Bachelor Thesis

Building a Distributed Rule
Translator System as a Web Service

Entwicklung eines verteilten
RegelUbersetzungssytems als Webservice

Marco Pehla

Bachelor Thesis: Building a Distributed Rule Translator System as a
Web Service: Entwicklung eines verteilten Regellibersetzungssytems

als Webservice

Marco Pehla
Copyright © 2007 Brandenburg University of Technology at Cottbus, Faculty of Computer Science, Chair of Internet
Technology

Abstract

R2ML isa XML based markup language developed for the rule interchange. In this thesis, on each other depending
technologies are introduced, that allow to build a distributed rule trandator system as a Web Service. With the help
of the Model Driven Architecture (MDA) approach, the whole system is modeled in UML 2.0 class, use-case and
sequence diagrams. In order to fulfill the complete process of the Model Driven Architecture (MDA) approach, one
specific implementation of the system is explained in detail in this thesis. Therefore the Java Enterprise Edition 5 was
chosen as middleware platform. In this particular case, the JBoss application server with Enterprise JavaBeans 3.0
support, is the concrete middleware platform. Stateless Enterprise JavaBeans 3.0 are playing one central role in the
implementation of the system and were chosen to depl oy the system asaWeb Service. Intheintroduced implementation
are XSLT 2.0 files used to trandate between the rule languages. The integration of Saxon 8, as XSLT processor that
supports XSLT in version 2.0, was therefore necessary and is explained in detail. Moreover, a web interface for the
developed Web Service, written in PHP 5, isintroduced as example client as well.

Zusammenfassung

R2ML ist eine XML basierende Abbildungssprache fir den Austausch von Regeln. In dieser Arbeit werden
voneinander abhdngige Technologien vorgestellt, die es erméglichen ein verteiltes Regellibersetzungssystem als
Webservice zu entwickeln. Mit der Hilfe des Ansatzes der modelgetriebenen Entwicklung (MDA), ist das
komplette System in UML 2.0 Klassendiagrammen, Geschéftsprozessdiagrammen (use-case Diagrammen) und
Sequenzdiagrammen modelliert. Um den kompletten Prozess des modelgetriebenen Entwicklungsansatzes zu
vervollstandigen, ist eine spezielle Implementierung des Systems in dieser Arbeit detailiert erlautert. Dafir wurde
die Java Enterprise Edition 5 Plattform as Middleware ausgewdhit. In diesem speziellen Fall ist der JBoss
Applikationsserver mit Unterstiitzung fir Enterprise JavaBeans 3.0 die konkrete Middleware Plattform. Zustandslose
(stateless) Enterprise JavaBeans 3.0 spielen eine grofRe Rolle in der Implementierung des Systems und wurden
ausgewdhlt um das Regel spracheniibersetzungssystem als Webservice zur Verfligung zu stellen. In der vorgestellten
Implementierung werden XSLT 2.0 Dateien zur Ubersetzung zwischen den Regelsprachen benutzt. Die Integration
von Saxon 8 als XSLT Prozessor, welcher XSLT in Version 2.0 unterstiitzt, war notwendig und ist daher detailiert
erklart. Des weiteren wird ein Beispielklient in Form einer dynamischen Webseite fir den entwickelten Webservice
eingefuhrt. Dieser wurde in PHP 5 geschrieben.

Dedication

Thisthesisis dedicated to my family for their patience with my study.

Table of Contents

ACKNOWIEAGEMENLS ... viii
FOTBWOIT ...ttt b e e bt ne e IX
1. Conventions Used in ThiS DOCUMENEccceiererinineneneeeeeeeeee e iX

1. Plan Of the TRESISccoiiieeee e 1
1. Task DESCIIPLIONc.coiiieieiiite ettt 1

2. SOIULION APPIOBCH ...t 1

2. INEFOAUCTION ..ttt sr e bt bt e e e nnenre s 3
1. RUIE LAGNQUAGESoiuiiuieiieieiestesteete sttt 3

2. WED SEIVICES ...ttt snenne e 7

3L SOAP et ettt b e 8

3 DESION et e b b h ettt n e Rt b e neene e 12
1. Safeguard the SYSEEIM ..o 12

2. .S0Urce Control SYSLEIMooiiiiieeeeee e 13

3. Distribution of ReSpONSIDIITIESccceoviiiiiiiier e 14

4. Model Driven ArChit@CIUIeooeiiiiieeeeeeee e 16

4.1. DOMAIN MOE!coiiiiiiiieeeee e 17

4.2. DESIGN MOE! ..ot 19

5. USB CBSES ..ottt e 24

6. SEQUENCE DIAGIAIMSeeueeieieierieeiesie ettt sn e 26

6.1. Translation of A RUIE ..o 27

6.2. Reception of all Source LanguUagESccccvererererieeieenenieseesienieneens 29

6.3. Reception of all Target LangUagescceceeereeieenienierenenieseseeeeeas 30

4. IMPIEMENTBLION ..ottt snesresreenenneas 32
1. Java Programming LanQUAJEceeeeemerierierienieniesiesieeee e 32

2. APPHCALTION SEIVES ...t 33

3. Implementation MOE! ..o s 35

3.1. Enterprise JavaBeans 3.0 Technologyccocceereriirieeienenencnenn 39

3.2. Enterprise JavaBean CONLAINESccccerierereriererieneseeeeeesee e 39

3.3. Choice of the Interchange Languagec.ccoererereeieeneenienesie e 40

3.4. Management of Translationsccoerirenininieiere e, 43

3.5. Explanation of the Source COodescccovrererenenieieeseese e 46

5. WED INLEITACE ... 74
1. DESIGN HINES ..ottt nne s 75

2. Using Web Services With PHP ..o 79

Bachelor Thesis

2.1. SOAP EXception HaNdiNGcccooveieiiirinereseeeeeeeeee e 82

2.2. SOAPCHENE BUGSveiveeieeiieieieiesiesie e 83

B. CONCIUSION ...ttt b et b et e et et e b sn e b e nne s 85
1. EXtensions Of the SYSteM ..o 85

A R R R e e R R e Rt Rt Rt R e e e e e e ne e 87
= USROS U TP PPTPRURORN 89
BiBlIOGraPNY ... 90

List of Figures

2.1. R2ML Tree View: ANCeSIOr REIATONcccoeiiiiriicereee e 7
3.1. Distribution in the Rule Tranglator SyStem ... 15
3.2. Domain Model: Rule Translator SYyStemccocviiirininieieesese e 18
3.3. Design Model: Rule Tranglator SYySemccooeieierineneseeeeeeee s 20
3.4. lllustration of Source and Target LanQUagESccoervererereeiieieeniesie e 22
3.5. llustration of Interchange LangUagESccccoerirerererieieienesee e 23
3.6. Use Case Diagram: Client (Dynamic WEDSITE)cccooeriririnininieeeeesesieene 25
3.7. Use Case Diagram: WED SEIVICEcciiiiiriiiniereeee e 26
3.8. Sequence Diagram: Trandation of aRUIE ..o 28
3.9. Sequence Diagram: Reception of all Source Languagesccovveevveeenieeienninns 30
3.10. Sequence Diagram: Reception of all Target Languagesccocevererererennene 31
4.1. Multitiered ApplicationS [BCEH]cccviieiieienienieeie e 34
4.2. Implementation Model: WED SErvice ... 37
4.3. Packaging of the Translator Web SErviCeccooeieviiiieneneeeeeee e 60
4.4. Packaging of an Enterprise Archive ... 61
4.5. ANT Integration in the EClipSe IDE ... 64
4.6. ANT Console Output in the EClIpSE IDEccoiiieiinenesereseeee e 65
5.1. R2ML Transator Web INterface ... 75
5.2. Pop-up Blocker Resistant Message WiNQOWcoceeeeeereenenenenenesese e 77

List of Tables

5.1. Displays and Resolutions

List of Examples

2.1 SIMPlE if-then RUIE ... 3
2.2. Rule in Object Oriented Pseudo COUEccceeeeeeieerierierieseseeeeee e 3
2.3. F-Logic Rule: ANCESLOr REIEHIONcoueeuieieiiiesiesiesiesesee s 4
2.4. SOAP REQUESE MESSAJEcoiveiuiiiieeitieie sttt 9
2.5. SOAP RESPONSE MESSAEeviveiiieiiiieesieete sttt 10
2.6. SOAP FaUIt MESSAOEcoveiiiiiiieieeee ettt 11
4.1. Lack Markup in RUIEMLoc.ooiiieceeeee e 40
4.2. Strict Markup with SWRL Built-Ins and XPath Functions.............ccccocevvnenenee. 41
4.3. Strict Markup in R2ML: "Previous YEaI™coceireeimeieenenesese s 42
4.4, Strict Markup in R2ZML: "customer spending a minimum of 5000 previous

12 PSSP 43
4.5. XML: Translation DESCIIPLONcc.eiveriiririeieieiiesie s 44
4.6. XML Schema: Translator DESCIPIONcoveiieriereerieriesieeeeeeeeeesee e 45
4.7. Java Annotations: Remote INterfaceccooeveieiiieniieeeeeeee s 46
4.8. Stateless Bean WED SEIVICEociiiiieeeeee e 48
4.9. Java ANNOLation: @WEDSEIVICEc.oocveieeiiieiiee et aa e 49
4.10. Java Annotations. Alternative Business Interface Declarationc.ccceuee. 50
4.11. Java Annotation: @WEDMELNOc.eoeviiiiiiiiieciiee e 51
4.12. Java Annotation: @WEDPAramooovcviieiiiiieie e 51
4.13. Java Annotation: @SOAPBINAINGcoeeiiiiinieie e 53
4.14. Java ANNOtation: @RESOUICEceeiiiviiieiiiriiee e eeee et e st e e s e sae e s s sebreeeeenns 55
4.15. Deployment Descriptor: €/b-jarXml ..o 57
4.16. throwing of 8 SOAPEXCEDIIONcc.eeueiieieieieriesie et 59
4.17. ANT bui I d. XM Fle s 62
4.18. R2ZML Ref er encePr opert YAL OM ... 66
4.19. XSLT Snippet of the R2ML to F-Logic Trangationccccccevevenereneneenene 66
4.20. Usage Of XS| 1 MBSSAQGE ..ooiiiriiiiieieeeee e 69
4.21. Implementation of thet r ansl at eDi rect () Operationccccceverereene. 70
5.1. CSSfor HTML t ext area element ..o 76
5.2. Pop-up Blocker Resistant Message WINGOWccceeeeeeneneneneneneseseseeeens 78
5.3. PHP Web Service Call: get Sour ceLanguages () «cccoerererenienienesienieens 79
5.4. WSDL: Response Type DeClarationcccccoerenireninieeieeeesese s 81
5.5. PHP Web Service Call: get Tar get Languages () ..ccccceoevererenenenesienieenns 82
5.6. PHP: SOAP EXception HandliNgccoceveiieiieierieriesesesee e 83

Vi

Bachelor Thesis

5.7. WSDL: Parameter Mapping of an Operationc.ccoceeeeeeieeieenenesieseseseeeeeens

A.1l. R2ML Rule: Ancestor Relation

vii

Acknowledgements

First and foremost, | would liketo thank Dr. Adrian Giurca, for hisinvaluable directions
and support throughout my research efforts towards this thesis. | would like to thank
as well Prof. Dr. Gerd Wagner for his good support and permission to write this thesis
in English language and all other people, who always believed and trust in me and my
abilities.

viii

Foreword

1. Conventions Used in This Document

The following typographical conventions are used in this document.

Const ant w dt h isused for source code examples, fragments, XML elements and
tags.

Emphasisis used to mark special thingsin the content and for the quotation of reference
titles.

Chapter 1. Plan of the Thesis

1. Task Description

In rule base applications, business rules are expressed with the help of executable rule
languages like JBoss Rules or Oracle Business Rules. One and the same rule has a
different form in every rule language. In case of arule platform change, it takes huge
efforts to trandate all existent rules manually to the new rule language. In this thesis a
system based on the rule markup language R2M L should be devel oped, that supportsthe
trangation of the most important rule languages. This system should be implemented as
aWeb Service.

