototype this is done by invok-
ing the constraint solver provided by Xcerpt [64]. Additionally, for both atomic and
composite events, the event detector computes the raising-time, reception-time,
reception-id, the sender and recipient of an event. For composite events the event
detector also computes the starting and ending-time.

This approach to event parameter computation for composite events introduces
modularity into the event detector architecture. The constraint solver can be replaced
by a more efficient one, as long as a wrapper is in place.

Communication among rule components is by means of variable bindings. Vari-
ables instantiated during event detection are used for exchanging event-related at-
tributes to other parts. By referring to these variables the condition and action parts

76

5. COMPARATIVE FRAMEWORK 5.5. Evaluation Results

can have access to the event-related information (event data). Variables can be bound
to event data (variables defined inside event queries), or to the result of an event query
evaluation, i.e. an atomic or composite event.

Processing and Communication of Atomic Events

With XChange, events occurring in the Web are communicated between systems
(XChange-aware systems) by sending event messages. They are communicated using
a push strategy. This type of messages can be sent internally (posted) or between re-
mote Web sites. Event messages are represented as XML documents. Incoming atomic
events are processed by the event detector and serve as the basis for composite event
detection. Moreover, clients (ECA engines or other systems like e.g. event detectors)
can register atomic event queries with the event detector. In this way, the event detec-
tor can not only detect composite events but also atomic events. When atomic events
are delivered to the event detector by e.g. event brokers, it then notifies the interested
subscribers.

An important aspect to consider when discussing event communication is the
method used to contact event detectors. That is, an ECA rule engine or event de-
tector that needs to be notified about the occurrence of some event needs to contact
another event engine. There might be many event detectors available in the Web, so
an issue here is how to contact the right one. A possibility is to use a system similar to
the DNS, where event detectors can be registered and then searched for by interested
systems, e.g. ECA engines. Another possibility is that each event engine has a local list
of trusted event detectors. A third possibility would be to use the same approach used
in the discovery of Web Services.

The authentication issue must also be considered when dealing with registration
and notification of events between systems. In the current prototype this is not consid-
ered. Due to the fact that this is a prototype implementation, atomic events are signaled
to the system by “dummy" modules. Furthermore, the current implementation does
not support communication through HTTP. Instead, only raw TCP/IP connections can
be used for receiving and sending data. This is of course due to the fact that the current
version is a prototype and the programming language’s support for Web protocols is
poor.

An advantage of using XML to represent event messages is that it is possible to use
XML query languages for extracting information from them.

Integration and Reuse

The current prototype implements the event engine as a thread (implemented by a
recursive function4). The event engine communicates with the condition handler using

4actually every module in the system is implemented as a thread

77

5. COMPARATIVE FRAMEWORK 5.5. Evaluation Results

a message-based communication channel and receives input data (atomic events) from
a network link. All the information regarding registered rules and event trees is stored
in the system and accessed by the event detector (and the other modules) through a
parameter variable. As a consequence, the event engine is tightly coupled with the
system itself, thus making impossible to reuse and integrate the current prototype in
other systems. The selection of Haskell as the programming language has notably
influenced the integration and reuse aspect of the event detector.

In order to solve this problem, what we need in principle is to include the informa-
tion about event trees and event queries registered with the system inside the event
detector. Events could be received and notified by using Web protocols for exchanging
messages between the event detector and other systems. Here, a Web Service-based
implementation would be an appropriate choice.

78

Chapter 6

Implementation of a Complex Event
Detector

Contents
6.1 Introduction . 80

6.2 Architecture for Implementing the ECA Framework 80

6.3 Implementation Aspects . 82

6.4 Evaluation of the Implemented System 93

In this chapter we present the implementation of a prototype event detector for the
general framework proposed in [7]. Its implementations is based on the results ob-
tained from the previous comparative analysis of several event detectors. We have
used a combination of techniques for processing incoming event instances, detecting
events and representing event expressions. After describing its implementation we
proceed to perform an evaluation of the implemented system. The evaluation is based
on the criteria defined for the comparative framework and aims at detecting those as-
pects of the implementation that require further work. Part of the work described in
this chapter was previously presented in [8].

79

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.1. Introduction

6.1 Introduction

In this chapter, we present the prototype implementation of a complex event engine
that detects events in the context of the General Language for Reactivity and Evolution in
the Web [7]. Although this reactive language imposes no restriction on the type of event
(sub)languages that can be used, we have focus our attention on a sublanguage of the
event algebra SNOOP.

The design and implementation of such event detector was based on the results
obtained from the analysis and comparison of different event engines presented in
this work. We have used a combination of techniques for processing incoming event
instances, detecting events and representing event expressions. However, due to the
characteristics of the architecture proposed for the framework [7], the design and im-
plementation of the event engine must consider important aspects such as the inter-
action with different language processors and the ECA rule engine, the evaluation of
the so-called opaque expressions, the evaluation of composite expressions expressed
in other event languages, the communication by means of variable bindings and the
markup language for event expressions and variables.

Before focusing our attention on the implementation aspects and event detector
itself, we give an overview of the architecture proposed for implementing the general
ECA framework.

6.2 Architecture for Implementing the ECA Framework

The implementation of the ECA framework proposed in [7] requires an architecture
that, not only considers the distributed aspect of ECA rules but also the heterogeneity
of languages and concepts. Recall from chapter 4 (section 4.4) that the specification of
ECA rules in the framework requires the use of appropriate languages for each com-
ponent. The event, condition and action parts of rules are specified by expressions of
an event, condition (query), and action language respectively. Furthermore, the ECA
framework allows the flexible combination of these languages, thus it is possible to de-
fine rules of a rule base using different event, conditions and actions languages. When
defining ECA rules, every rule component is associated with the language used for its
specification by using a language identifier, like for example the language’s URI.

The architecture proposed in [7, 54] is a service-based, distributed architecture
where every language is associated with a Web Service that implements the language.
For example, for an event language, a service would implement the semantics of the
language’s composers and the processing of atomic events. A Web Service for a lan-
guage used for specifying the condition part of rules would probably implement a
query language, whereas an action language would be implemented by a service ca-
pable of executing local and distributed actions. A valid assumption here is that these

80

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.2. Architecture for Implementing the ECA Framework

Web Services may be available at the URI specified when defining ECA rule compo-
nents. For example, the Web Service implementing an event detector for a given event
algebra may be accessed at the event algebra’s URI.

This service-based approach enables the architecture to accommodate a good num-
ber of Web Services required for executing ECA rules in the Web. Among these we may
have ECA rule engines, atomic and composite event detectors for application-dependent events,
event detectors for application-independent events, Web transactions engines, query processors,
underlying active databases and action processors. Notice that, in order for these compo-
nents (Web Services) to be integrated in the architecture they must support the commu-
nication with other components by means of variable bindings. Figure 6.1 illustrates
the proposed architecture. Each composite event detector implements an event algebra
and thus, it detects composite events defined by expressions of that algebra. For exam-
ple, we may have one event detector implementing the SNOOP language and another
for the event language defined in XChange. ECA rule engines may query and update
Web sites as part of the rule execution mechanism. Atomic event detectors are respon-
sible for detecting atomic events in the Web. The may provide atomic events directly
to the composite event engines or to event brokers. An event broker acts as an inter-
mediary between atomic and composite event detectors. We may have for example,
event brokers associated with certain type of Web sites. The interaction mechanism be-
tween atomic event detectors and composite event detectors can be application-centered
or language-centered [7].

Web Site A

Composite Event Engine
event algebra:SNOOP

Client A

ECA Engine A

Event Broker
:Online stores

Composite Event Engine
event algebra:XChange

Atomic Event Engine
Atomic events: amazon.com

Rule
registration

Provides Atomic events

Web query

Web Site B

Updates

ECA Engine B
Client B

Composite Event Detection

Composite Event Detection

Rule
registration

Figure 6.1: An architecture supporting the proposed ECA Framework

ECA rules can be processed locally at the nodes where they were defined and stored
or, on the other hand, they can be registered at an ECA rule engine (a Web Service im-
plementing a rule engine) that processes registered rules. In order to execute a rule,
an ECA engine uses the URI references specified in each of the rule components to in-
voke the Web Service providing the language processor. Notice that in this scenario,
several event detectors, query engines and action processors may be available as Web
Services in the Web. Then, depending on the URI associated with each component

81

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.3. Implementation Aspects

(language’s URI), the ECA engine interacts with them. Furthermore, an event engine
may need to interact with several other event evaluators as the event expressions reg-
istered with it may use different (sub)languages to define (sub)expressions. Then, the
event detector needs to contact the appropriate Web Services in order to evaluate these
(sub)expressions. The same is valid for query engines and action processors.

6.3 Implementation Aspects

This section is devoted to the discussion of the most important aspects of the prototype
implementation. We will see in some level of details how the event detector was im-
plemented. In particular, we will describe the architecture of the event detector, how
it handles event expressions and the mechanism used for detecting composite events.
This information is complemented with the class diagram presented in appendix A.

