
Extending XML Query Language Xcerpt
by Ontology Queries∗

Włodzimierz Drabent
Dept. of Computer and Information Science,

Linköping University, S 581 83 Linköping, Sweden
Institute of Computer Science, Polish Academy of Sciences,

ul. Ordona 21, Pl – 01-237 Warszawa, Poland
wdr@ida.liu.se

Artur Wilk
Dept. of Computer and Information Science,

Linköping University, S 581 83 Linköping, Sweden
artwi@ida.liu.se

September 28, 2007

Abstract

The paper addresses a problem of combining XML querying with ontology rea-
soning. We present an extension of a rule-based XML query and transformation lan-
guage Xcerpt. The extension allows to interface an ontology reasoner from Xcerpt
programs. In this way querying can employ the ontology information, for instance to
filter out semantically irrelevant answers. The approach employs an existing Xcerpt
engine and ontology reasoner; no modifications are required. We present the seman-
tics of extended Xcerpt and an implementation algorithm. Communication between
Xcerpt programs and ontology reasoner is based on DIG interface.

1 Introduction

XML, which is increasingly used for representing semistructured data on the Web, is
supported by query languages such as XQuery [10]. Querying of XML data in such
languages relies on the structure of the data, thus it is based on its syntax. However XML
data may be given semantics by referring to concepts defined by ontologies. XML query
languages do not provide ontology reasoning capabilities.

The objective of this paper is to show how structure-based querying of XML data can
be combined with ontology reasoning. Thus we would like to query XML data using
ontological information. For instance, we may want to filter XML data returned by a
structural query by reasoning on an ontology to which the data is related. This can be
illustrated by the following example. Assume that an XML database of culinary recipes
is given. Each recipe indicates ingredients (like flour, salt, sugar etc.). We assume that

∗This report is an extended version of the paper with the same title which will be presented at the confer-
ence ’Web Intelligence 2007’.

1

ingredient

gluten-freegluten-containing

spaghetti orangesugarsalttomatoflour rice

Figure 1: Ingredient ontology graph

the names of the ingredients are defined by a standard ontology, accessible separately on
the Web and providing also some classification. For example, the ontology may specify
disjoint classes of gluten-containing and gluten-free ingredients (see Figure 1). To find a
gluten-free recipe we would query the XML database for recipes, and query the ontology
to check if the ingredients are gluten-free.

Thus, the problem outlined above can be seen as the problem of interfacing an XML
query language with an ontology reasoner. We propose a solution for XML query lan-
guage Xcerpt [8, 7] and any ontology reasoner supporting a DIG interface. Xcerpt is
being developed by the EU Network of Excellence REWERSE1 in the 6th Framework
Programme. It differs from most other XML query languages in that it is rule based and
uses pattern matching instead of path navigation for locating and extracting data. DIG is
a standard interface to ontology reasoners, supported by e.g. RacerPro2 and Pellet3. Our
approach augments Xcerpt rules with ontology queries. The extended language, called
DigXcerpt, is easy to implement on the top of an Xcerpt implementation and a reasoner
with DIG interface, without any need of modifying them.

Related work. The problem of combination of XML queries with ontology queries
seems to be important for the Semantic Web. There exist many approaches combining
a Description Logic and a language with logical semantics, like Datalog. For references
see e.g. the articles of Eiter et al. and of Rosati in [2]. In contrast to these approaches, we
add ontology queries to a language whose semantics is operational. Moreover we re-use
an existing ontology reasoning system and a query language implementation, which is
impossible for most of the approaches mentioned above.

An intermediate approach is presented in [1]. Ontology queries which cannot be
solved are accumulated during rule computation. The fixed point semantics specifies the
formulae (built out of delayed queries) with which the reasoner is eventually queried.
This makes possible reasoning by cases. In contrast, our operational semantics makes the
programmer decide when an ontology query is evaluated. The approach of [1] allows only
Boolean ontology queries. It is applicable to a certain (negation-free) subset of Xcerpt.
Our approach imposes no restriction on ontology queries and is applicable to full Xcerpt.

A different approach is that of [6], where XQuery is used both to query data and to
perform (restricted kinds of) reasoning.

This work substantially differs from its previous versions. The method of [9] required
modifying the Xcerpt engine and was restricted to Boolean ontology queries. An unpub-
lished paper [5] presented a preliminary and low level version of the current approach, in
particular without the extended rules (cf. Section 3).

The rest of the paper is organized as follows. Section 2 briefly introduces the query
1http://www.rewerse.net/
2http://www.racer-systems.com/
3http://www.mindswap.org/2003/pellet/

2

language Xcerpt and gives some background information on the DIG interface. Section
3 presents the syntax and semantics of DigXcerpt, the proposed extension of Xcerpt,
including example programs. Section 4 describes how DigXcerpt can be implemented.
Sections 5 and 6 provide a discussion and a summary. In the appendix we present a formal
semantics of DigXcerpt and a formal proof of soundness of our implementation approach.

2 Preliminaries

2.1 Xcerpt

An Xcerpt program is a set of rules consisting of a body and of a head. The body of a rule
is a query intended to match data terms. If the query contains variables such matching
results in answer substitutions for variables. The head uses the results of matching to
construct new data terms. The queried data is either specified in the body or is produced
by rules of the program. There are two kinds of rules: goal rules produce the final output
of the program, while construct rules produce intermediate data, which can be further
queried by other rules. Their syntax is as follows:

GOAL CONSTRUCT
head head

FROM FROM
body body

END END

Sometimes, we will denote the rules as head ← body neglecting distinction between
goal and construct rules.

XML data is represented in Xcerpt as data terms. Data terms are built from basic con-
stants and labels using two kinds of parentheses: brackets [] and braces { }. Basic con-
stants represent basic values such as attribute values and character data (like #PCDATA
in XML). A label represents an XML element name. The parentheses following a label
include a sequence of data terms (its direct subterms). Brackets are used to indicate that
the direct subterms are ordered (in the order of their occurrence in the sequence), while
braces indicate that the direct subterms are unordered. The latter alternative is used to
encode attributes of an XML element.

Example 1 This is an XML element and the corresponding data term.

<CD price="9.90"> CD[attr{price["9.90"]},
<title>Empire</title> title["Empire"],
<artist>Bob Dylan</artist> artist["Bob Dylan"]

</CD>] 2

There are two other kinds of terms in Xcerpt: query terms and construct terms.
Query terms are (possibly incomplete) patterns which are used in a rule body (query)

to match data terms. In particular, every data term is a query term. Generally query
terms may include variables so that a successful matching binds variables of a query
term to data terms. Such bindings are called answer substitutions. A result of a query
term matching a data term is a set of answer substitutions. For example, a query term
a[”b”,varX] matches a data term a[”b”, ”c”] resulting in the answer substitution set
{{X/”c”}}. Query terms can be ordered or unordered patterns, denoted, respectively,

3

by brackets and braces. For example, a query term a[”c”, ”b”] is an ordered pattern
and it does not match a data term a[”b”, ”c”] but a query term a{ ”c”, ”b” }, which is
an unordered pattern, matches a[”b”, ”c”]. Query terms with double brackets or braces
are incomplete patterns. For example a query term a[[”b”, ”d”]] is an incomplete pat-
tern which matches a data term a[”b”, ”c”, ”d”]. As the query term uses brackets the
matching subterms of the data term must occur in the same order as in the pattern. Thus
the query term a[[”b”, ”d”]] does not match a data term a[”d”, ”b”, ”c”]. In contrast a
query term a{{”b”, ”d”}} does. To specify subterms at arbitrary depth a keyword desc
is used e.g. a query term desc ”d” matches a data term a[b[”d”], ”c”].