Geschéftsregeln werden in einer regel basierten Applikation mit Hilfe einer ausfihrbaren
Regel sprache wie z.B. JBoss Rules oder Oracle Business Rules ausgedriickt. Dieselbe
Regel nimmt dadurch in unterschiedlichen Sprachen unterschiedliche Formen an und
es ist sehr aufwendig, z.B. bei einem Wechsel der Regelplattform alle Regeln manuell
in die Sprache der neuen Plattform Ubersetzen zu missen. In dieser Arbeit soll ein
Regel Ubersetzungssystem, das die wichtigsten Regel sprachen unterstitzt, auf der Basis
der Regelauszeichnungssprache R2ML entwickelt und als Webservice implementiert
werden.

2. Solution Approach

The main goal during the development of the rule language R2ML was not only to
develop another new rule language, the main goal was moreover to develop alanguage
for the rule interchange. Therefore R2ML need to cover all important informations of
other rule languages. Thus makes R2ML the ideal language for the interchange of rules
in atrandator system.

Web Services are self-describing and platform independent functionalities, that can be
used over a network. They are easy to integrate in already existing applications and a
good choice for a public rule tranglation system interface.

The solution of the rule trandation system, introduced in this thesis, use a the Java
Enterprise Edition 5 middleware platform to deploy the Web Service with the help of
Enterprise JavaBeans 3.0. The Model Driven Architecture (MDA) approach is used to

Plan of the Thesis

model the complete system. Use case and sequence diagrams helping to describe the
most important parts of the system with appropriate diagrams.

Chapter 2. Introduction

The Chair of Internet Technology at the Brandenburg University of Technology at
Cottbus is member of the REWERSE? project. Inside of the work package 11, one

goal was to develop arule interchange language based on XM L2 To prove that a new
technology fulfil the purpose for which it was developed, a good opportunity isto build
systems which take advantage of it. Therefore, the Chair of Internet Technology felt
the decision to build arule translator system that use the new rule interchange language
R2ML. In my thesis | want to describe what it need to Building a distributed Rule
Trandator System as a Web Service.

1. Rule Languages

Rules are used to specify behaviour. Every rule has a condition and conclusion part. In
computer programs, rules are often written with the help of if-then statements.

The Example 2.1, “Simple if-then Rule” is taken from the Product Derby presentation
paper of the UServ case study delivered during the 9th International Business Rules
Forum in Washington, DC in 2005. The introduced UServ case study is focused on
vehicle insurance products and their modelling with the help of business rules.

Example 2.1. Simpleif-then Rule

If the car's price is greater than $45,000, then the car's potential theft rating is high.
[BRF 05]

In object oriented programming languages, the same rule can be expressed like in
Example 2.2, “Rule in Object Oriented Pseudo Code”.

Example 2.2. Rulein Object Oriented Pseudo Code

if(car.getPrice() > 45000) {
car.setPotential Theft Rating = "hi gh";
}/lend-if

1http://www.rewerse.net

2eXtensible M arkup Language

Introduction

In the paper of the UServ case study, you can find far more complex rules, groupedinrule
set like Automobile Eligibility. All rulesin this rule set, establish the eligibility for acar.
Another set of rules define the eligibility categories for drivers and more other things.

In order to express such rules or rule sets, it is not easy to define them in programming
languages. These languages are smply not designed to markup business rules. Thisis
laying in the duty of rule languages. Rule languages give us the opportunity to express
business rulesin a syntax specified on rule markup. When the content of business rules
ismarked up well in arule language, then this rule is understandable by both, machines
and humans.

Common used rule languages are e.g. F-Logic, Jess, Jena, JBoss Rules, RuleML or
Oracle Business Rules.

Example 2.3. F-Logic Rule: Ancestor Relation

FORALL ?X, ?Y, ?Z ?X[ancestor->?Y] <- ?X[father->7?Z7]
AND ?Z[ancest or - >?Y] .

In natural language the Example 2.3, “F-Logic Rule: Ancestor Relation” could bewritten
inonesimplesentence. If X hasafather Z and thisZ hasancestorsY, then X hasancestors
Y. The rule language F-Logic is used for this example . The original example was
published in the tutorial How to Write F-Logic Programs [ONTOPRISE 04]. According
to the presentation of Martin Weindel, F-Logic Forum: Results and Open Issues left
[WEINDEL 06], the syntax of F-Logic has changed a little bit. The question mark sign
should now be written in front of variables in order to distinguish them. All double
arrows are dropped from the syntax. Multi-values, previously written with the two arrow
operator, are now written with the single operator. As you can see, the Example 2.3,
“F-Logic Rule: Ancestor Relation” , is already written in the new syntax.

To create a rule you need to know the semantics of all components of the language.
Therefore we break down the Example 2.3, “F-Logic Rule: Ancestor Relation” to her
components and try afterwardsto build the same rule in another rule language with these
components step by step from scratch.

Break Down into Components

» All variables that appear in the rule are X, Y and Z. As mentioned before, they are
now written in the new syntax of F-Logic, with a question mark sign in front of their

Introduction

name. Thismakesit pretty easy to find and distinguish them. Usually in object oriented
languages and in the most other rule languages, we would call the F-Logic variables
not variables, we would call them objects. Thereforewe call F-Logic'svariablesin the
following object variables.

» Theobject variable X hasaproperty ancest or . Thisproperty valueisat ashort gaze
the object variable Y. But when we think object oriented, then it isimpossible that the
object variable Y itself is the value of a property. Therefore the value of the property
ancest or have to be the reference to the object variable Y. We will see later why
this makes an important difference.

» Theleft orientated arrow <- symbolize that statement left at his side isthe conclusion
of the F-Logic rule.

* Next to the right side of him are the condition statements written. In this case the
built-in AND express that both conditions need to be evaluated to true when the rule
should apply.

» Theobject variable X hasaproperty f at her with areferenceto the object variable Z.

» Theobject variable Z hasaproperty ancest or with areferenceto the object variable
Y.

Building the R2ML Rulefrom Scratch
1. Every R2ML rule has aroot element called Rul eBase.

2. Elements of the abstract type Rul eSet can be added to the RuleBase element. Since
the object variable X need to derive areference property in the rule later, we choose
herethetypeDer i vat i onRul eSet . It isaso possibleto add more and other kinds
of Rul eSet typesto the Rul eBase element. A Deri vati onRul eSet isaset
of rulesof thetype Deri vati onRul e.

3. As dready explained, we add an element of the type Deri vati onRul e
to the Deri vati onRul eSet. The vaue of the rul el D attribute of the
Deri vati onRul e elementisDR0O01, sinceit isthefirst derivation rule in the set.

4. Every derivation rulehasacondi ti on andaconcl usi on element.

Introduction

5. We remember we had three reference properties in the origina rule. Two in
the condition and one in the conclusion part. Every previously called statement
is called an atom in R2ML. We use here the Ref er encePr opertyAt om
element for the markup. Since in R2ML are several different kinds of atoms
possible at this point, we need to chose the right kind of atom here in order
to markup the rule in the right way. We add the Ref er encePr opert yAt om
with the attribute r ef er encePr oper t yl D and the value f at her and a second
Ref er encePr oper t yAt omwith the value ancest or as child elements to the
condi ti on element. We add as well a Ref er encePr opert yAt omwith the
valueancest or forther ef er encePr opert yl Dattribute asonly possible child
totheconcl usi on element.

6. Every Ref erencePropertyAt om has the nested elements subj ect and
obj ect.

7. The subj ect element of the Ref er encePr opert yAt om which is a child
element of condi ti ons, with the value f at her asr ef erencePropertyl D
need to have an Qbj ect Vari abl e, with the attribute value X as nane, as child
element. Theobj ect element hasthe Obj ect Var i abl e withthename aschild
element.

The subj ect element of the Ref er encePropertyAt om which is a child
element of condi t i ons,withthevalueancest or asr ef er encePr opertyl D
need to have an Qbj ect Vari abl e, with the attribute value Z as nan®, as child
element. Theobj ect element hasthe Cbj ect Var i abl e withthenameY aschild
element.

The subj ect element of the Ref er encePropert yAt om which is a child
element of concl usi on,withthevalueancest or asr ef er encePropertyl D
need to have an Qbj ect Var i abl e, with the attribute value Z as nane, as child
element. Theobj ect element hasthe Obj ect Var i abl e withthe name Z aschild
element.

The structure of an XML file is very similar to the structure of atree. The Figure 2.1,
“R2ML TreeView: Ancestor Relation” showsin asimplified tree the absolute necessary
elements that build the R2ZML rule. Every single step of the build process correspond to
one hierarchy layer in the tree view. The complete R2ML rule in XML format can be
found in the Appendix A, of this document.

Introduction

Figure2.1. R2ML TreeView: Ancestor Relation

<RuleBase>

<DerivationRuleSet>

<DerivationRule
rulelID="DR001">

<conditions> <conclusion>
<ReferencePropertyAtom <ReferencePropertyAtom <ReferencePropertyAtom
referencePropertylD="father"> referencePropertylD="ancestor"> referencePropertylD="ancestor">
<subject> <object> <subject> <object> <subject> <object>
<ObjectVariable <ObjectVariable = <ObjectVariable <ObjectVariable <ObjectVariable <ObjectVariable
name="X" > name="Y" > name="Z" > name="Y" > name="X" > name="2Z" >

Different rule languages use often a similar concepts to markup the content. This gives
us the possibility to trandate between rule languages.

For further informations about F-Logic, the tutorial How to Write F-Logic Programs
[ONTOPRISE 04] isworth reading. R2ML is arule interchange language and could be
used for both, as an intermediate format and as a standalone rule language. What the
attributes of an interchange language really are and how this language is used by the
trangator system is explained in Chapter 3, Design.

2. Web Services

Web services are not services provided by the web, which is often the synonym for the
world wide web aso known as the Internet. Web services does not describe websites
where people use services to buy or sell things or inform about topics in an Internet
lexicon. The the World Wide Web Consortium (W3C) published in the document Web
Services Architecture [BHM+ 04] following definition.

“A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL3). Other systemsinteract with theWeb servicein
amanner prescribed by its description using SOAP messages, typically conveyed using

3Web Service Description Language

4Simple Object Access Protocol

Introduction

HTTP® with an XML® serialization in conjunction with other Web-related standards.”
[BHM+ 04]

An imaginary web service may provide a westher forecast. Y ou send him your location
and receive the forecast as text. Another web service may provide you the actua
exchange rate to your local currency when you send him the currency of your favoured
country.

Every web service is completely described by his web service description catalogue
(WSDL). The web service description catalogue (WSDL) “...defines the message
formats, datatypes, transport protocols, and transport serialization formats that should be
used between the requester agent and the provider agent. It also specifies one or more
network locations at which a provider agent can be invoked, and may provide some
information about the message exchange pattern that is expected. In essence, the service
description represents an agreement governing the mechanics of interacting with that
service.” [BHM+ 04]

Web services are accessable by their endpoint URL’. The web service description
catalogue of the web service, introduced later in this document, is accessible with an
ordinary Internet browser. This web service use the HTTP protocol for the transfer of
SOAP messages to communicate with clients of the web service.

3. SOAP

SOAP is the message format used for the communication with the web service,
introduced later in this document. Especially, SOAP 1.1 messages are used to
communicate with the clients. The the World Wide Web Consortium (W3C) published
in the document Smple Object Access Protocol (SOAP) 1.1 [DEK+ 00] the following
description.

“SOAP is a lightweight protocol for exchange of information in a decentralized,
distributed environment. It is an XML based protocol that consists of three parts: an
envel opethat definesaframework for describing what isin amessage and how to process
it, aset of encoding rulesfor expressing instances of application-defined datatypes, and a
convention for representing remote procedure calls and responses. SOAP can potentially

SHypertext Transfer Protocol
SeX tensible Markup Language

"Unified Resource Locater

Introduction

be used in combination with avariety of other protocols; [...] SOAP doesnot itself define
any application semantics such as a programming model or implementation specific
semantics, rather it defines a simple mechanism for expressing application semantics
by providing a modular packaging model and encoding mechanisms for encoding data
within modules. Thisalows SOAPto be used in alarge variety of systemsranging from

messaging systems to RPC2.” [DEK+ 00]

In Example 2.4, “ SOAP Request Message” you see the SOAP message that is send from
aclient to a web service. The SOAP message consist of a envelop that hold a header
and an body element. In the following SOAP messages the header elements are not used
and are therefore empty.