6.3.1 Architecture of the Event Detector

The event engine was developed in the context of the general ECA framework pre-
sented before. Therefore, the it assumes events are registered by a general ECA engine
and marked up using the XML-based markup language for ECA rules proposed for the
framework. The prototype was fully implemented in Java as a Web Service and uses
the API provided by [9] 1. This Java library implements an evaluation engine accord-
ing to the framework introduced before and it provides the set of classes implementing
expressions in our language as well as the web services functionality.

The event engine detects composite events specified by event expressions of an il-
lustrative sublanguage of the SNOOP algebra [28, 55]. Clients (ECA engines or other
components in the architecture) register event expressions with the event engine when
they want to be notified of the occurrence of events. Along with the expressions, clients
define the variables (input and output) associated with the expressions they register.
All the data necessary to detect an event is passed to the engine by using input vari-
ables (variable-value pairs). Output variables are used by the event engine in order to
communicate the result of an event occurrence. Therefore, the communication mecha-
nism between the engine and its clients is implemented by means of variable bindings.
Additionally, the result of an event evaluation comprises the set of event instances that
contribute to the detection of the event. For example, consider the atomic event de-
fined by the expression newBook(BookTitle,"Dan Brown",BookPrice); upon detection
of availability of a book whose author is "Dan Brown", the engine notifies the client
and sends it the bindings for the variables specifying the title of the book and its price.
Notice that some of the variables may be bound from the start (input variables), e.g.

1Note: the event detector was implemented using the version of the R3 prototype (API) available
at the moment of writing this thesis. Current versions of the API may provide extra functionality not
implemented in the event detector

82

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.3. Implementation Aspects

like the implicit variable Author in the example above whose value expresses inter-
est in books of the given author. In the same way that event expressions are marked
up, the result of an event evaluation is also marked up using an XML-based markup
language.

The event engine assumes that the constituent events of a composite event are de-
tected outside the system (by atomic event evaluators); after atomic events are de-
tected, they are signaled (provided) to the event engine. Incoming atomic events are
processed by the event engine and combined according to the semantics of the lan-
guage’s operators used to define the composite events. In the current prototype im-
plementation, the event engine uses a dummy atomic event evaluator that provides
atomic event instances to the engine. The result of evaluating atomic events is again a
set of variable bindings and the atomic event instance that was detected.

The event detector’s architecture comprises three main modules: an expression han-
dler, an event graph handler and an atomic event instances handler.

• The expression handler is responsible for accepting event expressions and check-
ing that expressions are syntactically correct. It accepts registration requests from
clients through the event detector’s interface and once the expression has been
registered it passes the control to the event graph handler.

• The event graph handler is responsible for representing and storing event ex-
pressions using event trees. Event trees are combined into an event graph in
order to exploit commonalities among expressions and reduce the memory re-
quirements. This module is also responsible for processing the incoming atomic
event instances signaled to the event engine and detecting the composite events
for which these instances are relevant. In summary, this is the most important
module of the event detector as it implements the composite event detection.
This module is implemented by the class EventGraph.

• The atomic instances handler is in charge of pre-processing the incoming atomic
event instances detected outside the system and signaled to it by means of mes-
sages. For every new event instance that arrives to the system, this module checks
whether the instance contributes to any of the atomic event expressions currently
registered with the system. If the instance may be used for at least one atomic
expression then this module passes it to the event graph module for event detec-
tion, otherwise it is discarded.

The external actors of the system include clients that want to be notified about the
occurrence of composite events and atomic event brokers which are responsible for pro-
viding (constituent) event instances to the event detector. We may have several of
these event brokers, for example one for every different domain from which the event
detector can receive constituent event instances.

83

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.3. Implementation Aspects

Figure 6.2 depicts the event engine’s architecture as well as the relationship between
event brokers, clients and the event detector.

Event
Broker

Client

Event Detector’s public interface

Expression Registration Handler

Event Graph Handler
Event Instance

Handler

Expression
RegistrationDetected Events

Event Detector

Figure 6.2: The architecture of the event detector

The event detector is implemented by the class EventDetectionEngine, which is a
subclass of the abstract class Evaluator provided by the R3 API mentioned before. The
event detector runs as a Web service using the SOAP implementation Apache Axis 2.
For additional information about the R3 Java library the reader is referred to [9].

6.3.2 Event Model and Event Expressions

In the system, an event is a happening that occurs somewhere in the web, i.e. at
some location and at some point in time. An event can be the insertion of a tuple
in a database or the update of an XML or RDF repository. Also, events can be high-
level application-dependent happenings such as the cancellation of a reservation on a
flight from Lisbon to Chicago on September 17. Events are classified as atomic events or
composite events. Atomic events represent happenings outside the system and are no-
tified (in a push manner) to the system by messages. From the event detector’s point
of view, an atomic event is something that happens in the web and is received along
with the event’s information. For example, an atomic event may reflect the availability
in stock of a movie DVD (in the Web of movie and music selling). Such atomic event
may be specified by the atomic event expression newMovieDVD(MovieTitle,DVDPrice).
Composite events, on the other hand, are complex events specified by event ex-
pressions written in some event algebra and defined in terms of atomic and com-

2http://ws.apache.org/axis/

84

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.3. Implementation Aspects

posite events. They are detected by the event engine. For example, the event
newCD(CDTitle,CDArtist)OR newBook(BookTitle,"Dan Brown") is a composite event.
Notice that, atomic events in the system may be composite events in another systems.

The event algebra implemented by the event engine is an illustrative subset of the
SNOOP event language. This sublanguage includes the disjunctive operator OR, the
sequence operator SEQ (also denoted as ‘;’) and the conjunctive operator ANY. For
a formal specification of the semantics, the reader is referred to [27]. Expressions of
this event language denote the events that the event engine must detect. The engine
accepts and processes three types of event expressions: atomic, composite and opaque
expressions. Atomic and composite expressions specify atomic and composite events re-
spectively, as discussed above. Composite expressions use the language’s operators
to define complex events based on atomic events and previously defined composite
events. On the other hand, opaque expressions denote events that occur outside the
system, i.e. they are treated as atomic expressions; and they can not be further decom-
posed into more basic events. The difference here is that opaque expressions define
events using some external language (understood by some other language engine).
For example, an opaque expression may define an event using Java code, Prolog code,
SQL code or any other language, provided that an engine for evaluating such language
exist.

6.3.3 Markup Language for ECA Rules

Event expressions and associated variables are represented using variant of the XML-
based markup language proposed in [7]. In this markup language, event expressions
are defined by specifying the event, condition and action parts, as well as the variables
used for communicating relevant information. In accordance with the proposed frame-
work, each rule part defines the URI associated with the language used for specifying
that part. The XML elements used for marking up expressions depend on the type of
expression being represented.

• Atomic expressions. Atomic expressions are represented by specifying the con-
struct’s name (using the operator attribute), the variables declaration (with el-
ement), the construct’s parameters (using having and parameter elements) and,
the relationship between variables and parameters. In Figure 6.3 on the
next page, lines 4 to 9 show the definition of the atomic event expression
newMovieDVD(MovieTitle,DVDPrice) 3.

• Opaque expressions. Opaque expressions are represented by specifying the lan-
guage’s URI, the opaque content to be evaluated and the variables declaration. In
Figure 6.3 on the following page, lines 14 to 18 show the definition of an opaque
expression.

3namespace declaration is omitted for simplicity

85

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.3. Implementation Aspects

• Composite expressions. Composite expressions are represented by specifying the
operator’s name, the language’s URI, the arguments (sub expressions) to which
the operator is applied, the variables declaration (input and output variables)
and, the operator’s parameters if needed. An example of a composite expression
built out from atomic and opaque expressions is depicted in Figure 6.3.

1 <eca:expression operator="OR" language="http://snoop-r.org">
2 <eca:argument name="left">
3 <eca:solve>
4 <eca:expression operator="newMovieDVD" language="http://movies.com">
5 <with><Variable name="MovieTitle" mode="bind"/></with>
6 <with><Variable name="DVDPrice" mode="bind"/></with>
7 <having><parameter name="mtitle" bindVar="MovieTitle"/></having>
8 <having><parameter name="mprice" bindVar="DVDPrice"/></having>
9 </eca:expression>
10 </eca:solve>
11 </eca:argument>
12 <eca:argument name="right">
13 <eca:solve>
14 <eca:expression language="http://languages.org/prolog">
15 <literal>
16 ?- newCD(ListOfCDs), member(cd(myCD),ListOfCDs).
17 </literal>
18 </eca:expression>
19 </eca:solve>
20 </eca:argument>
21 </eca:expression>

Figure 6.3: A composite event expression.