A query term q in a rule body may be associated with a resource r storing XML data
or data terms. This is done by a construct of the form in[r, q], called targeted query term.
Its meaning is that q is to be matched against data in r. Query terms in the body of a
rule which have no associated resource are matched against data generated by rules of the
Xcerpt program.

Queries are constructed from (targeted) query terms using logical connectives such as
or, and, and not. A rule body is a query.

Construct terms are used in rule heads to construct new data terms. They are similar
to data terms, but may contain variables. Data terms are constructed out of construct
terms by applying answer substitutions obtained from a rule body. Construct terms may
also use grouping constructs all and some which are used to collect all or, respectively,
some instances that result from different variable bindings.

Example 2 Consider an XML document recipes.xml, which is a collection of culinary
recipes. The document is represented by the data term:

recipes[
recipe[name["Recipe1"],
ingredient[name["sugar"], amount[attr{unit["tbsp"]},3]],
ingredient[name["orange"], amount[...]],

recipe[name["Recipe2"],
ingredient[name["flour"], amount[...]],
ingredient[name["salt"], amount[...]],

recipe[name ["Recipe3"],
ingredient[name["spaghetti"], amount[...]],
ingredient[name["tomato"], amount[...]]]

The Xcerpt rule queries the document and extracts the names of the recipes:

GOAL
recipe-names[all var R]

FROM
in["file:recipes.xml",
recipes[[recipe[[name[var R]]]]]]

END

The result returned by the rule is:

recipe-names["Recipe1", "Recipe2", "Recipe3"] 2

See [4] for a concise formal semantics of single Xcerpt rules and [7] for a full descrip-
tion of Xcerpt.

4

2.2 DIG interface

To communicate with an ontology reasoner we have chosen DIG interface [3]. The DIG
interface is an API for description logic systems. It is capable of expressing class and
property expressions common to most description logics. Using DIG, clients can com-
municate with a reasoner through the use of HTTP POST requests. A request is an XML
encoded message of one of the following types: management, ask or tell. Management re-
quests are used e.g. to identify the reasoner along with its capabilities or to allocate a new
knowledge base and return its unique identifier. Tell requests, containing tell statements,
are used to make assertions into the reasoner’s knowledge base. Ask requests, containing
ask statements, are used to query the knowledge base. Responses to ask requests contain
response statements. Tell, ask and response statements are built out of concept statements
which are used to denote classes, properties, individuals etc. Here we present an extract
of DIG statements used in our examples (C,C1, C2, . . . are concept statements):

• Concept statements:

– <catom name="CN"/> – a concept (class) CN

– <ratom val="RN"/> – a role (property) RN

– <some> R C </some> – a concept whose objects are in relation R with some
objects of a concept C (like ∃R.C in description logics)

• Ask statements:

– <subsumes>C1 C2</subsumes> – a Boolean query, asks whether a con-
cept C2 is subsumed by a concept C1

– <descendants>C</descendants> – asks for the list of subclasses of a
concept C

• Response statements:

– <true/> – if a statement is a logical consequence of the axioms in the
knowledge base

– <false/> – if a statement is not a logical consequence of the axioms in the
knowledge base

– <error/> – if, for instance, a concept queried about is not defined in the
knowledge base

– <conceptSet>

<synonyms> C11 . . . C1n1 </synonyms>

...

<synonyms> Cm1 . . . Cmnm </synonyms>

</conceptSet>

DIG requests and responses are XML documents, some of their elements contain at-
tributes. For instance, the attribute id is used to associate the obtained answers with the
submitted queries.

Example 3 This is an example of a query request to be sent to an ontology reasoner. It
contains three DIG ask statements. The first two ask whether concepts sugar and potato

5

are subclasses of the concept gluten-containing. The third one asks for direct subclasses
of the class gluten-containing. (We skip namespace declarations in the elements asks and
responses.)

<?xml version="1.0"?>
<asks uri="uri_of_knowledge-base" ... >
<subsumes id="q1">
<catom name="gluten-containing"/>
<catom name="sugar"/>

</subsumes>
<subsumes id="q2">
<catom name="gluten-containing"/>
<catom name="potato"/>

</subsumes>
<descendants id="q3">
<catom name="gluten-containing"/>

</descendants>
</asks>

This is a possible response to the query:

<?xml version="1.0"?>
<responses ... >
<false id="q1"/>
<error id="q2" message="Undefined concept name potato in TBox DEFAULT"/>
<conceptSet id="q3">
<synonyms><catom name="flour"/></synonyms>
<synonyms><catom name="spaghetti"/></synonyms>

</conceptSet>
</responses> 2

3 DigXcerpt: ontology queries in Xcerpt

This section presents an extension of Xcerpt, called DigXcerpt, allowing attaching ontol-
ogy queries to Xcerpt rules. A DigXcerpt program is a set of Xcerpt rules and extended
rules. The syntax of an extended construct rule is

CONSTRUCT
head

WHERE
dig [digResponseQuery, digAskConstruct]

FROM
body

END

Analogical syntax can be used for extended goal rules (with the keyword GOAL in-
stead of CONSTRUCT). Sometimes the rule will be denoted as

head ← (digResponseQuery , digAskConstruct), body

(without distinguishing between a construct and goal rule). digAskConstruct is a construct
term intended to produce DIG ask statements which are sent to the reasoner. digRespon-
seQuery is a query term that is applied to the response statements returned by the reasoner.

6

CONSTRUCT
head

FROM
body

END

CONSTRUCT
head

WHERE
dig [digResponseQuery, digAskConstruct]

FROM
body

END

input data

rule result

ontology reasoner

input data

rule result

 DIG ask
statements

DIG response
statements

Ψ

ΘQ

Θ

Θ = ΘQ

ΘQ ΘQ

Figure 2: Data flow in an Xcerpt rule and in an extended rule. Θ,ΘQ,Ψθ are sets of
substitutions as described below and Ψ =

⋃
θ∈ΘQ

Ψθ.

As in an Xcerpt rule, head is a construct term and body is a query to the results of other
rules and/or to external resources.

It is required that each variable occurring in digAskConstruct occurs in body, and
each variable occurring in head occurs in body or in digResponseQuery. Additionally, a
variable which occurs in digAskConstruct under the scope of a grouping construct (i.e.
all or some) cannot occur in digResponseQuery.

Now we describe the semantics of an extended construct rule c ← (q, c′), Q. We
assume that the rule does not contain grouping constructs. Let ΘQ be the set of answer
substitutions obtained by evaluation of the body Q of the rule. Each θ ∈ ΘQ is applied
to the construct term c′; this produces a DIG ask statement c′θ to be sent to the reasoner.
For each c′θ the reasoner returns a DIG response statement dθ. To each dθ the query term
qθ is applied, producing a set Ψθ of substitutions. (The domain of the substitutions are
those variables that occur in q and do not occur in Q.) A set of substitutions Θ = { θ∪σ |
θ ∈ ΘQ, σ ∈ Ψθ } is constructed. (Informally: the substitutions bind the rule variables
according to the results of Q and of DIG querying.) Now the set of results of the whole
rule is { cθ | θ ∈ Θ } (the substitutions from Θ are applied to the head of the rule). Figure
2 presents the data flow in an extended rule.