Example 2.4. SOAP Request M essage

<SCAP- ENV: Envel ope
xm ns: SOAP- ENV="' htt p: // schemas. xm soap. or g/ soap/ envel ope/’
xm ns: nsl="http://r2m/jaws' >
<SOAP- ENV: Header / >
<SCAP- ENV: Body>
<nsl: get Tar get Languages xm ns:nsl="http://r2m/jaws' >
<nsl: sourceLanguage xm ns:nsl="http://r2m/jaws' >
F- Logi c XM
</ nsl: sour ceLanguage>
</ nsl: get Tar get Languages>
</ SCAP- ENV: Body></ SOAP- ENV: Envel ope>

The operation wrapped in this SOAP request message can be written in
a pseudo code language as get Tar get Languages(" F- Logi cXM.") ;. The
character string F- Logi cXM. is the content, or child text node, of the element
<nsl: sour celLanguage>. He is as well the only parameter of the operation
get Tar get Languages, which is aso the parent element.

The SOAP response message to the request you see in Example 2.5, “ SOAP Response
Message”.

8Remote Procedure Call

Introduction

Example 2.5. SOAP Response M essage

<env: Envel ope
xm ns: env="http://schemas. xm soap. or g/ soap/ envel ope/' >
<env: Header/ >
<env: Body>
<nsl: get Tar get LanguagesResponse
xmns:nsl="http://r2m /] aws’
xm ns: xsi =" http://ww. w3. or g/ 2001/ XM_Schena- i nst ance' >
<nsl:resul t>F-Logic</nsl:result>
<nsl:resul t>JBossRul es</nsl:result>
<nsl:resul t>Jena2</nsl:result>
<nsl:resul t>Jess</nsl:result>
<nsl:resul t>R2ZM_</ nsl:result>
<nsl:resul t>Rul eM.</nsl:result>
</ nsl: get Tar get LanguagesResponse>
</ env: Body>
</ env: Envel ope>

The response are many <r esul t > elements. The text child nodes representing the
content. In this case, the response of the operation get Tar get Languages(" F-
Logi cXM.") ; are the result string characters F- Logi ¢, JBossRul es, Jena2,
Jess, R2M. and Rul eM._.

In Example 2.6, “SOAP Fault Message” you see the a SOAP fault message which is
the response from the web service to a request of the client. According to the message
content, the client forgot to specify input data.

10

Introduction

Example 2.6. SOAP Fault M essage

<env: Envel ope
xm ns: env="http://schemas. xm soap. or g/ soap/ envel ope/' >
<env: Header/ >
<env: Body>
<env: Faul t
xm ns: env="http://schemas. xm soap. or g/ soap/ envel ope/' >
<faul t code>env: dient</faultcode>
<faul tstring>
r2m . Transl ati onException: [ERRO001] No input data.
</faultstring>
<detail >
<nsl1: Transl ati onExcepti on
xmns:nsl="http://r2m /] aws’
xm ns: xsi =" http://ww. w3. or g/ 2001/ XM_Schena- i nst ance' >
<ns_nessage: nessage
xm ns: ns_nessage=' http://soap. xnl .javax/jaws' >
[ERROO01] No input data.
</ ns_message: nessage>
</ ns1: Transl ati onExcepti on>
</detail >
</ env: Faul t >
</ env: Body>
</ env: Envel ope>

The content of the <f aul t code> element shows that the client is responsible for the
error. The content of the <f aul t st ri ng> shows here the reason. A more detailed
information can be found by looking at the <det ai | > element. The child element of
<det ai | >isherea<Tr ansl at i onExcept i on> element. This element has again
a child element <nessage>, which has text content. All this tells us that the client
created a fault, moreover a trandation exception with the message [ERRO001] No
i nput data. .

A complete description of the SOAP 1.1 message format can be found in the document
Smple Object Access Protocol (SOAP) 1.1 [DEK+ 00].

11

Chapter 3. Design

A good design is the crucial factor for developing professional software applications.
In this phase you need to consider many different things and these depend mainly on
the kind of application that need to be build. For the rule tranglator system the decision
felt to separate the trandations from the application. One reason for this decision was
to shield the application for unauthorized access. In contradiction to the tranglations,
the application needs rarely further development. Trandlations need, at least as often
modifications as the languages for they are written for.

1. Safeguard the System

To shield applications for unauthorized access from outside should be pretty obviousand
should always require the highest priority. That means you need to protect the system
with a firewall when it is connected to an outside network like the Internet. Of course
you need to change all default passwords of software that is accessible by others. It is
also sometimes useful to prevent every access to administrator functionality from the
Internet, when it is not absolutely necessary. Thereisalso aneed to shield the application
from unauthorized access from inside your own network. Everybody who has access to
parts of the system where he is not working on, should not become access.

| want to explain the last sentence more precisely with a little story. In the previous
trandator system which was build, every trandation file lay in the same folder with a
JavaServer Page. Actually thiswasnot agood idea. The JavaServer Pagewasresponsible
to create a dynamic web appearance and to provide a trandator functionality for each
trangation. One problem was that a colleague, which should work on atrandation file,
thought he might could change somethingin all JavaServer Pagefilesaswell. Thesystem
was designed in a way that every single JavaServer Page has a connection to a single
JavaBean. This JavaBean has the mission to trandate rule languages. Since the system
was designed without access control, every member in the team could access everything.
The game went so far, that the colleague copied the source code of the JavaBean code
to a new file and changed afterwards the implementation. Then he deleted all Java
Server Pages and used instead new files in the JavaServer Pages XML format. Nobody
recognized al the changes inside of the source control system. With the next necessary
and urgent build, no trandlation worked. Of course this day was the developer of the

12

Design

system absent and nobody did made abackup of the source codes and of the last working
translator application before.

It was doubtless not the intention of the colleague to destroy the translator system.
The problem was he had less information about the system and furthermore he got the
possibility to access everything. After he spoke with the devel oper of the system, it took
him several hours to revert al changes and to repair the system. One big problem for
instance was that he deleted all JavaServer Pages from the source control system when
he created the new files in the JavaServer Page XML format. He was simply not aware
of the consequences. When files inside of the source control system are deleted, they
could not be restored. They are dropped from the underlying database. Thisis a very
bad situation and negates completely the main idea of using a source control system.
There is no chance to revert everything. In our case all JavaServer Pages needed to be
restored from their not working XML version. During this process we found the reason
for the malfunction of thetrand ation system. The private devel opment server of theteam
member was a different build and had another configuration. Our older to the Internet
connected productivity server was not configured to support the newer XML format of
Java Server Pages. The colleague that did the fateful changes wrote also some bugs in
his changed implementation.

Thislittle story illustrates very good that we need to think about roles and access control
mechanisms when parts of the application are growing, are always under development
and many people work on different parts with different responsibilities. It is often the
situation that only the system developer realy knows how all parts are related and
depending on each other. Other team members that are responsible for trandations do
not need to know how the complete system work, they should only concentrate their
trandations to archive the best possible result. Thisis akind of hierarchy where every
team member has a role with another important responsibility. The system devel oper
is responsible for a working system and reasonable interfaces for the trandations. The
trangation developer has the responsibility for the translation and her correct mapping.

After the experience with the first translator system, | thought about how to avoid these
kind of problems when some people doing other peopl€'s job.

2. Source Control System

For the development of software applicationsit is always agood ideais to use a source
control system. But what is a source control system?

13

Design

“Versioning, the most basic feature of a source-control system, describes the ability to
store many versions of the same source file. [...] Once the file has been checked out,
the user performs her edits on the file. When the user is happy with her changes (or just
wants to checkpoint them), the file is then committed (or checked in) and updated in
the repository. At this point, the repository knows about two versions of the file. Each
version has some kind of unique identifier, called revision number. When a user checks
out the file again, sheis given the last revision.” [HENDERSON 06]

The source control systemisan ownindependent system. Accessrightscould be assigned
for each group or user. The folder access from a network e.g. the Internet is controlled
by the source control system itself.

For theruletranslator system a source control system isonly used for the trandlation files
and rule examples. Thisisagood idea since tranglations are changing sometimes and are
developed by several usersin contradiction to the trandlator itself. There isno accessto
the translator from the source control system possible. This gives translation devel opers
the opportunity to concentrate on her assigned work and minimize the possibility to
destroy the translator application by accident.

In the root of the repository inside of the source control system isafilethat describesall
re-checked and proper working tranglations. The translator only need to know where he
can find the descriptor file. When the translator need to perform atranslation he read the
descriptor and knows afterwards where he can find and get the latest translation from the
source control system in order to fulfil histask.

3. Distribution of Responsibilities

Distribution of responsibilities to different servers is an approach which should be
considered in the design phase. In the case of the distributed trandlator system the
decision felt to distribute translations and their translator application. One reason was
to strictly detach both things. That means there is an productivity server where the final
applicationsare running and another devel opment server were an source control systemis
installed. Thisdevel opment server could be used for thetranslationsand other fileswhich
arein the development process. Even the source codesfor the trang ator application itself
can be managed in another branch of the source control system and secured by restriction
of users or groups.

14

Design

Figure 3.1. Distribution in the Rule Trandator System

» SOAP Client:
/ - Web Interface

o< Server : nitrogen

» Application Server:
- Web Service

» Source Control System:
- translations
- rule examples

network

Server: hydrogen Server: oxygen

The distribution of responsibilities has the benefit to avoid an overloading of one single
server. A machine where servers running for JavaServer Pages, Enterprise JavaBeans,
PHP or a source control system could faster become overloaded than most people
think. How much memory are all server instances really need in a worst case? Has
the processor enough speed? How can we scale up the system in future? When
responsibilities are distributed on different servers you fast find your bottleneck. Then
you can investigate to speed up only the responsible server.

But it is not always necessary or even possible to use one dedicated machine for one
server. Virtualisation has become abig impact in the areaof informaticsin the last years.
It means to emulate many computers on a single machine. Every emulated computer
is called a virtual machine and act like a real computer. Virtual machines have their
own network cards and can communicate with other virtual or real machines. Today all
modern computer processors have a hardware instruction set to support virtualisation in
hardware. The chip vendor Intel call her hardware virtualisation technology V anderpool
or VT. Hiscompetitor AMD call it Pacificaor AMD-V. That all meansavirtual machine

15

Design

is not emulated and slow anymore, she is running with performance close to native
hardware.

Another big trend today are multi-core processors. This makes it possible to assign
processor coresto virtual machinesby amouse click. Thusmakesaseparation of services
to virtual servers running on a single dedicated machine an opportunity, because you
can specify how much memory and processor cores should be used for this very virtual
machine.

Today, it is often the case that applications need to fulfil purposes for they where not
laid-out before in there devel opment stage. Since the trandation of rulesis an important
topic in the research area of informatics, it is a good idea to dispatch a possibility to
scale up the whole system in future if thereisaneed for it. An application server, which
supports clustering is a possibility to easy scale up the whole system. It is obvious that
only clustering of application servers which are installed on real machines make sense.
To scale avirtual machine it is more reasonabl e to assign more resources like processor
coresor memory. If thisisnot sufficient, the next step isthe migration to aown dedicated
machine.

4. Model Driven Architecture

From the website of the Object Management Group Inc. (OMG), the inventor of the
Model Driven Architecture, comes the following definition.

“The MDA isanew way of developing applications and writing specifications, based on
a platform-independent model (PIM) of the application or specification’'s functionality
and behaviour. A complete MDA specification consists of a definitive platform-
independent base model, plus one or more platform-specific models (PSM) and sets of
interface definitions, each describing how the base model is implemented on a different
middleware platform. A complete MDA application consistsof adefinitive PIM, plusone
or more PSMs and complete implementations, one on each platform that the application
developer decides to support.” [OMG]

Dr. Jon Siegel, the vice president of technology transfer at Object Management Group
Inc. (OMG) explainsin his article Making the Case: OMG's Model Driven Architecture
[SIEGEL 02] the MDA development process in more detail.

John Hogg from IBM wrote on a slide in his presentation Brass Bubbles: An Overview
of UML 2.0 (and MDA) [HOGG 03] the following statement. “Software has the rare

16

Design

property that it allows us to directly evolve models into full-fledged implementations
without changing the engineering medium, tools, or methods! => This ensures perfect
accuracy of software models; since the model and the system that it models are the
same thing ” The most important conclusion of Mr. Hogg was that “The model is the
implementation”. Hogg called models useful if they fulfil five characteristics.