Variables are represented by specifying their name, their value and their mode
(used for defining input and output variables). Input variables are defined by set-
ting the attribute mode’s value to use and in this case, the variable’s value must be
specified (using the literal element). Output variables are defined by setting the mode
to bind. Additionally, variables are related to the parameters of atomic events using the
attribute bindVar in the parameter element. Line 5 in Figure 6.3 shows the definition of
variable MovieTitle.

6.3.4 Representing Event Expressions: Event Trees and Event Graph

Event expressions are stored in the system by using event trees. Leaf nodes implement
atomic and opaque expressions (atomic event types), while inner nodes implement the
language’s composers (composite events). Since different event expressions registered
with the event engine may use the same subexpressions and, different clients may
register the same expression, the detector uses an event graph in order to combine

86

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.3. Implementation Aspects

different event trees and support the reuse of common (sub)expressions. That is, if two
event expressions A and B use the same subexpression C, the event tree representing
the expression C is shared by the event trees representing the expressions A and B.
This means that the event graph will store the information associated with the event
tree being reused only once, as opposed to creating the same (sub)tree more than once.
As a result of this combination, every leaf in the event graph may have several parents.
The event graph is thus a collection of event trees.

Example 6.1 Sharing event trees. Consider the following two composite expressions where
newBook, newCd and newMovieDVD represent atomic event types:

A = OR(newBook(BookTitle,"Dan Brown"),newCD(CDTitle1,"U2"))

B = SEQ(newCD(CDTitle2,"The Corrs"),newMovieDVD(MovieTitle,"2006"))

Both expressions share the subexpression C = newCD, i.e. the atomic event type newCD. As
a consequence, the event trees representing the expressions A and B will share the (sub)tree as-
sociated with C (a leaf node in this case). Figure 6.4 illustrates the event trees and the resulting
event graph.

OR

newBook(BookTitle,"Dan Brown")

newCD(CDTitle1,"U2")
newCD(CDTitle2,"The Corrs")

newMovieDVD(MovieTitle,"2006")

SEQ

Event Tree A

Event Tree B

Figure 6.4: An Event Graph sharing two Event Trees

In the system, the event graph functionality is implemented by the class EventGraph
whereas event trees are implemented by the class EventTree. Class EventGraph pro-
vides methods for storing an event expression in the event graph, deleting event ex-
pressions and processing incoming event instances signaled to the system and pro-
vided to the event graph by the atomic instance handler. The R3 library provides the
implementation for event expressions.

6.3.5 Registration of Event Expressions

When a client registers an event expression, the event engine tries to construct the event
tree that represents the expression. The construction of event trees is an incremental,
bottom-up procedure that starts at the leaf nodes representing the atomic event types

87

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.3. Implementation Aspects

defined in the expression and ends at the root node (an operator node). Once this pro-
cess reaches the tree’s root, the event engine adds the event tree to the event graph and
the registration process ends. During this process, syntactically incorrect expressions
are discarded and their incomplete event trees are deleted.

• Processing of atomic expressions When an atomic expression is processed, the de-
tector checks (based on the operator’s name) whether the leaf node representing
the atomic event type described by the expression is already in the graph. The
event engine does this by accessing a hash table that contains all the atomic event
expressions registered with the system. If that is the case, the event engine reuses
the node, otherwise a new leaf node is created and added to the event tree be-
ing constructed. Notice that the event engine needs to distinguish between an
atomic event type (its definition) and the events (instances) of that event type. In
the system, every leaf node stores information about the events it represents. This
information includes the variables to be bound as a result of the event occurrence
(output variables), the rule or expression the event belongs to, the parent to be
activated when the event occurs and an evaluation’s ID (implemented as an URI)
that uniquely identifies the evaluation of the expression. Every leaf may store
event instances from different expressions (all of them of the same event type) as
nodes can be shared.

• Processing of composite expressions The processing of a composite expression de-
pends on the class of composite expression being considered. Here we distin-
guish two cases. In the first case, if the composite expression is part of the event
algebra being implemented, the event detector decomposes it into smaller subex-
pressions and processes them recursively. In the other case, if the expression
belongs to a different language (an external expression), the event engine treats
the event denoted by the expression as if it were an atomic event and so, it creates
a leaf node to represent the event. From the detector’s point of view, external ex-
pressions are treated as expressions denoting atomic events; i.e the event engine
will issue a call to another evaluator to evaluate the expression and then process
the results (the variable bindings).

• Processing of opaque expressions When the event detector processes an opaque ex-
pression, it creates a new leaf node, stores information about the variables used
in the expression (input and output variables) and then adds the event tree (a
single node) to the event graph. In this case there is no reuse of event tree nodes.

6.3.6 Composite Event Detection

The detection of composite events follows a bottom-up process that starts when an
atomic event instance is signaled to the system. Incoming atomic events are processed

88

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.3. Implementation Aspects

according to the recent context defined in [55]. When the event detector receives a
message indicating that an event instance ei of an atomic event type Ei has occurred,
it computes the instance’s occurrence time, stores the instance’s information (variable
bindings) in the leaf node associated with Ei and then activates the node. Event in-
stances are propagated from the leaves up to the event tree’s root. Events are detected
when the processing reaches the event tree’s root. The detection of composite events
involves several aspects.

Evaluation of Atomic Expressions

Events denoted by atomic expressions, opaque expressions and external composite ex-
pressions are detected outside the system. Therefore, the event engine evaluates these
expressions by invoking another event evaluator (event provider or broker). In order
to evaluate these expressions, the detector sends to the event provider the expression
to be evaluated together with the variable bindings for the input variables used in the
expression. As a result of this operation, the event detector receives either an evalua-
tion error or an evaluation ID (again an URI) that uniquely identifies the expression’s
evaluation. If the result of such evaluation is a not-null evaluation ID, this means that
the event provider will evaluate the expression asynchronously and then communicate
the results. In this case, what the event engine must do is to store this ID in order to
process future results. This ID is stored at the leaf representing the event type denoted
by the expression that was just evaluated. On the other hand, if the detector receives
an evaluation error, it marks the event expression as failed and starts a process to check
whether the composite expression is active or not (it still can produce events).

Event expressions evaluated outside the system require the event engine to be able
to contact a valid event evaluator (broker) for the given expression. In a realistic sce-
nario this would require the use of Web services providing event detection capabilities
for the types of event expressions being evaluated outside the system. At the moment,
the current prototype implementation implements this by a “dummy" module that
provides the required functionality.

Activating Leaf Nodes

When a leaf node is activated, the event engine validates the event instance stored
at the node and then, if the validation is successful, it propagates the instance to the
appropriate parent and activate it. If an event instance is not valid, the event detector
discards the instance. An event instance is valid if the expected output variables were
instantiated during the evaluation of the instance’s event expression and, the result of
this evaluation contains no extra output variables. In other words, an event instance is
valid if the variable bindings produced as the result of the event evaluation are valid.

In order to validate a set of variable bindings we employ the following technique:
Let’s assume that after an event instance is notified to the system the variable bindings

89

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.3. Implementation Aspects

are available as a list in the variable Tuple. Let’s also assume that the output variables
of an atomic event expression are available as a list in the variable FreeVars and that
the input variables associated with a composite expression are stored in the variable
Input. Then, the variable bindings produced by an atomic event provider are valid
if every variable Vi in Tuple is either defined in FreeVars or in Input. Additionally,
every variable Vj in FreeVars must be defined in Tuple. For example, suppose that
the event detector is waiting for the atomic event newBook(Title,"Dan Brown",price)

and Title is an output variable in FreeVars. If the event instance received by the detec-
tor is newBook("The Da Vinci Code","Dan Brown","23.90") but no variable bindings
are produced, the event engine cannot bind the variable Title and hence the event in-
stance must be discarded. In the same way if the variable bindings contain something
like Tuple = [<Price,"23.90">], the event detector must discard the instance as the
variable Title is not bound and it should be.

Activating Operator Nodes

Although the computation performed by an operator node depends on the operator’s
semantics, every operator performs a series of common tasks upon activation. These
tasks include storing the event instance propagated from its children, computing the
variable bindings associated with the composite event represented by the node and
notifying composite events if needed.

Computing Variable Bindings

When an operator node is activated, the event detector computes the variable bind-
ings associated with the composite event being detected. That is, variable bindings
from all constituents events are joined; the constraints among variables must be satis-
fied. For example, in the expression SEQ(newCD(T,"U2"),newMusicDVD(T,"U2")), the
values of the variable T must coincide. That is, the output variable of atomic event
newCD is an input variable for the event newMusicDVD. Notice that for operators SEQ and
ANY the variable bindings are joined but, for operator OR this is not necessary; the vari-
able bindings at the operator OR are the ones provided by the event instance that has
occurred.