The semantics above has to be generalized for the case where a construct term (c or
c′) of the extended construct rule c← (q, c′), Q contains a grouping construct. Applying
substitutions to a construct term has to be replaced by a more sophisticated operation. We
skip the technical details by referring to the semantics of Xcerpt. Two modifications of
the definition above are needed. 1. The set of DIG ask statements sent to the reasoner is
the set of results of the Xcerpt construct rule c′ ← Q (where evaluating Q results in the
set ΘQ, as previously). 2. The results of the extended construct rule are the results of an
Xcerpt construct rule c← Q′ under an assumption that the results of Q′ are Θ (defined as
previously).

The semantics of an extended goal rule c← (q, c′), Q is similar to that of the extended
construct rule c ← (q, c′), Q. The difference is — as in Xcerpt — that the goal rule
produces only one answer (from the set of answers of the construct rule).

7

The new WHERE part in the extended rule allows to ask an ontology arbitrary queries
expressible in DIG. One category of such queries are Boolean queries for which answer
true or false (or error) can be obtained. This kind of queries can be used to filter out some
data from the XML document based on the ontological information. For example, an
extended rule can be used to filter out recipes which are gluten-free. In such case, the rule
would have a query term true[[]] as the digResponseQuery, thus it would filter out those
answer substitutions for the variables in the body for which the corresponding reasoner
answer was not true. It seems that a need for such filtering is relatively common. Hence,
to simplify syntax, we assume that the digResponseQuery in the WHERE part is optional
and by default it is a query term true[[]].

We explained syntax and semantics of an extended rule of DigXcerpt. The semantics
of a standard Xcerpt rule is as in Xcerpt; see Section 2.1 for an informal explanation,
and [4] or [7] for a formal definition. The semantics of a DigXcerpt program is defined in
terms of the semantics of rules as in Xcerpt [7]. (In particular, for programs with recursion
the stratifiability restrictions from [7, Section 6.4] apply.)

Example 4 (Boolean ontology query) Consider the XML document recipes.xml from
Example 2 and the culinary ingredients ontology from Figure 1. We assume that the
ontology is loaded into an ontology reasoner with which we can communicate using DIG.
We also assume that the names of the ingredients used in the XML document are defined
by the ontology. We want to find all the recipes in the XML document which are not
gluten-free. This can be achieved using a rule:

CONSTRUCT
bad-recipes[all name[var R]]
WHERE
dig[subsumes[

catom[attr{ name["gluten-containing"]}],
catom[attr{ name[var I] }]]]

FROM
in[resource["file:recipes.xml"],

desc recipe[[
name[var R], ingredient[[name[var I]]]]]]

END

The body of the rule (the FROM part) extracts the names of recipes together with
their ingredients and assigns respective substitutions to the variables R, I . This results
in an answer substitution set ΘQ. Based on ΘQ the digAskConstruct subsumes[...]
constructs DIG ask statements asking whether particular ingredients (values of the vari-
able I) are gluten-containing. digResponseQuery is omitted in the WHERE part which
means that its default value true[[]]is used. The final set Θ of answer substitutions
which are applied to the head of the rule contains those substitutions from ΘQ for which
the reasoner answer for the corresponding DIG ask statement was true i.e. the substitu-
tions where the variable I is bound to data terms representing gluten-containing ingre-
dients: flour and spaghetti. As these ingredients occur in Recipe2 and Recipe3 the final
result of the rule is

bad-recipes[name["Recipe2"], name["Recipe3 "]] 2

Example 5 (Non Boolean ontology query) Consider the ingredients ontology (Figure 1)
extended with a class vitamin, its three subclasses: A,B,C and a property contained in.

8

The extended ontology contains also axioms which indicate in which ingredients a par-
ticular vitamin is contained. The axioms state that the vitamin A is contained in tomato,
vitamin B in tomato, orange, flour and spaghetti, and vitamin C in orange and tomato.
For example, using description logics syntax, one of the axioms can be expressed as
A v ∃contained in.tomato.

The following DigXcerpt rule queries the document recipes.xml and the ontology to
provide a list of vitamins for each recipe in the document. The WHERE part of the rule
contains a construct term descendants[. . .] producing ontology queries which ask
about vitamins included in a particular ingredient. The reasoner answers are queried by
the query term conceptSet[[...]] from the WHERE part.

CONSTRUCT
vit-recipes[all recipe[var R, all var V]]
WHERE
dig[
conceptSet [[synonyms[[catom[attr{ name[var V] }]]]]],
descendants[
some[ratom[attr{ name["contained_in"] }],
catom[attr{ name[var I] }]]]]

FROM
in[resource["file:recipes.xml"],

desc recipe[[
name[var R], ingredient[[name[var I]]]]]]

END

The result of the rule is:
vit-recipes[recipe["Recipe1", "B","C"],

recipe["Recipe2", "B"],
recipe["Recipe3", "A","B","C"]] 2

4 Implementation of DigXcerpt

This section presents a way DigXcerpt can be implemented on the top of Xcerpt engine i.e.
without any modification of Xcerpt implementation. Evaluation of a DigXcerpt program
can be organized as a sequence of executions of Xcerpt programs and ontology queries.
This can be implemented in a rather simple way; an implementation iteratively invokes
an Xcerpt system and an ontology reasoner with a DIG interface.

We begin with discussing implementation of DigXcerpt programs where there is no
recursion over extended rules i.e. no extended rule depends on itself (directly or indi-
rectly)4. We call such programs non DIG recursive programs.

Let P be a non DIG recursive DigXcerpt program and e1, . . . , en be the extended
rules from P such that each rule ei does not depend on any rule ei+1, . . . , en. The or-
dering e1, . . . , en can be obtained by topological sorting of the dependency graph for the
extended rules in P .

The first step is to compile the extended Xcerpt rules of P into pairs of rules. Each
4For a definition of rule dependency in Xcerpt see [7]. If a rule p does not depend on a rule p′ then p does

not use the data produced by p′.

9

extended construct rule ei of P

CONSTRUCT
head

WHERE
dig [digResponseQuery, digAskConstruct]

FROM
body

END

is translated into an Xcerpt rule dri, called DIG response rule:

CONSTRUCT
head

FROM
idi[digResponseQuery, context[varX1, . . . , varXl]]

END

and an Xcerpt goal dgi, called DIG ask goal:

GOAL
idi [all dig[digAskConstruct, context[varX1, . . . , varXl]]]
FROM
body
END

If the extended rule ei is a goal rule then the translation is analogical, just the first keyword
is GOAL instead of CONSTRUCT. Hence the obtained DIG response rule is a goal rule.

The DIG ask goal is used to produce DIG ask statements to be sent to the reasoner
and the DIG response rule is used to capture the reasoner responses. X1, . . . , Xl are
the variables occurring in the query body. The term context[. . .] is used here to pass the
values of the variables from the body of the ask rule to the head of the response rule. The
construct all in the ask goal is added to collect all the results of the query body .