Characteristics of Useful M odels

Abstract

Emphasize important aspects while removing irrelevant ones

* Understandable

Expressed in aform that is readily understood by observers

e Accurate

Faithfully represents the modelled system

* Predictive

Can be used to derive correct conclusions about the modelled system
* |Inexpensive
Much cheaper to construct and study than the modelled system

In the next sectionsyou find two platform-independent models (PIM) inform of asimple
domain and more specific design model. Moreover, severa use case diagrams are used
to describe the most important processes. In three sequence diagrams are all necessary
operations and their behaviour modelled. With the collection of all these different kind
of diagrams, the complete distributed rule trandlator system is modelled. In Chapter 4,
I mplementation one platform-specific (PSM) model and the implementation in the Java
programming language, is introduced and explained with snippets of the most important
parts of the source code.

4.1. Domain Model

The domain model is called a computation-independent model (CIM) in terms of
the Model Driven Architecture. It shows only the absolute necessary operations and

17

Design

attributes without data types. For the distributed rule translator system is this model
simple and straightforward. Y ou can seein Figure 3.2, “Domain Model: Rule Transator
System” three classes are building the basis of the system.

Figure 3.2. Domain Model: Rule Trandator System

Web Service Translator
languages 1.* languages
<
translate() translate()
1.%
Translation
languages
translation

Web services are always stateless. This means, every call from a client creates a new
web service object. The class\Web Ser vi ce isan interface and acts as a wrapper for
the class Tr ansl| at or . Therefore his properties and operations are the same than in
theTr ansl at or class. Both classes have the property | anguages and the operation
t ransl at e. To keep the domain model as simple as possible, | anguages iswritten
in plural and stand for the source language of the rule and the target language of the
trangd ation result. The association between the Web Ser vi ce and the Tr ans| at or

iscalled an composition association. A composition isastronger kind of aggregation and
express that one classis an absolute necessary part of another class. The Tr ansl at or

is the part that helps the Web Ser vi ce to provide an translate operation. The
tranglator itself isthe classwith the real functionality. Since the web service create anew
translator object for every client, he has not to keep an existent trandlator instance. This
explains the cardinality of one or more trand ators. The association between the classes

18

Design

Transl at or andtheTr ansl at i on isalso acomposition. At least onetrandationis
absolute necessary for the tranglator. Important properties of the class Tr ansl at i on
are their | anguages, which stands again for the source and target language, and
their property t r ansl at i on which stands for the mapping description between these
languages.

There is one main reason why the trandator is modelled as a separate class and not
together with the web service. Reusability. Imagine we want later devel op an application
that use not a web service as interface for the trandation of rules. In this case we
just drop the class Web Ser vi ce. Our business logic, the aready implemented and
established trandator system, remains and could be used without changes to build our
new application. We do not need to reinvent the wheel and save alot of time.

4.2. Design Model

A more specific model than the domain model is the design model. According to the
model driven architecture (MDA) approach, the design model isan platform-independent
model (PIM). It can be derived from the domain model by adding data types and more
specific functions. All cardinalities and associations stay in the same condition than they
were in the domain model.

19

Design

Figure 3.3. Design Model: Rule Translator System

<<Web Service>> <<Translation>>
TranslatorWebService XSLTTranslation
+ endpointURL: String - sourceLanguage: String

- targetLanguage: String

+ getDescriptionCatalogue(): String - content: String

+ translate(sourceLanguage:String,targetLanguage:String,inputData:String): String
+ getSourceLanguages(): String [] + getSourceLanguage() : String
+ getTargetLanguages(sourceLanguage: String): String [] + getTargetLanguage() : String
+ getContent(): String

<<Translator>>
Translator

+ translate(sourceLanguage:String,targetLanguage:String, inputData:String): String
+ getSourceLanguages(): String []
+ getTargetLanguages(sourceLanguage: String): String []

- loadConfiguration()
- translateDirect(sourceLanguage:String, targetLanguage:String,inputData:String): String H
- getDirectTargetlLanguages(sourceLanguage:String) : Set 1..%

- getIndirectTargetLanguages(sourceLanguage:String) : Set

- getInterchangelLanguage(sourceLanguage:String) : String

- getTransformation(sourceLanguage:String, targetLanguage:String) : String
- isSourceLanguage(language:String) : boolean

- isTargetLanguage(language:String) : boolean

<<enumeration>>
Translation Error Code

+ERRO0001 : String = No input data.

+ERR0002 : String = No need for a translation. Source and target language are the same.
+ERRO0003 : String = Your selected language is not a supported source language.
+ERR0004 : String = Your selected language is not a supported target language for the selected source language.
+ERRO0005 : String = The following element is currently not supported.

+ERRO0006 : String = The following attribute is currently not supported.

+ERRO0007 : String = The translation input is not a derivation rule.

+ERRO0008 : String = The translation input is not a production rule.

+ERR0009 : String = The translation input is not a reaction rule.

+ERRO0010 : String = The translation input is not a integrity rule.

+ERRO0011 : String = XSLT processor error.

+ERRO0012 : String = Error in RuleML input. Global variables are not supported.
+ERRO0013 : String = Error in RuleML input. Semi-global variables are not supported.

4.2.1. The Web Service

Every web service has an endpoint URL, where he receive his operation calls. The class
Transl| at or WebSer vi ce represent this with her property endpoi nt URL. This
property is public because clients need to accessit in order to use the web service. Since
URL'sareinthestrict sense only stringswith aspecific meaning, the property got thetype
St ri ng. Since this model is platform-independent and there are maybe programming
languages where no type URL exist, we are with this markup on the safe side.

20

Design

4.2.2.

4.2.3.

To describe his interface, a web service use a XML descriptor file called the web
service description catalogue (WSDL). Since XML is a text format and in this case
transmitted over a network, the operation get Descr i pti onCat al ogue() returns
a St ri ng that include the web service description XML content. To provide an web
service description catalogue (WSDL) isin the duty of the environment in where the web
service is deployed. But this is a platform-specific issue. The operation simply models
that a web service provide his description catalogue.

Before any trandlation could be made, it is necessary to know what source and target
languages are supported or are currently available. Maybeatranglationin onedirectionis
supported (al so known asunidirectional), but no transl ation backward isavailable or even
possible. Therefore we need to specify the source language when we want to know what
kind of target languages are available. An operation like get Languages() would be
just reasonableif all trandations are bidirectional. When we are able to translate from A
to B and back again. But thisis not always the case.

The Translation

Every trandation need properties that specify the source and target language. The
property cont ent in the class XSLTTr ansl at i on describes the trandation itself,
but could later also implemented as a pointer to a tranglation file somewhere else. The
get operations symbolise a read only access. Operations to modify translations from
inside of the system, are not provided.

The Translator

Theclass Tr ansl at or isthe part of the application, that provides the functionality to
convert input data from a source to a target language format, with the help one or more
tranglations. He need to know about al available translations and her source and target
languages. With thisinformation he can combine trang ations. Inside of the translator we
need to distinguish between direct and indirect translations.

21

Design

Figure 3.4. lllustration of Source and Target L anguages

F-Logic
Jess
F-LogicXML
» R2ML
/r
R2ML
—> Jena2
RuleML
e JBossRules
RuleML
source languages target languages

Direct trand ationstranslate direct from the sourceto thetarget language. In contradiction
to indirect translations which use an intermediate format or an interchange language.
Interchange languages are both, source and target language. They allow the tranglator for
instance to trandate from F- Logi cXM. to Jess even if thereis no direct trandation
available as you can see in Figure 3.4, “Illustration of Source and Target Languages’.
The benefit of an interchange language is enormous. It depends directly on the number
of trand ations from the interchange language to other languages. Imagine you write only
one new trang ation from a new source language to the interchange language. Then the
trandator is able to provide you more than one target language. Roughly speaking, the
new trandation to ainterchange language inherit all target languages of the interchange
language. At thispoint it isimportant to mention that an interchange language need to be
ableto capture all important informations of all languages she need to interchange. Such
alanguage is often strict and complex, but any lost of information could not be tolerated
and is not acceptable. The quality of indirect translations depend mainly on the choice
of the interchange language. This need to be considered carefully. Not every languageis
appropriate for this purpose. In the range of rule languages e.g. Rul e M. would not be
the best choice. An explanation for that thesis follow in the implementation chapter in
Section 3.3, “ Choice of the Interchange Language’.

22

Design

4.2.4.

Figure 3.5. lllustration of I nterchange L anguages

JBossRules

source languages interchange languages target languages

The choice to use sets for internal operations with languagesin the class Tr ans| at or
has two simple reasons. Sets do not have duplicates and do not have a fixed size, this
helps to avoid programming mistakes. Arrays in contradiction need a fixed size, they
can have duplicates entries and can run out of bounds. With sets we are on the safe
side and do not need to care much about these things. The second and most important
reason for the usage of sets is, when we create a intersection of the sets of the source
and target languages, we receive a set of al interchange languages that could be used for
indirect trandlations. Thisisasimple and powerful example which showstheimportance
of choosing the right data types. This design issue maybe avoid programming mistakes
later in the implementation phase.

A detailed explanation of operations follows in Section 5, “Use Cases’ and Section 6,
“Sequence Diagrams’ .

The Translator Error Codes

When the Translator need to fire an exception, which istransported to the client, thenitis
good ideato have a previous defined set of error cases and a corresponding explanation
for them. Thisis the purpose of the Tr ansl at or Error Code enumeration. It is
akind of contract of defined and expected error cases. Everyone in the developer team
use this error codes to describe errors in his part of the application. Errors can not only
happen in the translator application, they can also appear inside the translation during

23

Design

the trandation process. Thus the translation developer need to know about these kinds
of available error codes.

When a client want to use the web service, but did not specify the necessary translation
input, an exceptionisfired withtheerror code ERRO001. Asmentioned beforeerrorscan
also appear inside of atranslation. For instance, isit not alwayspossibleto trandlatearule
from R2ML to JBoss Rules. Only production rules could be translated. If the translation
input is another kind of rule e.g. aderivation rule, the translation need to create an error.
The tranglation use therefore the error code ERRO008 to explain why the trandlation is
not possible. To provide an extra document with all listed error cases and description
on awebsite is a good solution. Of course only the main developer of the web service
should be allow to add new error codes. Of course it is not a good behaviour to change
the meaning of existent error codes. A better solution is to use new codes and keep the
old onces, in order to be somehow backward compatible. That means error codes grow
with the development of the application and their tranglations.

5. Use Cases

Use case diagrams explaining business processes in a easy understandable way. The use
cases concept of was invented by the Swedish computer scientist Dr. Ivar Jacobson. In
an interview in 1999 he said “1 identified the use case concept in 1986, and when | had
found that concept | knew | found something that solved many problems to me, because
| could use this concept for everything that systems did, and for every kind of system. It
helped me alot to create a systematic methodology.” [JACOBSON 99]

Both, the client and the web service are involved in three use cases. These are the use
cases for receiving the source languages, the target languages and to translate arule. In
the Figure 3.6, “Use Case Diagram: Client (Dynamic Website)” a dynamical website
take the role of aclient. This example scenario that helps us to imagine the use cases.

24

Design

Figure 3.6. Use Case Diagram: Client (Dynamic Website)

client

/~.~~ <<include>>
<<inc|ude>>*
select source _ get source Web Service

language languages g
select target N\ _ get target |

user language / cincludess languages

insert a

Business Rule

\

Imagine a user open his web browser and type in the address of the website that act as
client. Always the first use case is the start procedure of the client when the website is
build for the browser. To fill the complete website with meaningful informations, the
client need to call the web service. He need to receive all available source languages
and hasto select one automatically, maybe the first one. Afterwards he performs another
call to the web service in order to receive all target languages for the previously selected
source language. One of the target languages is been selected by him again. After the
previously performed use cases to building the website, the user can now change for
instance the source or target language and activate with his action the corresponding use
case. When the user insert arule e.g. with copy and paste, he could click on the trandate
button and perform with his action a translation with the help of the web service.

All use cases of the web service are shown in Figure 3.7, “Use Case Diagram: Web
Service”. Almost all are pretty ssmple, because they use directly the functionality of the
tranglator. Only one use case lay in the duty of the web service. He need to provided
his description, that means clients should be able to read the web service description
catalogue (WSDL). A client could call a web service to receive source and target
languages. When he is asking for a target language also a source language need to
be specified. Additional information is aso necessary when a client is asking for a
tranglation. The source, the target language and arule isin this case mandatory to fulfil
this business process.