Notifying Composite Event Occurrences

When a composite event is detected, the system must return the variable bindings as-
sociated with the composite event and the sequence of events that have contributed to
its detection4. Additionally, the event engine informs the client whether the composite
event expression will produce future results or not. To notify this, the event engine re-
turns the expression’s next evaluation ID that uniquely identifies the next evaluation of

4the sequence of constituent event instances is marked up using an XML-based markup similar to
the ECA-ML

90

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.3. Implementation Aspects

the expression. In our case this value is always the expression’s ID that was generated
at the expression’s registration time. So, if there is a future evaluation, the expression’s
next evaluation ID is set to the expression’s ID. But, if the event cannot occur anymore
(e.g. because one of its constituent events will not occur again), this value is set to null.

Example 6.2 Notification of detected events. Suppose the event expression A =

OR(newCD(CDTitle,"U2"),newBook(BTitle,"Dan Brown")) is registered with
the event engine with ID = 15 and that at time t1 the event instance newCD("Boy","U2")
occurs; with variable bindings Tuple=[<CDTitle,"Boy">] and events sequence
Literal=<expression operator="newCD"/>. As a result of this, the event engine
detects the composite event OR at time t1 and returns a result where:

NewEvaluationID = 1

Variable Bindings = [(CDTitle,"Boy")]

Sequence of events = "

<expression operator="OR">

<argument>

<expression operator="newCD"/>

</argument>

</expression>"

Implementing Operator OR’s Semantics

When the node is activated, the event instance propagated from one of its children is
stored at the node and a composite event instance is created; the propagated instance
is its only constituent event. This composite instance is then propagated to the node’s
parents.

Implementing Operator SEQ’s Semantics

Upon activation, the SEQ operator stores the propagated event instance. Since the op-
erator might be shared by different expressions, the event detector keeps separate stor-
age for instances of different expressions. Moreover, since the order of the operator’s
constituent events matters, the event detector stores left and right children separately.
When the operator node is activated, the event engine checks which child has occurred.
If the right child has occurred, it checks whether the left child has occurred. If so, it
compares the events’ occurrence time and; if the time constraints are satisfied, it com-
putes the variable bindings. If the left child has not occurred yet, the right child is
discarded.

5although the ID is an URI we use numbers for simplicity

91

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.3. Implementation Aspects

Implementing Operator ANY’s Semantics

The storage requirements for this node are similar to the SEQ operator’s. The only dif-
ference is that the order of the children does not matter. When the operator node is acti-
vated, the detector stores the event instance and then, it checks whether the number of
constituent events already detected is equals to the operator’s parameter (numberToDe-
tect). If so, the time restrictions are checked; if they are satisfied, the variable bindings
are computed. After this, the event detector constructs a composite event instance and
activates the appropriate parent. If, on the other hand, the number of detected events
is less than the number of required events, the event detector continues normally.

6.3.7 Deletion of Registered Event Expressions

Event expressions registered with the system can also be unregistered. An expression
is deleted from the system by deleting from the event graph the event tree representing
the expression (expressions are identified by a URI associated with them). Since an
event tree may reuse leaves and subtrees of another event trees, the detector checks
whether a node in the event tree is being used by another tree before deleting it. In
order to delete an event tree, the detector visits it in pre-order mode and processes
every node according to its type. If the node is a leaf and is not being used by any other
event tree, the node is deleted from the event graph; otherwise it is left. In any case,
the event engine deletes the expression’s related information from the leaf, i.e the event
expression stored at it. Now, if the node is an operator node, the event detector checks
whether the node is being used by another event tree. If the node is not being used, the
detector deletes the event trees associated with the node’s children and then deletes
the operator node from the graph. If the node is used by other trees, the event detector
deletes the event trees associated with the node’s children as well as any composite
event instance stored at the node but, it keeps the node in the graph. Let’s illustrate
this with an example.

Example 6.3 Deletion of Registered Event Expressions. Let’s suppose that at a given
point in time the following two event expressions are registered with the event detector:

A = OR(newBook(BT,"Dan Brown"),newCD(CDT1,"U2"))

B = SEQ(newCD(CDT2,"The Corrs"),newMovieDVD(MT,"2006"))

Figure 6.5 on the facing page depicts the event graph before and after eliminating the event
expression B.

92

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.4. Evaluation of the Implemented System

OR

newBook(BT,"Dan Brown")

newCD(CDT1,"U2")
newCD(CDT2,"The Corrs")

newMovieDVD(MT,"2006")

SEQ

Event Tree A

Event Tree B OR

newBook(BT,"Dan Brown")

newCD(CDT1,"U2")

Event Tree A

Figure 6.5: Event graph before and after deleting expression B

6.4 Evaluation of the Implemented System

In this section we evaluate the implemented event detector according to the criteria
previously defined for the comparative framework. The aim of this evaluation is to
highlight the limitations of the current implementation and detect those aspects of the
prototype that require improvements and extensions.

Types of Events

The prototype developed for this active language implements a generic event lan-
guage; a sublanguage of the event algebra SNOOP. As such, it allows the specification
of both atomic and composite events. The later ones are defined by combining atomic
and composite events with the language’s operators. Furthermore, and in contrast
with other approaches, the event language allows the definition of composite event
expressions whose sub expressions are written in another event language or program-
ming language (using the so-called opaque expressions). Event expressions in the lan-
guage can be used for modelling any type of situations, ranging from low-level data
manipulation in databases or XML and RDF repositories to high-level, application de-
pendent situations. Moreover, atomic events may occur remotely at other Web sites.

Although the event language implemented by the event engine is expressive
enough to analyze several aspects of event detection and, it allows to model a rea-
sonable number of situations, it must be extended to provide a more expressive set of
operators. This will allow the modelling of a wider range of situations.

Technique for Detecting Events

The implemented prototype detects composite events expressed by event expressions
registered with the event detector. The event detector assumes that event expressions
are previously registered with some ECA engine as part of some ECA rule; however,
this does not represent a restriction as event expressions could be, in principle, regis-
tered by any entity requiring detection of events.

93

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.4. Evaluation of the Implemented System

The event engine represents event expressions using a tree-based approach. Leaf
nodes represent atomic event types defined by atomic event expressions or opaque
expressions. Inner nodes (operator nodes) represent composite events and implement
the operators’ semantics. Moreover, nodes provide storage for event data, i.e. event
instances detected so far and event parameters (variable bindings). Composite events
are detected when atomic events are received and combined according to the opera-
tors’ semantics; an incremental evaluation of event expressions as with XChange. In-
coming atomic events are injected at the leaf nodes and from there they are propagated
in a bottom-up fashion up to the event tree’s root. Furthermore, the event engine relies
on the existence of language processors (event detectors in this context) for detecting
composite events. As composite event expressions may contain (sub)expressions from
other languages, the event detector needs to contact other event engines so as to eval-
uate those (sub)expressions.

Our decision to use event trees was influenced by the advantages this approach
provides. One of this advantages is that it is possible to exploit commonalities among
event expressions. In particular, the event engine combines event trees into an event
graph thus, reusing common (sub)expressions (see example 6.1). As a consequence,
storage requirements can be reduced as same expressions are not stored more than
once. Moreover, a single atomic event may contribute to detect different composite
events, thus reducing the computations needed in order to detect them. Two important
issues arise when expressions can be shared using event trees.

• Deletion of event expressions Event expressions registered with the system may be
unregistered by the subscribers. This implies that the event tree representing the
expressions must be deleted form the event graph. Here, care must be taken to
avoid eliminating a node that is being used by other event trees. In this proto-
type, the event engine traverses the correspondent event tree and deletes from
it those nodes that are not being used by other trees. This also shows that the
tree-based representation is suitable for the implementation of different tasks re-
garding event expressions.

• Registering expressions Imagine a situation where the event expression A = E1 AND

E2 is registered with the event detector and the leaf node representing E2 contains
an event instance at time t1. Let us suppose that event expression B = E2 OR E3

is then registered with the event engine at time t2 and that, as a result of expres-
sion optimization the leaf node for E2 is shared among event trees. A question
here is whether or not the event instance stored at E2 should be considered for ex-
pression B. The approach taken in this prototype is to ignored any previous event
instances stored at the nodes of an event tree. Only event instances occurring
after the expression registration time are considered. An alternative would be to
built a different event tree for every expression but, this would cause to lose the

94

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.4. Evaluation of the Implemented System

advantages gained from expression optimization. Another possibility is to filter
out event instances immediately after an event expression is registered.

The event engine implemented by this prototype could be extended and improved
in several ways, specially by reusing and adapting previous techniques used for event
detection. In this respect, we identify some key aspects that must be revised and/or
extended.

• Type system for variables The current prototype does not take into account the type
of variables. Using types we can implement additional checks when detecting
events. Here, as proposed in [7], an ontology specifying a type system may be
used as it allows for sharing of values.

• Computation of variable bindings The approach used in XChange [38] for comput-
ing variable bindings seems to be adequate for this event detector. In principle,
it would be possible to invoke a constraint solver in order to compute the vari-
able bindings. However, a deep analysis of the performance of this and other
alternatives should be made.