The purpose of the labels id1, . . . , idn is 1. to associate DIG ask goals with the cor-
responding DIG response rules, and 2. to distinguish the data produced by the rules of
P from the data related to the implementation of extended rules. So it is required that
id1, . . . , idn are distinct and that no idi occurs in P as the label of the head of a non goal
rule of P . (Moreover, if the head of some non goal rule of P is a variable then no idi can
occur in the data to which P is applied.) Figure 3 shows how DIG ask and response rules
are evaluated.

Out of the DigXcerpt program P we construct an Xcerpt program P ′, which is P
with each extended rule ei replaced by the corresponding DIG response rule dri. Let P ′′

be P ′ with all the goal rules removed. Then a sequence of Xcerpt programs P0, . . . , Pn

is constructed, where P0 is P ′′ ∪ {dg1} (and P1, . . . , Pn are described later on). For
i = 1, . . . , n we proceed as follows. (We do not distinguish between XML elements and
their representation as data terms.)

• Program Pi−1 is executed by Xcerpt. A data term idi[dig[a1, c1], . . . , dig[am, cm]]
is obtained (it is produced by a goal rule dgi), where a1, . . . , am are DIG ask state-
ments. Out of a1, . . . , am a DIG ask request is built. (The DIG ask request is an
XML document additionally containing a header with DIG namespace declarations,
and unique identifiers for the elements corresponding to a1, . . . , am.)

10

id [all dig[digAskConstruct, context[var X1, ..., var Xn]]] ← body

id [dig [a1, context[v11, ...,v1n]]

...
 dig [am, context[vm1, ...,vmn]]]

id [r1, context[v11, ...,v1n]]

...
id [rm, context[vm1, ...,vmn]]

head ← id [digResponseQuery, context[var X1, ..., var Xn]]

asks[a1,...,am]
O

n
tolog

y rea
so

n
er

responses[r1,...,rm]

DIG response rule

DIG ask goal

Figure 3: Evaluation of DIG rules: DIG ask goal produces DIG ask statements which are
sent to a reasoner; DIG response rule queries data terms constructed out of the reasoner’s
responses.

• The DIG ask request is sent to the DIG reasoner. The reasoner replies with a re-
sponse that (after removing its attributes) is responses[r1, . . . , rm], where each
ri is an answer for ai. A set of Xcerpt facts (rules with empty bodies) Ri =
{ idi[r1, c1], . . . , idi[rm, cm] } is constructed. (The set contains the results from
the reasoner together with the corresponding context information, to be queried by
the DIG response rule dri. The results of executing the rule dri in an Xcerpt pro-
gram {dri}∪Ri are the same as the results of executing ei in program P according
the the semantics described in the previous section.)

• If 1 ≤ i < n then Pi = P ′′ ∪
⋃i

j=1 Rj ∪ {dgi+1}. (Program Pi contains the
reasoner results obtained up to now. They are to be queried by the DIG response
rules dr1, . . . , dri. The goal of Pi is dgi+1 in order to produce the next query to the
reasoner.)

If i = n then Pn is the Xcerpt program P ′′ ∪
⋃n

j=1 Rj augmented with those goal
rules from P ′ which are not DIG ask goals.

As the last step, Pn is executed by Xcerpt, producing the final results of P .
The results are the same as those described by the DigXcerpt semantics of Section 3.

(We skip a formal justification of this fact.) As an additional consequence we obtain that
the results do not depend of the ordering of e1, . . . , en (which may be not unique).

Example 6 Here we illustrate an evaluation of a simple DigXcerpt program. Consider a
program P consisting of the extended rule from Example 4, changed into a goal rule:

GOAL
bad-recipes[all name[var R]]
WHERE
dig[subsumes[

catom[attr{ name["gluten-containing"] }],
catom[attr{ name[var I] }]]]

FROM
in[resource["file:recipes.xml"],

desc recipe[[

11

name[var R], ingredient[[name[var I]]]]]]
END

First, a program P ′ is constructed, which consists of a DIG response goal and a DIG ask
goal:

GOAL
bad-recipes[all name[var R]]
FROM
#g1[true[[]], context[var I, var R]]
END

GOAL
#g1[all dig[

subsumes[
catom[attr{ name["gluten-containing"] }],
catom[attr{ name[var I] }]],
context[var I, var R]]]

FROM
in[resource["file:recipes.xml"],
desc recipe[[name[var R],

ingredient[[name[var I]]]]]]
END

As P ′ contains only goal rules P ′′ = ∅. Now a sequence of programs P0, P1 is con-
structed. The program P0 contains only the DIG ask goal which produces the following
data term:

#g1[
dig[subsumes[

catom[attr{ name["gluten-containing"] }],
catom[attr{ name["sugar"] }]],
context["sugar", "Recipe1"]],

dig[subsumes[
catom[attr{ name["gluten-containing"] }],
catom[attr{ name["orange"] }]],
context["orange", "Recipe1"]],

dig[subsumes[
catom[attr{ name["gluten-containing"] }],
catom[attr{ name["flour"] }]],
context["flour","Recipe2"]],

dig[subsumes[
catom[attr{ name["gluten-containing"] }],
catom[attr{ name["salt"] }]],
context["salt","Recipe2"]],

dig[subsumes[
catom[attr{ name["gluten-containing"] }],
catom[attr{ name["spaghetti"] }]],
context["spaghetti","Recipe3"]],

dig[subsumes[
catom[attr{ name["gluten-containing"] }],
catom[attr{ name["tomato"] }]],
context["tomato","Recipe3"]]]

The data term contains DIG ask statements asking whether particular ingredients are
gluten-containing. The additional information attached to each ask statement (its context)
is the name of the ingredient queried about and the corresponding name of the recipe.

12

Out of these data terms a DIG ask request (which is an XML document) is built. The
request contains six DIG ask statements which according to the DIG syntax are aug-
mented by unique identifiers, here 1, . . . , 6; for instance the first of the ask statements
is

<subsumes id="1">
<catom name="gluten-containing"/>
<catom name="sugar"/>

</subsumes>

The DIG ask request is sent to the ontology reasoner. Its XML answer represented by
a data term is (the attributes of the element responses are removed):

responses[
false[attr{id["1"]}], false[attr{id["2"]}],
true [attr{id["3"]}], false[attr{id["4"]}],
true [attr{id["5"]}], false[attr{id["6"]}]]

Based on the answer the following set R1 of data terms is constructed:

#g1[false[attr{ id["1"] }], context["sugar", "Recipe1"]]
#g1[false[attr{ id["2"] }], context["orange", "Recipe1"]]
#g1[true [attr{ id["3"] }], context["flour", "Recipe2"]]
#g1[false[attr{ id["4"] }], context["salt", "Recipe2"]]
#g1[true [attr{ id["5"] }], context["spaghetti", "Recipe3"]]
#g1[false[attr{ id["6"] }], context["tomato", "Recipe3"]]

The final program P1 to be evaluated by Xcerpt consists of the DIG response goal from
P ′ and the set of data terms R1. The result of P1 is the result of the initial program P :
bad-recipes[name["Recipe2"],name["Recipe3"]]. 2

DIG recursive programs. In the presented algorithm we assumed that P is a non DIG
recursive program. DIG recursive programs, without grouping constructs and negation
[7], can be dealt with as follows. Let P be an arbitrary DigXcerpt program and e1, . . . , en

be the extended rules from P not necessarily satisfying the previous condition on their
mutual dependencies. Let E = {dg1, . . . , dgn} be the set of DIG ask goals correspond-
ing to e1, . . . , en, and P ′, P ′′ be as defined earlier. We construct a sequence of Xcerpt
programs P 0, P 1, P 2, . . ., where P 0 = P ′′ ∪E, P j = P ′′ ∪E ∪Rj for j > 0, and Rj is
defined below. (Rj represents the reasoner responses for the ask statements produced by
the program P j−1.)