25

Design

Figure 3.7. Use Case Diagram: Web Service

Web Service

get description
get source
languages

get target
languages

<<condition>>
source language
selected

ANEAN

client g

translator g

<<condition>>

target language
& Business Rule

Internally, the translator does almost everything to transate arule. The trandator is the
environment in where the translation is made. Therefore the structure of the translator
and his operations are explained in the next section with the help of sequence diagrams
more precisely.

6. Sequence Diagrams

In 1987 adopted Dr. Ivar Jacobson sequence diagrams for the object oriented software
development. “In the design phase, sequence diagrams are used to gain a more detailed
specification for operations.” [BALZERT 01] The benefit of creating one sequence
diagram for every use case is, that we retrieve a complete set of necessary operations
and her belongings to the classes. This information helps us later in the implementation
phase to avoid programing mistakes. The programmer do not need to think about to solve
a problem during the implementation, thiswork is already done.

In sequence diagrams could easily been seen whether a operation need to have public
or private access. Public access means that other classes need this operation. Private
operations are needed only by the classitself. Arrows between objects of classesdenoting

26

Design

public access. Contrary to arrows which pointing to the same object and denoting private
access. To indicate the construction of an object from aclass, an arrow point to the name
of the class. When aobject is not constructed it is assumed that it already existed before.
The destruction of the object isindicated by abig X at the end of the her lifeline. A very
good and detailed explanation of sequence diagrams could be found in Donald Bell's
document UML's Sequence Diagram [BELL 04].

In the rule trand ator system are three important use cases, where the client and the web
service both are involved. The most interesting use case is the trandation of rules. Use
case diagrams are usually modelled in ahigh grade of abstraction. They give usno useful
information about the participating operationsto fulfil the task. But areally well-defined
look gives us the sequence diagram. A correct and useful sequence diagram could be
constructed by going through the use cases, step by step and in combination with the
design model, operation by operation. If there are operations missing in the design model,
this could easily found out in the design phase before starting any implementation.

6.1. Translation of a Rule

During the trandation of a rule, severa classes with different operations are used.
By looking at Figure 3.8, “Sequence Diagram: Trandation of a Rule’, the following
description could be verbalised and easy retraced.

27

Design

Figure 3.8. Sequence Diagram: Trandlation of a Rule

sd translate(String:sourceLanguage, String:targetLanguage, String: xmiInput) : String)
% :WebService :Translation
:Client I
- 1
translate(s,t,x) I
r—| :Translator
< T
translate(s,t,x) le
—>
alt)
[allParametersValid(s,t,x) == true]
isDirectTranslation(s,t)
getDirectTargetLanguages(s,t)
.contains(t)
alt)
[isDirectTranslation(s,t) == true]
translateDirect(s,t)
; getTranslation(s,t)
I al
[else]
getInterchangelLanguage(s,t)
translateDirect(s,i)
getTranslation(s,i)
< gl
I translateDirect(i,t)
getTranslation(i,t)
< >1)
lelse]
createErrorResponse()
£
<. T S
_(............................ T >< Y

s = source language, t = target language, i = interchange language, x = XML input data

When a client call the t ransl ate(s, t, x) operation of the : Web Ser vi ce,
the web service create a new object : Tr ansl at or. The parameter s stand for
the source, t for the target language and x for the XML input data. After creating

28

Design

the instance, the : Wb Servi ce call thetransl ate(s,t,x) operation of
the : Transl ator. The : Transl at or need at first to check if all parameters
are valid. If the source and the target language are supported and the XML input
data is not empty and the result of the operation al | Par anmet er sVal i d(s, t, x)
equals t r ue the next operation can be executed. The : Tr ansl at or checks now
if he need to perform a direct or indirect translation. He could survey this by
calling hisi sDi rect Transl ati on(s,t) operation. These operation call again
the get Di rect Transl ati ons(s, t) operation. If the result of this operation
cont ai ns(t) atarget language for the given source language, then he know that he
has to make a direct transation.

In the diagram the term al t is an abbreviation for the word alternation. When
for instance the result of the operation i sDi rect Transl ati on(s,t) equas
true then al operations in the first casket are executed. If not, all operations
in the small box under the el se keyword are executed. In the first case, the
: Transl at or callshistransl ateDi rect (s, t) operation. The operation itself
calls the get Transl ati on(s,t) operation of the : Transl ati on object to
receive the appropriate trand ation description. With thistrandation the: Tr ansl at or
tranglates now directly from the source to the target language the XML input data.

When the result of the operationi sDi rect Transl ati on(s,t) equalsnottrue
then the all operations in the second casket under the el se keyword are executed.
To trandate indirect the : Tr ansl at or need to retrieve the interchange language by
caling hisget | nt er changeLanguage('s, t) operation with the source and target
language as parameters. With the interchange language he is now be able to trandate
directly from this source to the interchange language and with the trandation result as
input data from the interchange to the target language.

In the case that the al | Par anet er sVal i d(s, t, x) operation do not return true,
because of some unexpected parameter values, the last el se box in the diagram is been
executed. A error response message for the: Cl i ent is created here as result of the
tranglation. When the trandationisfinished the: Tr ansl at or returnstheresult to the
: WebSer vi ce, hereturnsit to the client and destroysthe : Tr ansl at or object.

6.2. Reception of all Source Languages

When a :dient cals the : WebServi ce, this cal is forwarded to the
: Transl at or. The : Transl at or cals the :Translation for source languages as

29

Design

long as there is one left available. Afterwards he returns all source languages to the
: Transl at or and hereturnthemtothe: Cl i ent .

Figure 3.9. Sequence Diagram: Reception of all Sour ce L anguages

sd getSourcelLanguages() : String)

% :WebService :Translation
:Client I T
—— I I

getSource : I
Languages() 1 1
— 3| :Translator !
< I !
getSource ! !
Languages() | :
|00D) [x<=number of source lang.] i
getSourceLanguage(x) I
)
,‘ T =
............................ I =
] < !
i 1 . \l

6.3. Reception of all Target Languages

The: dient cal the: WebSer vi ce to receive al target languages for one source
language. The : WebSer vi ce forward his call to the : Tr ansl at or where the
: Transl at or first check if the parameter s is a supported source language. If this
is the case, he cals his get Di rect Tar get Languages(s) operation with the
source language as parameter. This operation receive in a loop every target language
for the specified source language from the : Tr ansl ati on. After the following
get I ndi r ect Tar get Languages(s) operation call, and an union of both target
languages sets, the : Tr ansl at or return the result to the : WebSer vi ce and from
him he return it to the : Cl i ent . For the case that the parameter s of the operation
get Tar get Languages(s) isnot asource language and the else branch is executed,
simply an empty result is returned. That means that no target language is available for
that source language.

30

Design

Figure 3.10. Sequence Diagram: Reception of all Target Languages

sd getTargetLanguages(String: sourceLanguage) : String)

% :WebService :Translation
:Client

getTarget
Languages(s)

I
I
I
|
—| :Translator

<«

getTarget
Languages(s)

[e]

[isSourceLanguage() == true]
getDirectTargetLanguages(s)

|00PJ[x<= number of target lang.]

getTargetLanguage(s,x)

D il

I getIndirectTarget I

>Languages(s) :
_________ S N S
[else] :)
| =
< i

D T
I i X I

s = source language

31

Chapter 4. Implementation

In this chapter the platform-specific model (PSM) is introduced. In order to finish
the Model Driven Architecture (MDA) process to build an application, one concrete
implementation follows. The middleware platform used for the translator web serviceis
an Java Enterprise Edition application server with support of the Enterprise JavaBeans
3.0 technology.

1. Java Programming Language

Java is a programming language that it is independent of the underlying hardware
platform. Every Javaapplication runswithout changes on almost every kind of computer.
This is possible because Java programs are compiled to an intermediate form called
Java byte-code. To run a Java application this byte-code is interpreted by a virtual
machine, so to say a Java processor, and an environment of libraries. For amost
every available computer system Java virtual machines are available. Java applications

created on a Windows machine, which usually have a CISC! processor architecture,
can aso run on a Macintosh PowerPC machine which has a completely different

RISC? processor architecture. But the behaviour of applications is still the same. Thus
makes Java programs not really platform-independent, because their platform isthe Java
programming language, but at least hardware-independent.

To explain why the Java Enterprise Edition was chosen, we need to know first which
other Java versions are available and what could be done with them. There are three
versions of the Java programming language, each for a different purpose, currently
available on the market. The Java Standard Edition (Java SE) is the basis of the
Java language and an environment for any kind of standard computer application. We
distinguish here between the Java Runtime Environment (JRE), that provides only an
environment to run aready compiled Java byte-code and the Java Standard Developer
Kit (SDK), which allows to compile Java source code into byte-code. The Java Runtime
Environment (JRE) is always included in the Java Standard Developer Kit (SDK) and
allows for instance the Internet browser to execute Java applications inside of websites.
These kind of applications are also known as Java Applets.

YComplex Instruction Set Computer
2Reduced Instruction Set Computer

32

Implementation

The Java Micro Edition (Java ME) is an environment for personal computers that
allows the development of Java application for mobile devices. Today almost every

new mobile phone or PDA® has a runtime environment for Java Micro Edition (Java
ME) applications. This environment includes also a virtual mobile phone that allows
to run and debug Java ME applications on a computer without a real mobile phone.
The Java Micro Edition has some differences compared to the standard edition. For
instance the way of graphical presentation of user interfaces is not the same. This is
mainly caused by the reduced screen size of mobile devices and the disability of cheap
and old devices to show coloured graphics. Today in 2007, games are the biggest part
of available application written in the Java Micro Edition (Java ME). But as we know
from the past, the possibilities of the applications increase along with the power of their
hardware platform.

The Java Enterprise Edition (Java EE) is more an extension of the Java Standard
Edition (Java SE). This edition is specialised on enterprise and business processes. The
Java™ Platform, Enterprise Edition 5 Specification [JSR244] describes the complete
environment in detail. Another worth reading source that explains the Java Enterprise
architecture is The Java™ EE 5 Tutorial [BCE+].

One important difference to the Java Standard Edition (Java SDK) are Enterprise
JavaBeans (EJB).

“The Enterprise JavaBeans architecture is acomponent architecture for the development
and deployment of component-based distributed business applications. Applications
written using the Enterprise JavaBeans architecture are scal able, transactional, and multi-
user secure. These applications may written once, and then deployed on any server
platform that supports the Enterprise JavaBeans specification.” [JSR220]

“The benefit to application devel opersisthat they can focus on writing the businesslogic
necessary to support their application without having to worry about implementation the
surrounding framework.” [BM 06]

2. Application Server

“A Java EE server is a server application that the implements the Java EE platform
APIs and provides the standard Java EE services. Java EE servers are sometimes called

3Personal Digital Assistant

33

Implementation

application servers, because they allow you to serve application data to clients, much
as how web servers serve web pages to web browsers. Java EE servers host severd
application component typesthat correspond to thetiersin amulti-tiered application. [...]
In amulti-tiered application, the functionality of the application is separated into isolated
functiona areas, called tiers. Typically, multi-tiered applications have a client tier, a
middle tier, and a data tier (often called the enterprise information systems tier). The
client tier consists of a client program that makes requests to the middie tier. The middle
tier's business functions handle client requests and process application data, storing it
in a permanent datastore in the data tier. Java EE application devel opment concentrates
on the middle tier to make enterprise application management easier, more robust, and
more secure.” [YFC]

Figure4.1. Multitiered Applications[BCE+]

(Java EE Application 1 Java EE Application 2]
. --- --
] ClientTier [~ o o
icati Dynamic
| Ap{pjlllgttmn HTML Pages)

-

v
! ||l JSP Pages | Web Tier
_ [) v
Enterprise Beans Enterprise Beans Business Tier

- -

v

< . Database
— EISTier |- garab:

/| JavaEE
N Server

r

Onthe market are several application server available that implement the Java Enterprise
Edition and the Enterprise JavaBeans 3.0 specification. For almost every case is an

open source solution absolute sufficient. The free WebSphere Community Edition®

“http:/Avww.ibm.com/software/webservers/appserv/community/

®

Implementation

application server isagood choiceif you want to useit along with IBM's free version of
the DB2 database and already plan to migrate later to the commercial versions of both
products. The WebSphere application server is based on the Geronimo application server

from Apache® and IBM provide you with acomplete documentation in several languages
aswell with professional support for 30 days.