• Expressive power Although the language implemented by the current prototype is
suitable for a wide range of applications and is expressive enough to analyze dif-
ferent aspects of event detection, we would like to extend its expressivity. In this
sense, the implementation of cumulative operators (SNOOP language) would
provide a higher expressivity, extending in this way the applicability of the eval-
uator. Also, other parameter contexts could be implemented.

• Detection window A detection window specifies the period of time during which
event instances stored in the system are still valid, i.e. they can contribute to the
detection of composite events. The use of a detection window ensures that event
instances are eventually discarded from the event engine, reducing in that way
the storage requirements. The current prototype does not implement a detection
window. That is, event instances are stored in the event graph until either a
composite event is detected (and so instances that contributed to the detection
are deleted) or the corresponding event expression is unregistered. However, if
we consider that the event engine may receive a considerable number of event
instances along its history, keeping instances in the system forever is not a good
option. To cope with this problem several alternatives exist. For example, in [52]
every rule is associated with a time interval. This interval determines the size of
the detection window for every particular rule. Periodically, a function checks the
event instances stored in the system for every rule. Those instances that do not
fall inside the detection window are discarded. The advantage of this approach
is that we can specify a different detection window for every event expression,
e.g. based on an estimate of the frequency of atomic event occurrences for the

95

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.4. Evaluation of the Implemented System

type of events specified by the expression. However, this technique requires to
select an appropriate time interval for performing periodical checks.

• Optimization of event expressions As pointed out in [28], an event can be speci-
fied by several equivalent expressions. In this sense, rewriting techniques may
simplify the detection process and uncover common (sub)expressions. For ex-
ample, the event expression (E1 ; E2)OR(E2 ; E1) can be transformed into the
equivalent expression E1 AND E2, which is simpler to process. Optimization of
expressions is an important area of future works as the event detector is expected
to receive and process an important number of event expressions. However, this
would depend on the final set of event operators implemented by the system.

• Dealing with delays In a distributed environment such as the Web, it is common to
experiment delays in the network communications. An event detector receiving
atomic events from remote systems should consider the fact that event instances
may suffer from such delays. Delays may cause out-of-order event delivery and
thus, incorrect event detection. Therefore, a strategy for dealing with late notifi-
cations must be implemented. In [52], the authors show that a simple alternative
is to order the events in a global ordered event history based on the maximum delay
time and the current time. However, as they mention in their work, this strategy
have important disadvantages. Instead, they propose an alternative solution that
deals with delays during the event detection process; this eliminates the need for
an ordering phase before the event detection phase. The strategy is based on a
hierarchical event history (stored in the event tree) and scheduled time events that
specify the tolerated delay time for events. For details of the strategy the reader
is referred to [52].

Event Parameters

In the case of atomic events, event parameters are computed when the events are de-
tected outside the system. Instead, event parameters for composite events are com-
puted by combining the event parameters of the constituent events. In both cases,
event parameters are represented as variable bindings, i.e. (variable, value) pairs. In
order to communicate event parameters among rule components, the variable bind-
ings produced as a result of an event detection are marked-up using the XML-based
markup language proposed for the general framework. Regarding event parameters
two aspects require further considerations and improvements.

• Type system for variables The current prototype does not take into account the type
of variables. Using types we can implement additional checks when detecting
events. For example, when the atomic event newBook(BookTitle,BookPrice) is
signaled, the event engine can check whether or not the value assigned to the
variable BookPrice is a float number or a string. If the value represent a string

96

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.4. Evaluation of the Implemented System

instead of a float number the event instance may be discarded. Here, as proposed
in [7], an ontology specifying a type system may be used as it allows for sharing
of values.

• Computation of variable bindings The approach used in XChange for computing
variable bindings seems to be adequate for this event detector. In principle, it
would be possible to invoke a constraint solver in order to compute the variable
bindings.

Processing and Communication of Atomic Events

A key aspect that must be revised in the current implementation is the way the event
engine locates and invokes other event evaluators. Currently, atomic event detection,
evaluation of opaque expressions and evaluation of expressions written in other event
algebras is implemented by “dummy" modules. However, event detectors for the Web
will most likely be implemented as Web Services. This in turn calls for a mechanism
for locating appropriate event engines (there might be many of them) and ultimately
requesting the evaluation of a given event expression. This can be solved by main-
taining a list of trusted services in the event engine or by requesting this information
to the ECA engine. Alternatively, the interaction between the event engine and other
event evaluators (language processors) may follow a language-centered approach [7]. Al-
though not fully implemented, the event engine identifies event detectors or language
processors by using the language’s URI specified in each (sub)expression.

Communication of atomic events follows a push-strategy. That is, atomic events are
detected outside the system and then signaled to it. This helps to reduce the network
traffic as events are not broadcasted to every system in the network. Moreover, it helps
to improve the efficiency of the event detector as atomic events are received as soon as
they occur; assuming reasonable network delays.

Integration and Reuse

In order for the event engine to be able to interact with other systems (e.g. ECA rule
engines or event detectors), the only requirement is to implement the communication
by means of variable bindings.

An aspect that should be considered and implemented in the event engine is an
authentication method for registering event expressions. If the event detector receives
all the event expressions from an ECA engine, then this mechanism may be already
implemented in the ECA rule engine. However, if the event engine can receive evalua-
tion requests from other systems then, the authentication system may be implemented
inside the event detector.

97

6. IMPLEMENTATION OF A COMPLEX EVENT DETECTOR 6.4. Evaluation of the Implemented System

98

Chapter 7

Conclusion

Event detection constitutes a key aspect of the design and implementation of differ-
ent computational systems and more specifically, reactive systems. This topic has been
extensively studied in different research areas including Active Databases, Event-driven
Architectures, Distributed Systems, Concurrent Systems and more recently, the World-Wide
Web.

In this work, we have studied event detection in the context of the Web. More
specifically, our goal was to develop a complex event detector for the Web that could
be integrated into the ECA framework proposed in [7]. However, in order to achieve
our goal we have first analyzed and compared the use and implementation of event
detectors in the context of active languages for the Web. In summary, the contributions
of this work are the following:

• Comparative analysis. As a first contribution, we have defined a comparative
framework to analyze and compare different active languages for the Web and in
particular, to study the way these languages employ event detectors. We have fo-
cused our attention on the active languages: RDFTL (RDF Triggering Language),
Active XQuery and XChange.

The aim of this analysis was to study different implementations of event detectors
in order to learn about alternative approaches to event detection both in Active
Databases as well as in the Web context. More specifically, the analysis was aimed
at producing a series of a guidelines for the implementation of such systems. In
this sense, we wanted to formulate guidelines that capture the key aspects of
these systems in order to ease the implementation of this type of applications.

The analysis was based on a serie of criteria that we considered are important
when evaluating event detectors. More specifically we have compared the event
detectors in terms of the technique used for detecting events, the types of events that can
be detected, the processing of event parameters, the techniques used for communicating
atomic events and the possibilities to reuse and integrate them in existing systems.

• Implementation of an Event Detector. Using the results obtained from the compar-

99

7. CONCLUSION 7.1. Design and Implementation of Event Detectors for the Web

ative analysis, we have implemented a prototype of an event detector for the
Web, which can be integrated into the ECA Framework defined in [7]. The event
detector detects composite events expressed by expressions of an illustrative sub-
language of the event algebra SNOOP. A novel feature of this event engine is its
ability to detect events expressed by opaque expressions [7]. This in turn, extends
the event detector’s applicability as events can be expressed using not only event
languages but also other languages such as Java and Prolog. The system de-
tects composite events by processing and combining atomic events that occur in
the Web. The communication with other services is implemented using variable
bindings.

7.1 Design and Implementation of Event Detectors for

the Web

The results obtained from the comparative analysis served as the starting point for the
design and implementation of our event detector. This analysis helped us in identi-
fying the key aspects that should be considered when designing and implementing
such systems for a distributed environment like the Web. In this section we present
the most important aspects that we have considered during the implementation of our
notification system.

7.1.1 Event Languages

We need to design appropriate event language for defining the different types of events
relevant for an application. In some cases, event languages may already exist, e.g.
as it is the case with the event algebra defined in XChange. In such cases we could
either extend the language in order to obtain a more expressive one or use it without
modifications.

When modelling reactive applications we may have high-level, application-dependent
events (defined by application-dependent domain ontologies). We may also have low-
level events that reflect modifications on the database or repository level; these ones
are generally associated with data manipulation operations executed on the database.
Moreover, we may have events defined by application-independent domain ontologies,
which represent happenings in application-independent domains. In addition to this,
events can be classified into atomic and composite events. Therefore, the ontology of
events and the expressivity of the language, i.e. the type of events that can be defined
with the expressions of the language, must be considered when selecting or designing
an event language. In other words, depending on the type of events we want to detect,
an event language could be more appropriate than others.