Each goal dgi of P j−1 produces a result idi[dig[a1, c1], . . . , dig[am, cm]]. As in the
previous approach, a DIG ask request is constructed out of the result. The corresponding
response of the reasoner is represented, as previously, by a set of Xcerpt facts Rj

i =
{ idi[r1, c1], . . . , idi[rm, cm] }. Now Rj = Rj

1 ∪ . . . ∪ Rj
n. It holds that Rj ⊆ Rj+1 for

j = 1, 2,
The programs P 0, P 1, . . . are executed (by Xcerpt) until the results of the program

P k are the same as the results of P k−1. Finally, a program Q is P ′′ ∪Rk augmented with
those goal rules from P ′ that are not DIG ask goals. The results of Q are the same as
the results of P described by the semantics of DigXcerpt. See the appendix for a formal
justification.

Notice that for non DIG recursive programs this method may be less efficient than the
previous one, as it sends more ask requests to the reasoner.

13

Applying this method to a program with grouping constructs or/and negation may
lead to incorrect results. This is because an evaluation of an Xcerpt program with such
constructs is a sequence of evaluations of its strata [7], in a particular order. In the non
DIG recursive case the stratification did not pose any problems. The order of extended
rules e1, . . . , en coincides with the order of strata. Thus the results produced by a goal
dgi added to a program Pj , j > i, are the same as the results of dgi in Pi−1. This is
not the case for a program that both is DIG recursive and requires stratification. For such
programs, the method for handling DIG recursive programs, described above, applies to
each stratum separately. The division of a DigXcerpt program into strata and the way of
sequential evaluation of strata is the same as in Xcerpt [7]. We omit the details of the
algorithm for this case.

The presented algorithm for evaluation of DigXcerpt programs may not terminate for
recursive programs. However this is also the case in standard Xcerpt. It is up to the
programmer to make sure that a recursive program will terminate.

5 Discussion

We believe that the examples we presented illustrate practical usability of the proposed
approach. The examples use arbitrary ontology queries, not only Boolean ones. We put
no restriction on usage of DIG. For instance with a query term error [[]] used as a digRe-
sponseQuery a DigXcerpt program can check for which data the reasoner returns an error.
Ability to modify ontologies could be added to DigXcerpt, by using DigAskConstruct that
sends DIG tell statements to the reasoner.

Our approach abstracts from a way XML data is related to an ontology. It is left to a
programmer. In our examples XML data is associated with ontology concepts by using
common names i.e. XML element names are the same as class names. However, our
approach is not restricted to this way of associating. For example, the association may be
defined through element attributes.

The semantics of DigXcerpt imposes certain implicit type requirements on programs.
The data terms produced by a digAskConstruct should be DIG ask statements (repre-
sented as data terms). digResponseQuery should match data terms being DIG response
statements. It is better to check such conditions statically, instead of facing run-time er-
rors. For this purpose the descriptive type system for Xcerpt [4, 11] can be used.

DigXcerpt in its current form requires the programmer to use the verbose syntax of
DIG ask and response statements. On the other hand, the tedious details of construct-
ing DIG requests out of DIG ask statements and extracting DIG response statements out
of DIG responses are done automatically. Still, one has to specify a construct term di-
gAskConstruct for construction of a DIG ask statement, and a query term digRespon-
seQuery to match DIG response statements. Dealing with details of DIG syntax may
be considered cumbersome and too low level. It may be useful to introduce simpler
and more concise syntax for both digAskConstruct and digResponseQuery. For exam-
ple, the WHERE part from the rule in Example 5 could be abbreviated as WHERE V in

descendants[some["contained in", var I]].
We expect that the approach of this paper can be applied to composing some other

XML query languages (such as XQuery) with ontology querying.
The work on implementing DigXcerpt is in progress. A prototype implementation of

14

the Xcerpt extension from our previous work [5] is available on-line5. Implementation of
DigXcerpt requires only slight modification of that prototype.

6 Summary

The paper addresses the problem of how to use ontological information in the context
of querying XML data. The proposed solution extends the XML query language Xcerpt
by adding a possibility of querying ontologies. Programs communicate with an ontology
reasoner using the DIG interface. No restrictions are imposed on the Xcerpt language and
on the DIG ask statements used. In particular, ontologies can be queried with arbitrary,
not only Boolean, queries. Data obtained from ontology querying can be used in XML
querying, and vice versa. An implementation of DigXcerpt can employ an existing Xcerpt
implementation and an existing ontology reasoner; they are treated as “black boxes” (no
modifications to the Xcerpt system or the reasoner are needed).

A DigXcerpt Formal Semantics

Now we present a formal semantics with respect to which our implementation approach
will be proved sound. We define the semantics of DigXcerpt programs given a semantics
of single query rules. We employ the semantics of single Xcerpt rules from [4, 11].
As this semantics deals with a fragment of Xcerpt, in what follows we apply the same
restrictions for Xcerpt rules as in [4, 11]. In particular we assume that there is no negation
in Xcerpt rules. The semantics of extended rules is as described in Section 3. To avoid
complications with stratification, we present semantics for DigXcerpt programs without
grouping constructs in non goal rules. We prove our implementation approach to be sound
only for such programs.

In what follows, the term query rule refers to any rule of Xcerpt or DigXcerpt.

Definition 1 (DigXcerpt program) A DigXcerpt program P is a pair (P,G) where P
and G are sets of query rules such that G ⊆ P and |G| > 0. The query rules from G are
called goals.

In what follows we assume that there exists a fixed ontology loaded to a reasoner to
which ontology queries from extended rules and those produced by DIG ask goals refer.
Also we assume that for each URI ri of an external resource occurring in the considered
programs, there is a data term d(ri) associated with ri. Thus for each query rule p, it
queries data terms d(ri) associated with the URIs occurring in its body and a set of data
terms Z produced by the query rules of a program. The set of results of the query rule
p and the set of data terms Z is denoted as res(p, Z). For p being an Xcerpt rule the set
is defined in [11] by Definition 10 and for p being an extended rule the set is defined in
Section 3. For a set of rules P , res(P,Z) is defined as

⋃
p∈P res(p, Z).

Now we are ready to describe the effect of applying a set of rules to a set of data
terms, and then the semantics of a program.

5http://www.ida.liu.se/digxcerpt/

15

Definition 2 (Immediate consequence operator for rule results) Let P be a set of
DigXcerpt query rules. RP is a function on sets of data terms such that RP (Z) =
Z ∪ res(P,Z).