For this project the decision felt to the other open source application server next to
Geronimo, to the JBoss application server from RedHat. Mainly because there was
many experience from previous projects and this server has ssimply established. Since
an application server is a middleware for the Java EE technology, the implementation
approach should be easy adoptable to any other Java Enterprise Edition and Enterprise
JavaBean 3.0 compatible application server.

3. Implementation Model

In Figure 4.2, “Implementation Model: Web Service” you see the platform-specific
model (PSM) for the Java Enterprise Edition 5 middleware platform.

The interface r 2m . Webservi cel nterface is called a business interface in
terms of the Enterprise JavaBeans 3.0 concept and is necessary to describe the
application in an abstract way. The purpose and benefit of a business interface
is described later in Section 3.2, “Enterprise JavaBean Container”. In the business
interface of the application appear only the three of four operations we had modelled
before in the platform-independent model (PIM) you can see in Figure 3.3, “Design
Model: Rule Trandlator System”. The operation get Descri pti onCat al ogue
IS missing. Since the Enterprise JavaBeans 3.0 web service implementation of the
JBoss application server provide an automatically generated web service description

in form of an WsSDL3 catalogue, there is no need for such an operation.
Previously in the design model, this operation in combination with the attribute
endpoi nt URL was used to markup the web service description. The classes
r2m . Webservi cel nterface and r 2m . Webser vi ce are derived from the
previously modelled class Tr ansl at or WebSer vi ce of the platform-independent
design model. The class Tr ansl at or WebSer vi ce does not need a variable to
hold a instance of the class Tr ansl at or . As mentioned before, a web service is
stateless and so the r 2 . WebSer vi ce class creates for every client call always a

® http://geronimo.apache.org/

35

http://geronimo.apache.org/

Implementation

new instance of ther 2m . Tr ansl at or class. All attributes of the enumeration class
r2m . Transl ati onEr r or Code are declared static and do not need be instantiated
separately. In order to use the error codes in the Java source code you simply need to
writee.g.r2m . Transl at i onEr r or Code. ERRO001 to receive the message "No
input data." .

In the this concrete implementation of the rule translator system only source languages

in XML? syntax are supported. The XML transformation language XSLT is used to
translate from one XML rule language to another. Thisis the reason why the parameter
i nput Dat a has changed toxm | nput .

The stereotype EJB3 in top of the class name Webser vi ce markup that the classis
an Enterprise JavaBean 3.0. The property t r ansl at i onReposi t or yURL hold the
URL to the repository of the translations. The concept that lay behind is described in
Section 3.5.3, “URL Injection during Deployment Time”.

36

Implementation

Figure4.2. Implementation Model: Web Service

<<interface>>
r2ml.Webservicelnterface

<<exception>>
javax.xml.soap.SOAPException

+ translate(sourceLanguage:String,targetLanguage:String,xmlInput:String): String
+ getSourceLanguages(): String []
+ getTargetLanguages(sourceLanguage: String): String []

<<implements>>

<<extends>>

<<EJB3>>
r2ml.Webservice

<<exception>>
r2ml.TranslatorException

- translationRepositoryURL: String

+ translate(sourceLanguage:String,targetLanguage:String,xmlInput:String): String
+ getSourceLanguages(): String []
+ getTargetLanguages(sourceLanguage: String): String []

+TranslationException(reason: String)

r2ml.Translator

- TRANSLATION_REPOSITORY_URL: String
- XML_CONFIGURATION_FILENAME: String

+ Translator(translationRepositoryURL: String)

+ translate(sourceLanguage:String, targetLanguage:String,xmlInput:String): String
+ getSourceLanguages(): String []

+ getTargetLanguages(sourceLanguage: String): String []

- loadXMLConfig()

- translateDirect(sourceLanguage: String, targetLanguage: String, xmlInput: String)
- getSourceLanguagesSet(): Set

- getDirectTargetLanguages(sourceLanguage: String): Set

- getIndirectTargetLanguages(sourceLanguage: String): Set

- getInterchangeLanguage(sourceLanguage: String, targetLanguage: String): String
- getTransformation(sourceLanguage: String, targetLanguage: String): String

- isSourceLanguage(language: String): boolean

- isTargetLanguage(language: String): boolean

- isDirectTranslation(sourceLanguage: String, targetLanguage: String): String

0__*

<<enumeration>>
r2ml.TranslationErrorCode

+ERROQ001 : String = No input data.

+ERRO0003 : String = Your selected language is not a supported source language.

+ERR0002 : String = No need for a translation. Source and target language are the same.

+ERRO0004 : String = Your selected language is not a supported target language for the selected source language.

+ERRO0005 : String = The following element is currently not supported.
+ERRO0006 : String = The following attribute is currently not supported.
+ERRO0007 : String = The translation input is not a derivation rule.

+ERRO0008 : String = The translation input is not a production rule.

+ERRO0009 : String = The translation input is not a reaction rule.

+ERR0010 : String = The translation input is not a integrity rule.

+ERRO0011 : String = XSLT processor error.

+ERR0012 : String = Error in RuleML input. Global variables are not supported.

+ERR0013 : String = Error in RuleML input. Semi-global variables are not supported.

37

Implementation

The Tr ansl at or class, as mentioned before, is designed as POJO® in away to that
it could be re-used. This is the reason why this class is no Enterprise JavaBean and
provide the same operation names asthe Webser vi ce class. The classimplementsthe
translator functionality of the system. It has two properties which are private constants
and therefore written in capital letters. In the construction phase of the translator object
the constant property TRANSLATI ON_REPGOSI TORY_URL receive her value from the
value of thet r ansl at or Reposi t or yURL property of the web service. Afterwards
thisvalueisnot changeable by theinstantiated translator object. The value of the constant
property XML_CONFIGURATION_FILE isthe name of the translation descriptor file.
This is explained more precisely in Section 3.4, “Management of Translations’. In
Figure 4.2, “Implementation Model: Web Service” theclass Tr ans| at or became one
additional operation called get Sour ceLanguagesSet . The purpose of adding this
method isthe following. The translator implementation use intern adata structure of sets
and extern an array of strings. Thenameget Sour ceLanguages wasaready used to
retrieve an array of source languages, which is smply forwarded by the web service to
the client, as we already know from Section 6.2, “Reception of all Source Languages’.
Since operation names in Java need to be non-ambiguous, we need to choose the name
get Sour ceLanguagesSet to retrieve the source languages as a set.

A new class in the implementation diagram is r 2m . Tr ansl ati onExcepti on.
This class inherit the complete functionality @ of the class
j ava. xm . soap. SOAPExcept i on. It hasonly different name. Thisislooks maybe
a little bit strange, but after reading the Section 3.5.5, “Custom Exceptions” you will
see that this make perfect sense. In Section 3.5.6, “Packaging of the Application” is
explained why the name Webser vi ce and not Tr ans| at or WebSer vi ce asin the
design model was chosen in the implementation model.

Before the source code can be explained in detail, some basic about the Enterprise
JavaBeans 3.0 and the their container need to take into account. After the section about
the importance of the right choice of the interchange language, the section management
of trandations follows.

SPlain Old Java Object

38

Implementation

3.1. Enterprise JavaBeans 3.0 Technology

“The primary goal of the EJB 3.0 and Java Persistence specifications was to make it as
easy as possible to write and deploy an EJB-based application. Creating an application
isas easy as compiling your code, jarring up your classes, and running your application
server.” [BM 06]

There are three different type of Enterprise JavaBeans in version 3.0. Entity Beans,
Message-Driven Beans and Session Beans. Since we are only interested into creating a
web service we concentrate only on statel ess Session Beans.

To deploy aweb service the only thing you need to do is to add some meta information

to you existent POJO'®. Since Javaversion 1.5 (also known as Java 5) these additional
meta informations are a new construct called Java Annotations. An explanation of this
technology you find in Section 3.5.1, “Java Annotations’.

3.2. Enterprise JavaBean Container

An Enterprise JavaBean container is the environment for an Enterprise JavaBean
application. When an applications outside of the Enterprise JavaBean container want to
interact with applicationsinside ...

“...itisnot working directly with instances of the bean class; it is working through the
beans remote or local interface. ” [BM 06] Both interfaces are also known as business
interface and correspond to the classWebser vi cl nt er f ace which could be seenin
Figure 4.2, “Implementation Model: Web Service”.

When clients invoke methods on the business interface,...

“... the object instance you are using is something called a proxy stub. This proxy stub
implements the remote or local interface of the session bean and is responsible for
sending your session bean method invocation over the network to your remote EJB

container or routing the request to an EJB container that is local in the JV M. It is the
EJB container's job to manage bean class instances as well as security and transaction
demarcation. The EJB container hasknowledge of the metadata defined asannotationson
the bean class or as elementsin the XML deployment descriptor. Bases on this metadata,

"Java Virtual Machine

39

Implementation

it will start a transaction and perform authentication and authorization tasks. It is also
responsible for managing the life cycle of the bean instance and routing the request from
the proxy to the real bean class instance. After the EJB container has managed the life
cycle of the bean instance, started any transaction, and performed its security, it routes
the invocation to an actual bean instance.” [BM 06]

Since every enterprise application run in her own environment, the Enterprise JavaBean
container makes it impossible to affect other applications or even the server itself. When
a web application written as Java Server Page (JSP) connected to a JavaBean on a
JavaServer Pages server like the Apache Tomcat crash due a programming mistake,
the complete server crash as well. All other running applications are affected and not
available aslong as the server is restarted manually.

At this point it is necessary to mention that the file creation and access inside of the
EJB container is prohibited. This make perfect sense for security and portability reasons.
However this makes it sometimes also difficult to migrate already existent applications.
Everybody should be aware that this a could create delays during the implementation
process, if thiswas not scheduled before. In Section 3.4, “Management of Transations’
a solution is introduced how files could be used nevertheless by a EJB container. The
concept was of course scheduled during designed process before, but just not mentioned
since the implementation is the topic of the current chapter.

3.3. Choice of the Interchange Language

The quality of the tranglation depend directly on the choice of the interchange language.
She need to capture every information of the source language and need to produce
the same content after a reverse trandation. A lost of semantic is not acceptable for a
interchange language.

Example4.1. Lack Markup in RuleML

<At one
<Rel >spendi ng</ Rel >
<Ind>Peter Ml er</Ind>
<I nd>m n 5000 euro</I|nd>
<l nd>pr evi ous year</I|nd>
</ At on>

40

Implementation

The Example 4.1, “Lack Markup in RuleML” istaken from the RuleML Tutorial [BGT
05]. Verbalised it means Peter Miller was spending a minimum of 5000 euro last year.
Themarkup in not strict. It iswritten in ahuman understandable way. We can understand
the meaning. But what about machines? There is no semantic after min 5000 euro or
previous year. It is not declared that min means minimum or previous year means the
last year before the current. We have many problems to transate such a lack markup

into other rule languages. With SWRL® built-ins and X Path functions® the same context
could be marked up in more strict and clear way. The previous year is always the year
before the current year. To markup we need to know in which year we are currently
and to subtract the value 1. A minimum is always the lowest bound. Everything greater
than the lowest bound is sufficient. We compare the spending of the customer in the
previous year with the value 5000 and did mark up everything in a strict and clear way.
Our interchange language need to support thisor asimilar kind of strict markup.

Example 4.2. Strict Markup with SWRL Built-Insand XPath Functions

swrl b: subtract (previ ous_year,
fn:year-fromdateTi me(
fn:current-dateTine()),
1)

swr | b: gr eat er Than(spendi ng(cust oner, previ ous_year), 5000))

The rule language R2ML supports such a strict markup with the help of SWRL and
XPath functions. Y ou can see in the following two examples how to markup the content
without loosing his semantic in R2ML. At first it need to be defined in a separate atom
what pr evi ous_year means.