The specification of atomic and composite events requires different event lan-

100

7. CONCLUSION 7.1. Design and Implementation of Event Detectors for the Web

guages. In the case of composite events, an event algebra providing operators for com-
bining simpler events is needed. The event algebra may include different types of oper-
ators depending on the type of composite events we need to define. for example, tem-
poral combinations of simpler events require operators that consider the time relations
between events. As for atomic events, an event language should provide constructs
that match the update operations of data repositories. For example, for detecting inser-
tions of data in XML repositories, the event language used for specifying such events
should provide a construct matching that operation, e.g. insert(Fragment1,Fragment2)
to denote the insertion of XML Fragment1 as a child of Fragment2.

7.1.2 Event Detection Semantics

When detecting composite events, we need to differentiate between the event’s occur-
rence time and the event’s detection time. An event’s occurrence time is the point in
time at which the event effectively occurs, whereas the event’s detection time denotes
the point in time at which an event detector detects the event. For atomic events, oc-
currence and detection time coincides; however, for composite events these are different.

Two possible semantics for detecting composite events can be considered. The
detection-based semantics and the interval-based semantics. With the detection-based seman-
tics composite events are detected at the end of the interval over which they occur.
In other words, the detection time of a composite event corresponds to the detection
time of the last constituent event that has been detected. Under this semantics the
event’s occurrence and detection times are considered the same. On the other hand,
the interval-based semantics detects composite events over an interval. It considers the
starting and ending point of the interval over which a composite event occurs, thus the
event’s occurrence time differs from the event’s detection time.

The problem of detection-based semantics is that it does not capture the intuitive
meaning of some event expressions. However, as pointed out in [4], interval-based
semantics is not appropriate for all situations either and hence, both semantics should
be considered depending on the situation at hand.

7.1.3 Techniques for Detecting Events

As we have seen, a considerable number of strategies for detecting events have been
proposed in both the database and the Web field. The choice of the appropriate strategy
is influenced by factors such as its inherent complexity, the storage requirements for
data structures, the types of events to be detected (atomic or composite) and the context
where events occur (databases, XML/RDF repositories, etc.). Therefore, strategies for
detecting events can be divide into two groups: those used for detecting composite
events and those for detecting atomic events.

A strategy for detecting composite events must implement the operational seman-

101

7. CONCLUSION 7.1. Design and Implementation of Event Detectors for the Web

tics of an event algebra. More specifically, it must provide a set of data structures used
for storing event data and a detection model. A detection model specifies how sim-
pler events (atomic or composite) are combined in order to form composite events.
It considers the semantics of the event algebra’s operators as well as the restrictions
(e.g. temporal restrictions) imposed to the set of constituent events. In general, two
alternatives exist for implementing detection of composite events: non-incremental and
incremental evaluation approaches. Due to its efficiency, the incremental evaluation of
event expressions is preferred. However, a variety of techniques for implementing in-
cremental evaluation of event expressions have been proposed in the literature. The
three most common ones are based on: Petri nets, Finite State Automata and Event Trees.

• Strategy based on Petri nets Petri nets are a simple but powerful formalism for
modelling sequential and concurrent system behaviour. They are a suitable
mechanism when efficiency in the memory usage is important. The main ad-
vantage of using Petri nets is that, as with the tree-based approach, they allow
the implementation of optimization techniques for event expressions. Common
(sub)expressions within a single event expression or among different event ex-
pressions can be reused by combining single Petri nets. Moreover, rewriting
techniques can be implemented in order to transform an event expression into an
equivalent one. However, Petri nets are inefficient compared to other approaches;
as pointed out in [47].

• Strategy based on Finite State Automata The approach based on Finite State Au-
tomata is suitable for detecting composite events whose expressions are equiva-
lent to regular expressions. It works fine when primitive events have no event
parameters and thus, no parameter computation is required. However, if prim-
itive events include parameters, this technique requires further analysis in or-
der to ensure an efficient implementation. Additionally, this strategy allows the
implementation of optimization techniques for event expressions thus, reducing
memory usage and improving the efficiency of the overall event detection pro-
cess.

• Strategy based on Event Trees The tree-based approach is a relatively simple and
flexible mechanism for implementing composite event detection. It provides a
more natural way to represent an event expression as its structure is mirrored in
an event tree; thus, facilitating the debugging process and being easier to under-
stand by humans. One of its advantages is its flexibility to support the imple-
mentation of a variety of tasks; besides event detection. Some event detectors
have implemented mechanisms for deleting registered event expressions, delet-
ing event instances from the event trees or, as done in our prototype, checking
whether or not an event expression may still produce event instances. Another
important advantage is that by using trees, a large collection of efficient algo-

102

7. CONCLUSION 7.1. Design and Implementation of Event Detectors for the Web

rithms for manipulating trees become immediately available. Algorithms for
traversing, constructing and erasing trees can be easily reused and adapted. Fur-
thermore, event trees support the implementation of optimization techniques for
event expressions. For example, the combination of event trees into event graphs
helps to exploit commonalities within the same expression or among different
expressions; thus, improving the event detector’s overall performance.

Although these techniques have been widely used for implementing composite
event detection in the different domains, we believe that the tree-based approach pro-
vides the greatest benefits. The relative inefficiency of Petri nets and the difficult to
easily model event parameters with FSA; together with the simplicity and flexibility
provided by the tree-based approach, makes the later more appropriate than the oth-
ers. However, it is important to notice that other techniques may exist that are more
efficient or appropriate in some cases. Therefore, a detailed analysis of the available
possibilities should be conducted at implementation time; taking into account the pe-
culiarities of each case.

As for atomic events, the strategy used for detecting them largely depends on the
type of atomic events being detected and the domain where they occur. Detection of
atomic events in Active Databases is relatively easier compared to event detection in
XML/RDF repositories and efficient techniques based on the monitoring of update op-
erations exist. This is due to the relatively richer set of atomic event types found in the
XML/RDF domain and the semi-structured nature of such documents, which makes
events hierarchically related. In the context of XML and RDF documents, techniques
based on the monitoring of repository’s update operations, the use of DOM events and
the comparison of different versions of the same document have been proposed. The
DOM Event Model supports the detection of mutation events (modification to XML
documents), although this is not enough in some situations [19]. Strategies based on
the monitoring of repository operations are suitable for situations where documents
are only modified through the repository. They represent a simple but efficient ap-
proach to event detection. However, when documents can be modified outside the
scope of the repository, which is very common in the Web, these strategies are not ap-
propriate and thus, an approach based on versions comparison and edit-script events is
required.

7.1.4 Representation of Events

An event is an abstract concept. Therefore, in order for events to be processed, de-
tected and exchanged by systems they must be represented using some sort of format.
In other words, the information associated with an event, i.e. its event data, must be
represented in such a way that systems are able to process it. In distributed environ-
ments such as the Web, an event that occurs at one location (e.g. detected by one event

103

7. CONCLUSION 7.1. Design and Implementation of Event Detectors for the Web

engine) might be processed at another locations; by e.g. an ECA rule engine or an-
other event detector. Thus, the information associated with such an event needs to be
represented so it can be used by the receiver. Event data includes the values of the
event parameters as well as any additional information regarding the occurrence of
the event, like e.g. detection time, occurrence time and type of event.

Two aspects of event representation are important: an event’s internal representation
and an event’s external representation. An event’s internal representation is determined
by the data structures used by a system (ECA engine, event detector, etc.) so as to
represent the event. Here, several alternatives exist depending on the programming
language used for implementing the system. Most systems are implemented following
the object-oriented paradigm and so they use objects to represent events. In this case,
event parameters are usually represented by an object’s attributes. Notice, however,
that additional data structures might be required in order to assist the event processing
in a system. On the other hand, an event’s external representation determines the way
event data is formatted in order to allow the exchange of events. In this case, and
considering an heterogeneous and distributed environment such as the Web, an XML-
based data format is the more suitable approach to event representation. XML not
only supports the exchange of events in a meaningful way but also the extraction of
data from the event representation; XML Query languages could be easily used for
extracting such information. This is the approach followed by active languages such
as [7,63]. In these approaches both events and variables are marked up using an XML-
based Markup Language.

7.1.5 Extracting Information from Events

Events communicated between systems serve the purpose of carrying information
(event data) related to a situation that has occurred. For example, an event reflecting
the insertion of a tuple in a table may include as part of its data the name of the target
table. In order for an event detector to process event data, there must be a method for
extracting this information from an event’s representation. That is, an event detector
must be able to access the event parameter whose value represent the target table.

In Active Databases this is usually implemented by using a pair of system variables.
The database’s state before and after the execution of a data manipulation operation
is usually stored variables OLD and NEW respectively. The same mechanism have been
implemented in some active languages for the Web, such as [10, 22, 58]. This approach
works fine in centralized environments, where the event detector is integrated into the
active system. However, in distributed and heterogeneous environments such as the
Web a different approach is required. The Active languages [7, 63] use a mechanism
similar to the one used in Logic Programming. Event data is communicated among
systems and ECA components by using logical variables (variable bindings). These vari-
ables are instantiated or bound by e.g. an event detector and then used by other com-

104

7. CONCLUSION 7.2. Future Work

ponents in order to access the information regarding the event that has just occurred.
Logical variables are used for implementing both horizontal and vertical commu-

nication in the context of ECA rules. That is, communication between rule components
and communication between the ECA engine and other engines, like e.g. event detec-
tors and query processors. Moreover, logical variables can be bound to several things,
e.g. literals, XML/RDF fragments, events, or URIs.