We will use the fact that res(p, ·) is monotone for any rule p without negation and
grouping constructs: if Z ⊆ Z ′ then res(p, Z) ⊆ res(p, Z ′). As its consequence we
obtain:

Lemma 1 Let P be a set of query rules without grouping constructs and let Z,Z ′ be sets
of data terms. If Z ⊆ Z ′ then RP (Z) ⊆ RP (Z ′), Rj

P (Z) ⊆ Rj
P (Z ′), and Rj

P (Z) ⊆
Rk

P (Z) for 0 ≤ j ≤ k.

Definition 3 (Rule result, no grouping constructs in non goal rules) Let P = (P,G)
be a DigXcerpt program, such that there is no grouping construct in P ′, where P ′ = P\G.
A data term d is a result of a rule p in P ′ if d ∈ res(p, Ri

P ′(∅)) for some i ≥ 0. Let
k ≥ 0 be a number such that Rk

P ′(∅) = Rk+1
P ′ (∅). A data term d is a result of a goal rule

g in G and d is a result of the program P if d ∈ res(g,Rk
P ′(∅)).

The set Rk
P ′(∅) is denoted as R∞

P ′(∅) and the set res(G, R∞
P ′(∅)) of results of the

program is denoted as res(P).

Notice that the definition defines results of programs without infinite loops.

Example 7 Let P ′ = { p }, where p = c[X]←or[X, in[r, b[X]] and d(r) = b[a].
Ri

P ′(∅) = { c[a], c[c[a]], . . . , ci[a] }, for i > 0, and res(p, Ri
P ′(∅)) =

{ c[a], . . . , ci+1[a] }. 2

B Soundness Proof of the Implementation Algorithm

Here we present a soundness proof of the implementation algorithm for recursive pro-
grams described in Section 4. Soundness of the algorithm is expressed by Theorem 1.

First we introduce notation used in this section. Let d be a data term of the form
id[dig[a1, c1], . . . , dig[am, cm]], where id is one of the unique labels introduced by trans-
lation of a DigXcerpt program into an Xcerpt program. The data term d contains DIG
ask statements a1, . . . , am. The corresponding set of reasoner responses, denoted as
RR(d), is { id[r1, c1], . . . , id[rm, cm] }, where r1, . . . , rn are the reasoner responses (DIG
response statements) for a1, . . . , an, respectively. The data terms of the form id[ri, ci] are
called DIG response terms. For a set of data terms Z, RR(Z) =

⋃
d∈Z RR(d). For a set

of data terms R, r(R) denotes rules with empty bodies representing the data terms from
R.

For a set of rules P a (length m) computation of P is a sequence: Z0, p1, Z1, . . . ,
Zm−1, pm,Zm, where Z0 = ∅, Zj = Zj−1∪res(pj , Zj−1) and pj ∈ P , for j = 1, . . . ,m.
Notice that the sets Z0, . . . , Zm are finite, and that Zj ⊆ Rj

P (∅) for j = 0, 1, . . . and a
P without grouping constructs. (The latter is due to res(p, Z) ⊆ RP (Z) ⊆ RP (Z ′) for
any p ∈ P and Z ⊆ Z ′, by Lemma 1.) Sometimes the computation will be abbreviated
as Z0, P1, Z1, . . . , Zm′−1, Pm′ , Zm′ , where each Pi ⊆ P is a set of rules not pairwise
dependent (thus the order of execution of rules from Pi is irrelevant) and Z0 = ∅, Zi =
res(Pi, Zi−1), for i = 1, . . . ,m′.

16

Given a computation ∅, . . . , Z, the set Z is called the result of the computation. A
computation ∅, . . . , Z of P is called final if Z = R∞

P (∅). Thus an existence of a final
computation of P guarantees that there is no infinite loop in P and that R∞

P (∅) exists.
Also existence of R∞

P (∅) guarantees that a final computation of P exists.

Proposition 1 Let P be a set of query rules without grouping constructs and ∅, . . . , Z,
be a computation of P . If res(p, Z) ⊆ Z for each p ∈ P then Z = R∞

P (∅).

Proof As res(p, Z) ⊆ Z for each p ∈ P ,
⋃

p∈P res(p, Z) ⊆ Z. Thus RP (Z) =
Z∪

⋃
p∈P res(p, Z) ⊆ Z. Hence by monotonicity of Ri

P (Lemma 1), Ri+1
P (Z) ⊆ Ri

P (Z)
for i ≥ 0 and Rl

P (Z) ⊆ Z for any l ≥ 0. As Z is finite, R∞
P (∅) exists. Thus R∞

P (∅) ⊆ Z
and by Lemma 1, Z ⊆ R∞

P (∅). Hence Z = R∞
P (∅).

2

In what follows we will use the following Lemmata, whose rather obvious proofs we
skip.

Lemma 2 Let Z be a set of data terms, e be an extended DigXcerpt rule and dg, dr be the
corresponding DIG ask goal and DIG response rules. Then res(e, Z) =
res(dr,RR(res(dg, Z))).

Lemma 3 Let p be a DigXcerpt rule and Z,Z ′ be sets of data terms such that Z ⊆ Z ′.
If there is no grouping construct and no negation in p then res(p, Z) ⊆ res(p, Z ′).

Lemma 4 Let dg be a DIG goal rule without grouping constructs in digAskConstruct
and Z,Z ′ be sets of data terms. If Z ⊆ Z ′ then RR(res(dg, Z)) ⊆ RR(res(dg, Z ′)).

Lemma 5 Let P = (P,G) be a DigXcerpt program and P ′ = (P ′, G′) be P with
each extended rule ei replaced by the corresponding DIG response rule dri. Let E =
{dg1, . . . , dgn} be the set of DIG ask goals corresponding to e1, . . . , en and Z be a set of
data terms. Then res(dri, RR(res(E,Z))) = res(dri, RR(res(dgi, Z))).

Lemma 6 Let P = (P,G) be a DigXcerpt program and P ′ = (P ′, G′) be P with
each extended rule ei replaced by the corresponding DIG response rule dri. Let E =
{dg1, . . . , dgn} be the set of DIG ask goals corresponding to e1, . . . , en and Z,Z ′ be sets
of data terms. Let R = RR(res(E,Z))) and p ∈ P . Then res(p, Z ′ ∪ R) = res(p, Z ′)
and res(E,Z ′∪R) = res(E,Z ′). For Z ′′ being a set of data terms without DIG response
terms res(dri, Z

′′ ∪R) = res(dri, R).

Lemma 7 Let P = (P,G) be a DigXcerpt program without grouping constructs. Let
P ′ = (P ′, G′) be P with each extended rule ei replaced by the corresponding DIG re-
sponse rule dri. Let E = {dg1, . . . , dgn} be the set of DIG ask goals corresponding to
e1, . . . , en and P ′′ be P ′\G′. Let P0, . . . ,Pk+1 be a sequence of Xcerpt programs such
that for j = 0, . . . , k + 1,

• Pj = (P j ∪ E,E), P j = P ′′ ∪ r(Rj), R0 = ∅, if j ≤ k then there exists a final
computation for P j , and Rj = RR(res(Pj−1)) if j > 0,

• Rk+1 = Rk.

Let S = ∅, p1, Z1, p2, Z2, . . . , pm, Zm be a computation of P\G. There exists a compu-
tation S′ = ∅, q1,W1, q2,W2, . . . , qm′ ,Wm′ of P k such that Zm ⊆Wm′ .