8 Semantic Web Rule Language [http://Amww.w3.0rg/Submission/SWRL/#8]
% http://www.w3.0rg/ TR/xpath-functions/

41

http://www.w3.org/Submission/SWRL/#8
http://www.w3.org/Submission/SWRL/#8
http://www.w3.org/TR/xpath-functions/

Implementation

Example 4.3. Strict Markup in R2ML: " previousyear"

<r 2nl : Dat at ypePr edi cat eAt om
r2m : dat at ypePr edi catel D="sw | b: subtract ">
<r 2nl : dat aAr gunent s>
<r2mni : Dat aVari abl e r2n : nane="pr evi ous_year"
r2m : dat at ypel D="xs: gYear"/ >
<r2nl : Dat at ypeFuncti onTerm
r2m : dat at ypeFuncti onl D="f n: year-from dat eTi ne" >
<r 2nl : dat aAr gunent s>
<r2nl : Dat at ypeFuncti onTerm
r2m : dat at ypeFuncti onl D="f n: current - dat eTi ne" >
<r2m : dat aAr gunent s/ >
</r2m : Dat at ypeFuncti onTer n»
</r2m : dat aAr gunent s>
</r2m : Dat at ypeFuncti onTer n»
<r2m : TypedLi teral r2n:datatypel D="xs:integer"
r2m : | exi cal Val ue="1"/>
</r2m : dat aAr gunent s>
</r2nm : Dat at ypePr edi cat eAt on»

Afterwardspr evi ous_year canbeused inside of the operation spendi ng whichis
used by the operation gr eat er Than along with the positive integer value 5000.

42

Implementation

Example 4.4. Strict Markup in R2ML: " customer spending a minimum of
5000 previous year"

<r 2ml : Dat at ypePr edi cat eAt om
r2m : dat at ypePr edi cat el D="swr | b: gr eat er Than" >
<r2m : dat aAr gunent s>
<r 2m : Dat aOper ati onTer m
r2m : operati onl D="spendi ng" >
<r2m : cont ext Ar gunent >
<r2m : Cbj ect Vari abl e r2m : name="cust oner "
r2m : cl assl D="Cust oner"/ >
</r2m : cont ext Ar gunent >
<r2m : ar gunent s>
<r2ml : Dat aVari abl e r2m : name="previ ous_year"
r2m : dat at ypel D="xs: gYear "/ >
</r2m : argunent s>
</r2m : Dat aOper ati onTer n»
<r2m : TypedLi teral r2m :datatypel D="xs: positivel nteger"
r2m : | exi cal Val ue="5000"/>
</r2m : dat aAr gunent s>
</r2m : Dat at ypePr edi cat eAt on>

3.4. Management of Translations

In the implementation of the rule tranglator system we support the translation of XML
based rulelanguages. Trandationsare XML filesaswell. XSLT isadialect that describes
the transformation of XML data. To transform a XML file an XSLT transformation is
needed. This transformation can be applied to a XML file and can be processed by an
XSLT processor.

The set of al trandation files lay in afile system. As we know from Chapter 3, Design
the file system is distributed on another server and this has two reasons. Files can be
modified over a source control system. With an integration of the SVN source control
system via WEB-DAYV, files can be provided at a URL with the help of a web server.
Therefore it is good to have one single file that describes all trandations and where to
find them. The trang ation descriptor can now be read from his URL by the web service

43

Implementation

application in order to find all available trandations. The access from the Enterprise
JavaBean container to the underlying file systemisprohibited. Thisisasolution to access
files from a Enterprise JavaBean Container. Translations can be modified outside and
are read when the web service need them.

The content of the trandation descriptor t ransl ati ons. xnl file you can see
in Example 4.5, “XML: Trandation Descriptor” . In this case there are two direct
trandations and one indirect translation available. From F- Logi cXM. to R2M. and
from R2ML to Rul eM.. The XSLT files for the trandation lay both in the sub folder
transl ati ons and can be addressed relative to the folder where the descriptor file

lays.
Example4.5. XML: Tranglation Descriptor

<?xm version="1.0" encodi ng="UTF-8"?>

<transl at or
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchenalLocati on="transl ati ons. xsd" >

<transl ation
xsltFile="transl ati ons/F-Logi cXM._to_R2M.. xslt"
source="F-Logi cXM." target="R2M."
defaul t1 nput ="rul es/ F-Logi cXM__01. xm "/ >

<transl ation
xsltFile="transl ati ons/ RRM._to_Rul eM.. xsl t"
source="R2M." target="Rul eM."
defaul t1 nput="rul es/ RRM._01. xm "/ >

</transl at or >

It is also possible to use another interchange language than R2ML for the trandlation.
Interchange language is the language, which is source and target language inside of a
indirect tranglation. In the case of this translation descriptor, the indirect trandation isa
trandation from F- Logi ¢ XM over R2ZML to Rul eM.. Here R2ML is the interchange
language. Imagine there would be another indirect translation from Rul eML over
R2M__ver si on_2toJess. Wewould havetwoindirect translationsand two different

44

Implementation

interchange languages. This is a important advantage if we want to switch to another
version or to another complete new interchange language. In this case we could write a
tranglation from the old to the new interchange language and do not need to drop all our
existing tranglations. You see it is possible to keep more than one interchange language
in the same translation descriptor file.

There are several benefits to use a XML syntax for the trandation descriptor. Filesin
XML syntax could be read from any programming language, since they are encoded like
every ordinary text file. There are also many parsers for XML data available and which
simplifiesthe dataretrieve process. But the main benefit of XML isthat a XML structure
can be validated against her XML Schema definition to check if she is well-formed. In
Example 4.6, “XML Schema: Trandator Descriptor” you see a XML Schema for the
tranglation descriptor file of the Example 4.5, “XML: Trandation Descriptor”.

Example4.6. XML Schema: Translator Descriptor

<?xm version="1.0" encodi ng="UTF-8"?>
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema"
xm : | ang="en">
<xs:el ement nane="transl ator" type="transl atorType"/>
<xs: conpl exType nane="transl at or Type" >
<xs:sequence maxQccur s="unbounded" >
<xs: el ement nane="transl ati on"
type="transl ati onType"/>
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nanme="transl ati onType" >
<xs:attribute nanme="source" type="xs:string"
use="required"/>
<xs:attribute nane="target" type="xs:string"
use="required"/>
<xs:attribute name="xsltFile" type="xs:string"
use="required"/>
<xs:attribute name="defaul tl nput” type="xs:string"
use="required"/>
</ xs: conpl exType>
</ xs: schema>

45

Implementation

Thereisoneroot element t r ans| at or defined that can have a sequence of elements
with the name t r ansl ati on. An element of t ransl ati onType is required to
have the attributes sour ce, target, xsltFil e and def aul t1 nput of type
Xs:string.

3.5. Explanation of the Source Codes

3.5.1.

In this section the most important parts of the Enterprise JavaBeans 3.0 source codes,
which are essential to build the web service, are explained in detail.

Java Annotations

Java annotations are used in the Enterprise JavaBeans 3.0 to specify necessary and
additional informations for the application server. He need to know when he have to
create aweb service with aspecific binding. Which operations should be used for theweb
service and which not. How the operation names and her parameters should be mapped
to the names that later appear in the web service description catal ogue.

Example 4.7. Java Annotations. Remote I nterface

package r2m ;
i nport javax. ej b. Renot e;

@Renvot e
public interface Transl at or Webservi cel nterface {

}

In Example 4.7, “Java Annotations. Remote Interface” you see the business interface
for the Enterprise JavaBean 3.0 web service. Inside of the business interface are only
two different annotations possible. The annotation with the name Renot e or Local
of thej avax. ej b package need first to be imported. Afterwards they can be used by
writing the @sign in front of the name of the annotation, in this case Renot e . These
two annotation need to appear before the ordinary Java interface declaration.

Theremoteinterface definesall operationsthat can be used from outside of the Enterprise
JavaBean container. When we want to create a web service we have to choose this

46

Implementation

annotation. Thelocal interface defines the operations that can be used from other classes
and beans inside of the same Enterprise JavaBean container.

It is possible to annotate either one interface with one or both annotations. But it is also
possible to have each annotation in a separate interface declaration. This makes sense
when aweb service, using the Renot e annotation, should only have asubset or different
operationsthenthe Local interface.

a7

Implementation

Example 4.8. Stateless Bean Web Service

package r2m ;

i nport javax.ejb. Statel ess;

i nport javax.jws.WbServi ce;

i nport javax.jws.WbMet hod,;

i nport javax.jws.WbPar am

i nport javax.]ws.soap. SOAPBI ndi ng;
i nport javax.annotati on. Resource;

@5t at el ess
@\bServi ce(servi ceNane="R2M.Tr ans| at or WebSer vi ce")
@50APBI ndi ng(st yl e=SOAPBI ndi ng. Styl e. DOCUMENT,
use=SQAPBI ndi ng. Use. LI TERAL)
public class Wbservice
i npl ements Webservi cel nterface {
@Resour ce(mappedNane=
"]java: conp/ env/transl ati onReposi t or yURL")
private String translati onRepositoryURL;

@\ébMet hod

public String translate(
@\bPar am(nane="sour ceLanguage")
String sourcelLanguage,
@\bPar am(nane="t ar get Language")
String targetlLanguage,
@\bPar am(nane="xmnl | nput ")
String xm I nput)

throws Transl ati onException { ... }

}//class: Webservice

In Example 4.8, “ Stateless Bean Web Service” you see several annotations are used.
To specify a web service, at least the St at el ess and WebSer vi ce annotation
are necessary. Web services do not keep any state. Therefore we have to use the

48

Implementation

St at el ess annotation. The WebSer vi ce annotation specifiesthat thisclassisan
implementation of aweb service and accept several parameters. An complete overview
givesusalook into theimplementation, which you seein Example4.9, * Java Annotation:
@WebService’.

Example 4.9. Java Annotation: @WebService

package javax.] ws;

@rarget ({ TYPE})
@Ret ent i on(val ue=Ret enti onPol i cy. RUNTI VE)
public @nterface WebService {
String name() default "";
String target Nanmespace() default "";
String serviceNane() default "";
String wsdl Location() default "";
String portNanme() default "";
String endpointinterface() default "";

}

To specify for instance the target namespace of the web service, we need to
change our existing annotationto @\bSer vi ce(t ar get Nanespace="htt p:/

/ www. exanpl e. conf nynanmespace") . If you do so, be sure that the web service
isavailable at this URL. The client introduced in Chapter 5, Web Interface for instance,
will not work when the web service is not reachable at URL of the target namespace
declared in the web service description catalogue. This need to be considered in order to
do not exclude clients of your web service.

According to the Java Specification Request (JSR) 181, the parameter nane specifiesthe
name of the web service. Thisnane is used as attribute name of thewsdl : port Type
element when the web service description catalogue (in version 1.1) is generated. The
default value is the name of the Java class or interface.

“The t ar get Namespace() attribute specifies the XML namespace used for the
WSDL and XML elements that are generated from this annotation. The default value
is generated from the package name of the annotated type. The wsdl Locat i on()

attribute defines the URL of the WSDL document that represents this web service. Y ou

49

Implementation

need thisattributeonly if you are mapping your serviceto apreexisting WSDL document.
[...] In most cases, you can use the default values for each of these attributes.” [BM 06]

The ser vi ceNane is appears as value of the name attribute of the ser vi ce and
defi ni ti ons elementinthe WSDL catalogue. It definesthe name of the web service.
If no servi ceNane is given the name of the Java class plus the string Ser vi ce
appearsin the WSDL catal ogue.

When the classWebser vi ce usethe keyword i npl enent s to specify that this class
implement the businessinterface Webser vi cel nt er f ace then isno need to use the
Renot e annotation. In this case knows the application server which class is the remote
interface. It isthe implemented interface Webser vi cel nt er f ace.

Example 4.10. Java Annotations. Alternative Business Interface
Declaration

package r2m ;

i nport javax.ejb. Stateless;
i nport javax. ejb. Renot e;
i nport javax.ws.\WebServi ce;

@&t at el ess

@\ebServi ce

@Renot e(VWebservi cel nterface. cl ass)

@5OAPBI ndi ng(styl e=SOAPBI ndi ng. St yl e. DOCUMENT,
use=SOAPBI ndi ng. Use. LI TERAL)

public class Wbservice {

}//class: Webservice

If we do not want to declare that the class \ebser vi ce i npl enent s the remote
interface, we need to use the annotation Renot e with the class name of the remote
interface. This could be seen in Example 4.10, “Java Annotations: Alternative Business
Interface Declaration”. This approach is not recommended, but it is a possible and
working solution.

50

Implementation

When no method of a class, annotated with WebSer vi ce, is annotated with
WebMet hod then all methods are considered to be available for the web service. If
only one method is annotated with WebMet hod and another method not, then only the
annotated method is used by the web service. In order to have an easy understandable
source code| suggest to annotate all methodseven if they areall used for theweb service.