7.1.6 Communication of Events

Regarding exchange of events, we agree with the idea that events should be exchanged
between system according to a message-based communication model and a push strategy.
In contrast to a pull strategy, where reactive systems receive and detect events by peri-
odically posting queries on other systems (Web sites), we consider that a push strategy,
whereby events are detected at one location and then sent (pushed) to interested loca-
tions by sending messages, contributes to reducing network load and supports faster
event detection; i.e. events are detected as soon as they occur.

7.2 Future Work

Regarding the implementation of our event detector, there exist several aspects that we
would like to consider in the future:

• Type system for variables. The current prototype does not take into account the type
of variables. Using types we can implement additional checks when detecting
events. Here, as proposed in [7], an ontology specifying a type system may be
used as it allows for sharing of values.

• Computation of variable bindings. The approach used in XChange for computing
variable bindings seems to be adequate for this event detector. In principle, it
would be possible to invoke a constraint solver in order to compute the variable
bindings. However, a deep analysis of the performance of this and other alterna-
tives should be made.

• Expressive power. Although the language implemented by the current prototype is
suitable for a wide range of applications and is expressive enough to analyze dif-
ferent aspects of event detection, we would like to extend its expressivity. In this
sense, the implementation of cumulative operators (SNOOP language) would
provide a higher expressivity, extending in this way the applicability of the eval-
uator. Also, other parameter contexts could be implemented.

• Composite event detection semantics. We would also like to examine the implemen-
tation of interval-based semantics for composite event detection.

105

7. CONCLUSION 7.2. Future Work

• Detection window. The current prototype does not consider the time event in-
stances stay in the system. Depending on the rate at which instances (atomic
events) arrive to the event detector this may be a problem. The use of a detection
window ensures that event instances are eventually discarded from the event en-
gine, reducing in that way the storage requirements. In this sense, we would like
to explore different alternatives and then implement a detection window.

• Optimization of event expressions. An event can be specified by several equiva-
lent expressions. In this sense, rewriting techniques may simplify the detection
process and uncover common (sub)expressions. Therefore, optimization of ex-
pressions is an important aspect of the implementation as the event detector is
expected to receive and process an important number of event expressions.

• Dealing with delays. In distributed environments such as the Web, delays in the
network communications may cause out-of-order event delivery and thus, in-
correct event detection. Therefore, a strategy for dealing with late notifications
should be considered.

106

Bibliography

[1] Apache Xindice. http://xml.apache.org/xindice/index.html.

[2] eXist - Open Source Native XML Database. http://exist.sourceforge.net/.

[3] Xcerpt: A Rule-Based Query and Transformation Language for the Web. http:

//www.Xcerpt.org/.

[4] Raman Adaikkalavan and Sharma Chakravarthy. SnoopIB: Interval-based event
specification and detection for active databases. In ADBIS, pages 190–204, 2003.

[5] Asaf Adi and Opher Etzion. Amit - the situation manager. The VLDB Journal,
13(2):177–203, 2004.

[6] Alexander Aiken, Joseph M. Hellerstein, and Jennifer Widom. Static analysis tech-
niques for predicting the behavior of active database rules. ACM Transactions on
Database Systems, 20(1):3–41, 1995.

[7] José Júlio Alferes and Wolfgang May. Specification of a model, language and
architecture for reactivity and evolution. Technical Report IST506779/Lisbon/I5-
D4/D/PU/a1, August 2005.

[8] José Júlio Alferes and Gastón Tagni. Implementation of a Complex Event Engine
for the Web. IEEE Services Computing Workshops (SCW’06), 0:65–72, 2006.

[9] Ricardo Amador. Resourceful Reactive Rules. http://rewerse.net/I5/r3/

index.html.

[10] Angela Bonifati and Daniele Braga and Alessandro Campi and Stefano Ceri. Ac-
tive XQuery. ICDE, 00:0403, 2002.

[11] James Bailey, François Bry, Michael Eckert, and Paula-Lavinia Patranjan. Flavours
of XChange, a Rule-Based Reactive Language for the (Semantic) Web. In RuleML,
pages 187–192, 2005.

[12] James Bailey, George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood.
An event-condition-action language for xml. In Web Dynamics, pages 223–248.
2004.

107

BIBLIOGRAPHY

[13] James Bailey and Alexandra Poulovassilis. An abstract interpretation framework
for termination analysis of active rules. In DBPL, pages 252–270, 1999.

[14] James Bailey, Alexandra Poulovassilis, and Peter Newson. A dynamic approach
to termination analysis for active database rules. In Computational Logic, pages
1106–1120, 2000.

[15] James Bailey, Alexandra Poulovassilis, and Peter T. Wood. Analysis and optimi-
sation of event-condition-action rules on xml. Computer Networks, 39(3):239–259,
2002.

[16] Elena Baralis, Stefano Ceri, and Stefano Paraboschi. Improving rule analysis by
means of triggering and activation graphs. In Rules in Database Systems, pages
165–181, 1995.

[17] Elena Baralis and Jennifer Widom. An algebraic approach to rule analysis in ex-
pert database systems. In VLDB, pages 475–486, 1994.

[18] Elena Baralis and Jennifer Widom. An algebraic approach to static analysis of
active database rules. ACM Trans. Database Syst., 25(3):269–332, 2000.

[19] Martin Bernauer, Gerti Kappel, and Gerhard Kramler. Composite events for xml.
In WWW ’04: Proceedings of the 13th international conference on World Wide Web,
pages 175–183, New York, NY, USA, 2004. ACM Press.

[20] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Ro-
bie, and Jérôme Siméon. XQuery 1.0: An XML Query Language, W3C Proposed
Recommendation. http://www.w3.org/TR/xquery, November 2006.

[21] Angela Bonifati. Reactive Services for XML Repositories. PhD thesis, Dipartimento
di Elettronica e Informazione, Politecnico di Milano, December 2001.

[22] Angela Bonifati, Stefano Ceri, and Stefano Paraboschi. Active Rules for XML: A
New Paradigm for E-Services. VLDB, 10:39–47, 2001.

[23] Angela Bonifati, Stefano Ceri, and Stefano Paraboschi. Pushing reactive services
to XML repositories using active rules. In WWW10, Hong Kong, China, March
2001.

[24] François Bry, Michael Eckert, and Paula-Lavinia Patranjan. Reactivity on the web:
paradigms and applications of the language XChange. Journal of Web Engineering,
5(1):003–024, March 2006.

[25] François Bry and Sebastian Schaffert. Towards a declarative query and transfor-
mation language for XML and semistructured data: Simulation unification. In
ICLP, pages 255–270, 2002.

108

BIBLIOGRAPHY

[26] Stefano Ceri, Sara Comai, Ernesto Damiani, Piero Fraternali, Stefano Paraboschi,
and Letizia Tanca. XML-GL: A graphical language for querying and restructuring
XML documents. In Sistemi Evoluti per Basi di Dati, pages 151–165, 1999.

[27] Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar, and S.-K. Kim. Composite
events for active databases: Semantics, contexts and detection. In VLDB ’94: Pro-
ceedings of the 20th International Conference on Very Large Data Bases, pages 606–617,
San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[28] Sharma Chakravarthy and D. Mishra. Snoop: An expressive event specification
language for active databases. Data and Knowledge Enginering, 14(1):1–26, 1994.

[29] Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An XML query
language for heterogeneous data sources. Lecture Notes in Computer Science, 1997.

[30] SS. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change detection
in hierarchically structured information. In Proc. ACM SIGMOD Conference, pages
493–504, Montreal, June 1996.

[31] Sudarshan S. Chawathe. Comparing hierarchical data in external memory. In Pro-
ceedings of the Twenty-fifth International Conference on Very Large Data Bases, pages
90–101, Edinburgh, Scotland, U.K., 1999.

[32] Sudarshan S. Chawathe, Serge Abiteboul, and Jennifer Widom. Representing and
querying changes in semistructured data. In ICDE, pages 4–13, 1998.

[33] Sudarshan S. Chawathe and Hector Garcia-Molina. Meaningful change detection
in structured data. pages 26–37, May 1997.

[34] James Clark. XSL Transformations (XSLT): Version 1.0, W3C Recommendation.
http://www.w3.org/TR/xslt, November 1999.

[35] Gregory Cobena, Serge Abiteboul, and Amelie Marian. Detecting changes in XML
documents. In ICDE, 2002.

[36] World Wide Web Consortium. Document Object Model (DOM) Level 2 Events
Specification, November 2000.

[37] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. “XML-QL: A
Query Language for XML”. In WWW The Query Language Workshop (QL).