17

Proof Proof by induction on m. For m = 0, S = S′ = ∅, thus Zm = Wm′ = ∅.
Induction step. Let S = S−, pm, Zm be a length m computation of P\G, where

S− = ∅, . . . , Zm−1 is a computation of length m− 1. By the inductive assumption, there
exists a computation S′− = ∅, . . . ,Wl of P k, such that Zm−1 ⊆Wl ⊆ R∞

P k(∅).
Let pm be an Xcerpt rule p. Then S′ = S′−, p,Wm′ . By Lemma 3, as Zm−1 ⊆ Wl,

Zm = Zm−1 ∪ res(p, Zm−1) ⊆Wl ∪ res(p, Wl) = Wm′ .
Let pm be an extended rule e and dr and dg be a DIG response rule and DIG ask goal,

respectively, corresponding to e.

res(e, Zm−1)
= res(dr,RR(res(dg, Zm−1))) by Lemma 2
⊆ res(dr,RR(res(dg, R∞

P k(∅)))) by Lemmata 3, 4, as Zm−1 ⊆ R∞
P k(∅)

⊆ res(dr,RR(res(E,R∞
P k(∅)))) by Lemma 3 and the definition of res(E,Z)

= res(dr,Rk+1) by the definition of Rk+1

= res(dr,Rk) as Rk+1 = Rk

⊆ res(dr,Wl ∪Rk) by Lemma 3

We construct S′ = S′−, r(Rk),Wl ∪ Rk, dr, Wm′ , where Wm′ = Wl ∪ Rk ∪
res(dr,Rk ∪Wl).

The result of S is Zm = Zm−1∪ res(e, Zm−1). As Zm−1 ⊆Wl and res(e, Zm−1) ⊆
res(dr,Wl∪Rk), we have Zm ⊆Wl∪res(dr,Wl∪Rk) ⊆Wl∪Rk∪res(dr,Wl∪Rk) =
Wm′ .

2

Corollary 1 R∞
P\G(∅) ⊆ R∞

P k(∅)\Rk.

Proof Let S be a computation such that Zm = R∞
P\G(∅). By Lemma 7, we have Zm ⊆

Wm′ ⊆ R∞
P k(∅). Thus R∞

P\G(∅) ⊆ R∞
P k(∅). As the labels from Rk are unique identifiers

R∞
P\G(∅) = R∞

P\G(∅)\Rk. Hence R∞
P\G(∅) ⊆ R∞

P k(∅)\Rk.
2

Lemma 8 Let P = (P,G) be a DigXcerpt program without grouping constructs and
let P ′ = (P ′, G′) be P with each extended rule ei replaced by the corresponding DIG
response rule dri. Let E = {dg1, . . . , dgn} be the set of DIG ask goals corresponding to
e1, . . . , en and P ′′ be P ′\G′. Let P0, . . . ,Pk (k ≥ 0), be a sequence of Xcerpt programs
such that for j = 0, . . . , k,

• Pj = (P j ∪ E,E), P j = P ′′ ∪ r(Rj), R0 = ∅, if j < k then there exists a final
computation for P j , and Rj = RR(res(Pj−1)) if j > 0.

Let S = ∅, r(Rj), Rj , p1,W1, . . . , pm,Wm be a computation of P j . There exists a com-
putation S′ = ∅, . . . , Zm′ of P\G such that Wm\Rk ⊆ Zm′ .

Proof Proof by induction on j.
j = 0.
Let S = ∅, p1,W1, . . . , pm,Wm be a computation of P 0. As none of W0, . . . ,Wm

contain DIG response terms, by Lemma 6, if pi (i = 1, . . . ,m) is a DIG response rule
then Wi−1 = Wi. Thus, by removing DIG response rules from S we obtain a computation

18

S′′ = ∅, . . . ,Wm of P 0 and of P\G with the same result as S. Thus S′ = S′′ and
Wm = Zm′ . Hence Wm\Rk ⊆ Zm′ .

j > 0
Let Sj−1 = ∅, r(Rj−1), Rj−1, p1,W

′
1, . . . , ps,W

′
s be a computation of P j−1 such

that W ′
s = R∞

P j−1(∅). By the inductive assumption there exists a computation S′j−1 =
∅, . . . , Z ′

s′ of P\G such that W ′
s\Rk ⊆ Z ′

s′ .
Proof by induction on the length m of S. We construct a computation S′ = ∅, . . . , Zm′

such that Wm\Rk ⊆ Zm′ and R∞
P j−1(∅)\Rk ⊆ Zm′ . For m = 0, S′ = Sj−1.

By the inductive assumption there exists a computation S′− = ∅, . . . , Zm′′ of P\G
such that Wm−1\Rk ⊆ Zm′′ and R∞

P j−1(∅)\Rk ⊆ Zm′′ .
Let pm be not a DIG response rule. Then Wm = Wm−1∪res(pm,Wm−1) = Wm−1∪

res(pm,Wm−1\Rk). Now S′ = S′−, pm, Zm′ , where Zm′ = Zm′′ ∪ res(pm, Zm′′). As
Wm−1\Rk ⊆ Zm′′ , by Lemma 3, Wm\Rk ⊆ Zm′ .

Let pm be a DIG response rule dr and e be the corresponding extended rule from
P\G. Then Wm = Wm−1 ∪ res(dr,Wm−1). S′ = S′−, e, Zm′ where Zm′ = Zm′′ ∪
res(e, Zm′′).

res(dr,Wm−1)
= res(dr,Rj) by Lemma 6
= res(dr,RR(res(E,R∞

P j−1(∅)))) by the definition of Rj

= res(dr,RR(res(dg, R∞
P j−1(∅)))) by Lemma 5

= res(dr,RR(res(dg, R∞
P j−1(∅)\Rk))) by Lemma 6

⊆ res(dr,RR(res(dg, Zm′′))) by Lemmata 3, 4, as R∞
P j−1(∅)\Rk ⊆ Zm′′

= res(e, Zm′′) by Lemma 2

Thus, by the inductive assumption, Wm\Rk ⊆ Zm′ . 2

Corollary 2 R∞
P\G(∅) ⊇ R∞

P k(∅)\Rk.

Proof Let S be a computation such that Wm = R∞
P k(∅). As Wm\Rk ⊆ Zm′ ⊆

R∞
P\G(∅), R∞

P k(∅)\Rk ⊆ R∞
P\G(∅). 2

Lemma 9 Let P = (P,G) be a DigXcerpt program without grouping constructs such
that there exists a final computation for P\G. Let P ′ = (P ′, G′) be P with each extended
rule ei replaced by the corresponding DIG response rule dri. Let E = {dg1, . . . , dgn}
be the set of DIG ask goals corresponding to e1, . . . , en and P ′′ be P ′\G′. Then

1. there exists a sequence of Xcerpt programs P0,P1, . . ., such that, for j ≥ 0, Pj =
(P j ∪ E,E), P j = P ′′ ∪ r(Rj), R0 = ∅, Rj = RR(res(Pj−1)) if j > 0, and
there exists a final computation for P j ,

2. Ri ⊆ Ri+1 for i ≥ 0,

3. there exists k ≥ 0 such that Rk = Rk+1.

19

Proof Let S = ∅ . . . , W be a final computation of P\G.