[38] Michael Eckert. Reactivity on the Web: Event queries and composite event detec-
tion in XChange. Master’s thesis, Institute for Informatics, University of Munich,
Germany, 2005.

109

BIBLIOGRAPHY

[39] David C. Fallside and Priscilla Walmsley. XML Schema Part 0: Primer Second
Edition, W3C Recommendation. http://www.w3.org/TR/xmlschema-0/, Octubre
2004.

[40] Stella Gatziu and Klaus R. Dittrich. Samos: An active object-oriented database
system. IEEE Data Eng. Bull., 15(1-4):23–26, 1992.

[41] Stella Gatziu and Klaus R. Dittrich. Detecting composite events in active database
systems using petri nets. In RIDE-ADS, pages 2–9, 1994.

[42] N. Gehani, H. Jagadish, and O. Shmueli. Advanced Database Concepts and Research
Issues, chapter Compose: A system for composite event specification and detec-
tion. Lecture Notes in Computer Science. Springer Verlag, 1994.

[43] N. H. Gehani and H. V. Jagadish. Ode as an active database: Constraints and trig-
gers. In Proceedings of the 17th Conference on Very Large Databases, Morgan Kaufman
pubs. (Los Altos CA), Barcelona, 1991.

[44] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification in ac-
tive databases: Model and implementation. In Proceedings of the 18th International
Conference on Very Large Databases, 1992.

[45] N.H. Gehani, H.V. Jagadish, and O. Shmueli. Event specification in an Active
Object–Oriented Database. In Proc. Intl. Conf. on Management of Data (SIGMOD),
pages 81–90, San Diego, California, 1992.

[46] R. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the READY
event notification service. In Proceedings of the 19th IEEE International Conference on
Distributed Computing Systems Middleware Workshop, 1999.

[47] W. Hseush and G. E. Kaiser. Modeling concurrency in parallel debugging. In
PPOPP ’90: Proceedings of the second ACM SIGPLAN symposium on Principles & prac-
tice of parallel programming, pages 11–20, New York, NY, USA, 1990. ACM Press.

[48] Anton P. Karadimce and Susan Darling Urban. Refined triggering graphs: A logic-
based approach to termination analysis in an active object-oriented database. In
ICDE, pages 384–391, 1996.

[49] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: A Declarative Query Language for RDF. In 11th Intl. World Wide Web Con-
ference (WWW2002), 2002.

[50] Alexander Kozlenkov and Michael Schroeder. PROVA: Rule-Based Java-Scripting
for a Bioinformatics Semantic Web. In DILS, pages 17–30, 2004.

110

BIBLIOGRAPHY

[51] M. Liu, L. Lu, and G. Wang. A declarative XML-RL Update Language. In
Springer-Verlag, editor, Int. Conf. on Conceptual Modeling (ER 2003), pages 506–519,
2003.

[52] Masoud Mansouri-Samani and Morris Sloman. GEM: A Generalized Event Moni-
toring Language for Distributed systems. Distributed Systems Engineering, 4(2):96–
108, 1997.

[53] Wolfgang May, J. J. Alferes, and Ricardo Amador. A General Language for Evolu-
tion and Reactivity in the Semantic Web. In François Fages and Sylvain Soliman,
editors, Principles and Practice of Semantic Web Reasoning PPSWR’04, volume 3703
of LNCS, pages 101–115. Springer, 2005.

[54] Wolfgang May, J. J. Alferes, and Ricardo Amador. An Ontology- and Resources-
Based Approach to Evolution and Reactivity in the Semantic Web. In R. Meersman
and Z. Tari, editors, On the Move to Meaningful Internet Systems 2005: CoopIS, DOA,
and ODBASE, volume 3761 of LNCS, pages 1553–1570. Springer, 2005.

[55] D. Mishra. SNOOP: An event specification language for active databases. Mas-
ter’s thesis, Database Systems R and D Center, CIS Department, University of
Florida, Gainesville, FL 32611, August 1991.

[56] Douglas Moreto and Markus Endler. Evaluating composite events using shared
trees. In IEEE Proceedings - Software, volume 148, pages 1–10, 2001.

[57] G. Papamarkos, A. Poulovassilis, and P. T. Wood. Event-Condition-Action Rules
on RDF Metadata in P2P Environments. In Proc. 2nd Workshop on Metadata Manage-
ment in Grid and P2P Systems (MMGPS): Models, Services and Architectures, Senate
House, University of London, December 2004.

[58] G. Papamarkos, A. Poulovassilis, and P. T. Wood. RDFTL: An Event-Condition-
Action Language for RDF. In Proceedings of the 3rd International Workshop on Web
Dynamics (in conjunction with WWW2004), 2004.

[59] G. Papamarkos, A. Poulovassilis, and P. T Wood. WP4 deliverable 4.4. ECA rule
languages for active self e-learning networks. Technical Report IST-2001-39045,
School of Computer Science and Information Systems, Birkbeck, University of
London, January 2004.

[60] G. Papamarkos, A. Poulovassilis, and P. T Wood. Event-Condition-Action Rules
on RDF Metadata in P2P Environments. To be published in Elsevier Computer Net-
works, October 2006.

[61] Norman W. Paton, editor. Active Rules in Database Systems. Springer, New York,
1999.

111

BIBLIOGRAPHY

[62] Norman W. Paton and Oscar Díaz. Active database systems. ACM Comput. Surv.,
31(1):63–103, 1999.

[63] Paula-Lavinia Patranjan. The language XChange: A declarative approach to reactivity
on the Web. PhD thesis, Institute for Informatics, University of Munich, Germany,
2005.

[64] Sebastian Schaffert. A rule-based query and transformation language for the Web. PhD
thesis, Institute for Informatics, University of Munich, Germany, 2004.

[65] Daniel Schubert. Development of a prototypical event-condition-action engine
for the Semantic Web. Bachelor Thesis, University of Gottingen, 2005.

[66] Sebastian Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the
Web. PhD thesis, University of Munich, 2004.

[67] Serge Abiteboul and Dallan Quass and Jason McHugh and Jennifer Widom and
Janet L. Wiener. The Lorel query language for semistructured data. International
Journal on Digital Libraries, 1(1):68–88, 1997.

[68] S.Gatziu and K. R. Dittrich. Events in an active object-oriented database system.
In First International Workshop on Rules in Database Systems, Edinburgh, August
1993.

[69] S.Gatziu, A. Gepert, and K. R. Dittrich. Integrating active concepts into an object-
oriented database system. In Third International Workshop on Database Programming
Languages, Nafplion, August 1991.

[70] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Updating
XML. In SIGMOD 2001: Proceedings of the 2001 ACM SIGMOD international confer-
ence on Management of data, pages 413–424, 2001.

[71] A. Buchmann U. Chakravarthy M. Hsu R. Ladin D. McCarthy A. Rosenthal
U. Dayal, B. Blaustein and S. Sarin. The HiPAC project: Combining active
databases and timing constraints. ACM-SIGMOD, 17(1):51–70, March 1988.

[72] Jennifer Widom and Stefano Ceri, editors. Active Database Systems: Triggers and
Rules for Advanced Database Processing. Morgan Kaufmann, 1996.

[73] Wolfgang May. XPath-logic and XPathLog: A logic-programming style XML data
manipulation language. Theory Pract. Log. Program., 4(3):239–287, 2004.

[74] World Wide Consortium (W3C). XML Path Language (XPath). http://www.w3.

org/TR/xpath, November 1999.

[75] World Wide Consortium (W3C). RDQL - A Query Language for RDF (W3C Mem-
ber Submission), January 2004. http://www.w3.org/Submission/RDQL/.

112

BIBLIOGRAPHY

[76] World Wide Consortium (W3C). SPARQL Query Language for RDF (W3C Work-
ing Draft), October 2006. http://www.w3.org/TR/rdf-sparql-query/.

[77] XML:DB Initiative. XUpdate - XML Update Language, September 2000. http:

//xmldb-org.sourceforge.net/xupdate/.

[78] Robert J. Zhang and Elizabeth A. Unger. Event Specification and Detection. Tech-
nical Report TR CS-96-8, Department of Computing and Information Sciences,
Kansas State University, June 1996.

113

BIBLIOGRAPHY

114

Appendix A

Class Diagram

Figure A.1 on the next page depicts the set of classes used for implementing the pro-
totype. In the diagram, class Evaluator is defined in the R3 Java library. Classes
EventTree, EventTreeNode and OperatorNode implement the functionality of an event
tree. In this case, classes OperatorNodeOR, OperatorNodeANY, OperatorNodeS and
OperatorNodeAND implement the semantics of the event language’s operators.

The class EventDetectionEngine implements the core functionality of the detector
by invoking the different modules of the system.

The class AtomicEventProvider implements a “dummy" event broker that signal
event instances to the system.

115

A. CLASS DIAGRAM

Figure A.1: Class Diagram

116