1. Notice that, for any m > 0, a sequence P0,P1, . . . ,Pm of programs exists iff there
exist final computations for programs P0,P1, . . . ,Pm−1. Proof by contradiction.
Assume that there is no final computation for some P j and take the first P j for
which there is no final computation. Thus, there exist final computations for the
sets P 0, P 1, . . . , P j−1. As there is no final computation for P j we can construct
an infinite computation ∅, . . . ,W ′

t , . . . ,W
′
t+1, . . . such that W ′

t ⊂ W ′
t+1 ⊂

However, by Lemma 8, for any computation S′ = ∅, . . . ,W ′ of P j , W ′\Rj ⊆ W .
As W is finite we get a contradiction.

2. By induction: ∅ = R0 ⊆ R1. If Rj ⊆ Rj+1 then P j ⊆ P j+1, hence res(Pj) ⊆
res(Pj+1) and Rj+1 ⊆ Rj+2.

3. Proof by contradiction. Assume that Rk 6= Rk+1 for any k ≥ 0. Thus
RR(res(Pk−1)) 6= RR(res(Pk)) for any k ≥ 1 and then res(Pk−1) 6=
res(Pk). By the definition of res(Pk), res(E,R∞

P k−1(∅)) 6= res(E,R∞
P k(∅)).

By Lemma 6, res(E,R∞
P k−1(∅)) = res(E,R∞

P k−1(∅)\Rk) and res(E,R∞
P k(∅)) =

res(E,R∞
P k(∅)\Rk). Thus R∞

P k−1(∅)\Rk 6= R∞
P k(∅)\Rk.

As Rk−1 ⊆ Rk, P k−1 ⊆ P k and then R∞
P k−1(∅) ⊆ R∞

P k(∅) (from Lemma 1 and
the definitions of RP and of res(P,Z), by induction). Hence R∞

P k−1(∅)\Rk ⊆
R∞

P k(∅)\Rk and, as R∞
P k−1\Rk 6= R∞

P k(∅)\Rk, we have R∞
P k−1(∅)\Rk ⊂

R∞
P k(∅)\Rk. However, by Lemma 8, R∞

P k(∅)\Rk ⊆ W for any k ≥ 1. So W

is infinite. Contradiction. Hence there exists k such that Rk = Rk+1.

2

Theorem 1 Let P = (P,G) be a DigXcerpt program without negation in rule bodies
and without grouping constructs and such that there exists a final computation of P\G.
Let P ′ = (P ′, G′) be P with each extended rule ei replaced by the corresponding DIG
response rule dri. Let E = {dg1, . . . , dgn} be the set of DIG ask goals corresponding
to e1, . . . , en and P ′′ be P ′\G′. Then there exists k ≥ 0, a sequence of Xcerpt programs
P0, . . . ,Pk+1, and a sequence of sets R0, . . . , Rk+1 such that

• for j = 0, . . . , k +1: Pj = (P j ∪E,E), P j = P ′′∪ r(Rj), R0 = ∅, there exists
a final computation for P j , and Rj = RR(res(Pj−1)) if j > 0,

• Rk = Rk+1.

Let Q = (P k ∪G′, G′). Then R∞
P\G(∅) = R∞

P k(∅)\Rk and res(P) = res(Q).

Proof By Lemma 9, there exist a sequence P 0, . . . , P k and a sequence R0, . . . , Rk+1

such that Rk = Rk+1. By Lemma 9, there exist final computations for P 0, . . . , P k. By
Corollary 1, R∞

P\G(∅) ⊆ R∞
P k(∅)\Rk. By Corollary 2, R∞

P\G(∅) ⊇ R∞
P k(∅)\Rk. Hence

R∞
P\G(∅) = R∞

P k(∅)\Rk.
Let Z = R∞

P k(∅)\Rk = R∞
P\G(∅). As Rk ⊆ R∞

P k(∅), R∞
P k(∅) = Z ∪Rk.

Let A = {eg1, . . . , egf} ⊆ G be the set of those goals of G which are extended rules
and let B = G\A. Let A′ = {dr1, . . . , drf} be the set of DIG response rules (goals)

20

corresponding to the rules from A and A′′ = {dg′1, . . . , dg′f} be the set of DIG ask goals
corresponding to the rules from A. We have G = A ∪B and G′ = A′ ∪B.

res(Q)
= res(G′, R∞

P k(∅)) by the definition of res(Q)
= res(A′ ∪B,Z ∪Rk) as R∞

P k(∅) = Z ∪Rk and G′ = A′ ∪B

= res(A′, Z ∪Rk) ∪ res(B,Z ∪Rk) by the definition of res(P,Z)
= res(A′, Rk) ∪ res(B,Z) by Lemma 6
= res(A′, Rk+1) ∪ res(B,Z) as Rk+1 = Rk

= res(A′, RR(res(Pk))) ∪ res(B,Z) by the definition of Rk+1

= res(A′, RR(res(E,Z ∪Rk))) ∪ res(B,Z) by the definition of res(Pk)
= res(A′, RR(res(E,Z))) ∪ res(B,Z) by Lemma 6
=

⋃f
i=1 res(dri, RR(res(dg′i, Z)) ∪ res(B,Z) by the def. of res(P,Z) and Lemma 5

=
⋃

e∈A res(e, Z) ∪ res(B,Z) by Lemma 2
= res(A,Z) ∪ res(B,Z) by the definition of res(P,Z)
= res(A ∪B,Z) by the definition of res(P,Z)
= res(G, Z) as G = A ∪B
= res(P) by the definition of res(P)

2

References
[1] U. Aßmann, J. Henriksson, and J. Małuszyński. Combining Safe Rules and Ontologies by

Interfacing of Reasoners. In PPSWR 2006, number 4187 in LNCS, pages 31–43.
[2] P. Barahona, F. Bry, E. Franconi, N. Henze, and U. Sattler. Reasoning Web 2006. Second

International Summer School. Tutorial Lectures. Springer.
[3] S. Bechhofer. The DIG Description Logic Interface: DIG/1.1. In Proceedings of DL2003

Workshop, Rome, 2003.
[4] S. Berger, E. Coquery, W. Drabent, and A. Wilk. Descriptive typing rules for Xcerpt. In

PPSWR 2005, number 3703 in LNCS, pages 85–100. Springer Verlag.
[5] W. Drabent and A. Wilk. Combining XML querying with ontology reason-

ing: Xcerpt and DIG, 2006. RuleML-2006 Workshop. Unpublished proceedings
http://2006.ruleml.org/group3.html#3.

[6] F. Patel-Schneider and J. Siméon. The Yin/Yang web: A unified model for XML syntax and
RDF semantics. IEEE Transactions on Knowledge and Data Engineering, 15(4):797–812,
2003.

[7] S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the Web. PhD
thesis, University of Munich, Germany, 2004. http://www.wastl.net/download/
dissertation/dissertation schaffert.pdf.

[8] S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction to Xcerpt.
In Extreme Markup Languages, 2004.

[9] E. Svensson and A. Wilk. XML Querying Using Ontological Information. In PPSWR 2006,
number 4187 in LNCS.

[10] W3 Consortium. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/.

[11] A. Wilk. Descriptive Types for XML Query Language Xcerpt, 2006. Licentiate Thesis.
Linkoping University. http://www.ida.liu.se/∼artwi/lic.pdf.

21