Example 4.11. Java Annotation: @WebM ethod

package javax.|ws;

@rar get ({ El enent Type. METHOD})
@Ret enti on(val ue = RetentionPol i cy. RUNTI VE)
public @nterface WebMet hod {
String operati onName() default "";
String action() default "";

}

Again we take a look into the implementation. The oper at i onNane() parameter
specifies the name of the operation inside the web service description catalogue. The
default operation name is always the same as the Java operation name. “The action()
attribute is used to set the SOAPAction hint that corresponds with this operation. This
hint allows a service endpoint to determine the destination by ssimply looking at the
SOAPAction HTTP header instead of analyzing the contents of the SOAP message
body.” [BM 06]

Example 4.12. Java Annotation: @WebParam

package javax.jws;

@rar get ({ El enent Type. METHOD})
@Ret enti on(val ue = RetentionPol i cy. RUNTI VE)
public @nterface WebParam {
public enum Mode(I N, OUT, | NOUT};
String name() default "";
String target Nanmespace() default "";
Mode node() default Mde. N
bool ean header () default fal se;

51

Implementation

3.5.2.

If the SOAP hinding style of the web service is Remote Procedure Call (RPC) the
attribute nane specifiesthewsdl : par t nameintheweb service description catalogue
(in version 1.1). The default is type N, where N represent the index of the parameter
in the method parameter declaration and type the Java type e.g. String. The JBoss
application server generates a starting index of 1 and not of O as written in the Java
Specification Request (JSR) 181. If we would not annotate the parameter of the method
transl at e aswe did in Example 4.8, “ Stateless Bean Web Service” the parameter
sour ceLanguage would be mapped to the attribute name St ri ng_1 in the web
service description catalogue on the JBoss application server. Due to the differences
in specification and implementation of the application server, | suggest to used the
WebPar am annotation in order to avoid problems with web service clients. Since
the purpose of the web service description catalogue is to describe, the WebPar am
annotation should be used to provide aproper namefor each method parameter. A default
parameter like St r i ng_1 could be mean amost everything.

“The t ar get Namespace attribute, used only if the style is Document/Literal, sets
the targetNamespace of the schema definition that contains the element. The behaviour
of t ar get Nanmespace() on Document/Literal wrapped is not fully explained in the
Java Specification Request (JSR) 181. [...] The header () attribute is used to indicate
that the parameter should be put in a SOAP header rather that in the SOAP body. The
node() attributeisusedtoindicate whether the parameter isto be used for input, output,
or both. Due to Java semantics, if a parameter is used for output, it must be wrapped
using a specia holder type.” [BM 06]

The missing annotations SOAPBI ndi ng and Resour ce annotations are explained
in Section 3.5.2, “WSDL Generation” and Section 3.5.3, “URL Injection during
Deployment Time”.

WSDL Generation

The JBoss application server automatically generates the web service description
catalogue every time a web service application inside of a Java archive (JAR) file
is deployed. The SOAPBI ndi ng annotation plays an important role and affects the
structure of the WSDL catalogue. The use of the annotation is not mandatory. If the web
serviceis not annotated with it, the application server use the default SOAP binding. As
in the implementation of the SOAPBI ndi ng annotation could be seen, the default style
is DOCUMENT style, the default value for use is LI TERAL and the default parameter
style is WRAPPED.

52

Implementation

Example 4.13. Java Annotation: @SOAPBInding

package javax.]ws.soap;

@rar get ({ El enent Type. METHOD})
@Ret enti on(val ue = RetentionPolicy. RUNTI VE)
public @nterface SOAPBI ndi ng {

public enum Styl e { DOCUVENT, RPC};

public enum Use {LI TERAL, ENCCDED};

public enum Paraneter Styl e { BARE, WWRAPPED}

Style style() default Style. DOCUVENT;
Use use() default Use. Ll TERAL;
Paraneter Styl e paraneter Styl e()

def aul t Paramnet er St yl e. WRAPPED,;

}
What are the differences between RPC and DOCUMENT SOAP binding style?

“The choice corresponds to how the SOAP payload - i.e.,, how the contents of the
<Soap body> element - can be structured. Here are some details of how each style
affects the contents of <Soap body>. [...] Document: the content of <soap: Body>
is specified by XML Schema defined in the <wsdl : t ype> section. It does not need
to follow specific SOAP conventions. In short, the SOAP message is sent as one
"document” in the <soap: Body> element without additional formatting rules having
to be considered. Document style is the default choice. [...] RPC: The structure of an
RPC style <soap: Body> element needs to comply with the rules specified in detail in
Section 7 of the SOAP 1.1 specification. According to these rules, <soap: Body> may
contain only one element that is named after the operation, and all parameters must be
represented as sub-elements of this wrapper element. As a consequence of the freedom
of choice that the document style offers, the SOA P messages conforming to a document
style WSDL may look exactly the same as the RPC equivalent. The decisive question
now is: What are the consegquences of choosing one option or another? Why choose RPC
over document, or document over RPC? In many cases, the SOAP messages generated
from either RPC or document style WSDLs look exactly the same - so why offer the
choice at all? The reason may be found in the history of the SOAP standard. SOAP has
its roots in synchronous remote procedure calls over HTTP and the appearance of the

53

Implementation

3.5.3.

document accordingly followed these conventions. Later, it was seen asasimplification
tousearbitrary XML inthe SOAP body without adhering to conventions. Thispreference
isreflected in the document style WSDL documents. So far, both options are represented
in the WSDL specification and the choice of one or the other is mainly a question of
personal taste since most SOAP clients today accept both versions.” [ROTHAUG 04]

In the implementation of the rule translator Web Service the DOCUMENT style SOAP
binding was chosen simply because the implementation of the PHP Client was more
convenient and straightforward. Therewere a so nothing that spoke against choosing this
binding style.

URL Injection during Deployment Time

In section Section 3.5.1, “Java Annotations’ the explanation of the Resource
annotation was postponed to this section. In Chapter 3, Design was explained that the
web service use a distributed repository to receive the trandation files. The URL of this
repository can depend on the underlying network and differsin each environment. When
you develop such a web service you have maybe one machine and several servers are
running on this machine. This is your development environment. But you have also a
productivity environment. A real network with several distributed machines each with
adifferent URL. It would be a bad solution to re-compile the web service, every time
it should be used in another environment. Imagine after some time of developing your
web service has reached afinal state and is running stable. Now you want to move the
repository to another server. Does it make sense to compile the web service again? No,
but it makes sense to modify a user changeable property of the web service. The URL of
the trandlation repository. Thisis possible with the Resour ce annotation. It gives the
opportunity to declare a object which refersto an external resource.

Implementation

Example 4.14. Java Annotation: @Resource

package javax. annot ati on;

@arget ({ TYPE, METHOD, FIELD})
@Ret ent i on(RUNTI ME)
public @nterface Resource {
public enum Aut henti cati onType {CONTAI NER, APPLI CATI ON}
String nane() default "";
Cl ass type() default Qnoject.class;
Aut henti ficationType authentificationType()
default AuthentificationType. CONTAI NER;
bool ean shareabl e() default true;
String description() default "";
String mappedNane() default "";

}

In Example 4.8, “ Statel ess Bean Web Service” you see the usage of the annotation. Y ou
have to use it at with the parameter mappedNane, which specifies a unique name in

the INDI 1°, Therefore you need to add your unique name to name of the standard JNDI
environment j ava: conp/ env/ . The Resour ce annotation need to appear in front
of atype declaration. Over the object of the declaration you can access afterwards the
external resource in your source code and use it like any other ordinary Java object.

The Resour ce annotation is highly overloaded and could also be used to set methods,
member fields or on the class itself. For further usage patterns | suggest to read the
specification [JSR220] or the book Enterprise JavaBeans 3.0 [BM 06].

The initialisation of the injected value has to be made from outside of the Java source
code by the help of adeployment descriptor. The explanation of these descriptorsistopic
of the next section.

3.5.4. Deployment Descriptors

Deployment descriptors are XML files and the alternative to Java annotations.
Everything that can be specified with annotation, could made as well with a deployment

10 Java Nami ng and Directory Interface [http://java.sun.com/products/jndi/tutorial/]

55

http://java.sun.com/products/jndi/tutorial/
http://java.sun.com/products/jndi/tutorial/

Implementation

descriptor. The ej b-j ar. xm file helps us to specify the value of the object
transl ati onReposi t or yURL which aready was declared inside the Java source
code. During the packaging process of the application the file need to have the name
ej b-jar. xm and must appear inside of the META- | NF folder of the Java archive.

56

Implementation

Example 4.15. Deployment Descriptor: g b-jar.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<ej b-jar xmns="http://java. sun.conf xnm / ns/javaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-i nst ance"
Xsi : schemalLocation="http://java. sun. coni xm / ns/j avaee
http://java. sun.coni xm / ns/javaeel/ ej b-jar_3 0. xsd"
versi on="3.0">
<enterprise-beans>
<sessi on>
<ej b- nane>Webser vi ce</ ej b- nane>
<ej b-cl ass>r2nm . Webser vi ce</ ej b-cl ass>
<env-entry>
<env-entry-name>
transl ati onReposi t or yURL
</ env-entry-nane>
<env-entry-type>
java.lang. String
</env-entry-type>
<env-entry-val ue>
http://hydrogen/trans/
</env-entry-val ue>
<i njection-target>
<injection-target-class>
r2m . Webservi ce
</injection-target-class>
<i nj ection-target-nanme>
transl ati onReposi t or yURL
</injection-target-nane>
</injection-target>
</env-entry>
</ sessi on>
</enterprise-beans>
</ejb-jar>

57

Implementation

3.5.5.

In Example 4.15, “ Deployment Descriptor: gjb-jar.xml” you see the content of thefile.
The ej b- nane isthe class name, ej b- cl ass isthe package and class name of your
web service. The name we specified as mappedNane parameter in the Resour ce
annotation in the Java source code before, has to match the value of theenv-ent ry-

name element. The Resour ce annotation was in Example 4.8, “ Statel ess Bean Web
Service” previously writtenin front of JavaSt r i ng declaration. SincethetypeSt ri ng
belongsto thej ava. | ang package, we have to specify this as well with the name of
the type as value of theenv-ent ry-t ype element to match the same type asin the
Java source code. The env- ent ry-val ue is the value that should be injected into
the Enterprise JavaBean. The i nj ect ed-t ar get - cl ass is the target class of the
injection, again written with her package name. Thei nj ecti on-t ar get - nane is
the name of the object inside the Java source code where the value should be injected.

Custom Exceptions

The clients need to receive an error messages when they or the web serviceitself produce
an error. If during the life cycle any kind of exception happens, then the EJB container
creates a Java SOAPExcept i on and sends a SOAP fault message, instead of the
operation result, back to the client.

58

Implementation

3.5.6.

Example 4.16. throwing of a SOAPEXxception

@\ebMet hod
public String getGeeting(

@\ebPar am(nanme="first Nane") String nane)
t hrows SOAPException {

if(name == null) {

t hr ow new SOAPException("enpty paraneter");
} else {
}

}

In Example 4.16, “throwing of a SOAPEXxception” you see how a SOAPExcept i on
can be thrown by the web service. It does not matter which type of exception is be
thrown, because all exceptions are send as SOAP fault messages back to the client.
But the name of the type of exception that is specified after the keyword t hr ows
in the Java method declaration is the type that is mapped to the WSDL catalogue.
That means SOAPExcept i on appearsin the WSDL catalogue. To change this name
we need to extend the class SOAPExcept i on. In our case therefore the class name
Transl ati onExcepti on appears in the WSDL catalogue, which has a clearer
meaning in contradiction to the name SOAPExcept i on.

Packaging of the Application

The packaging of the enterprise application is an important step during and after the
development. As we aready know from the previous sections the ej b-j ar . xmi
descriptor file is responsible to set up the right URL to the trandlation descriptor file
transl ati ons. xm . But this is maybe a different path in the development stage
where we maybe all server instances running on the same machine. Therefore it is
a good idea to create another deployment descriptor file only for our development
environment. The file name does not really matter, here we name it ej b-j ar -
| ocal . xm . In Example 4.15, “Deployment Descriptor: gb-jar.xml” you see the
content of the ej b-jar.xm file. The content of the ej b-j ar-1ocal . xm
differs only in one line. Inside the ej b-j ar. xm descriptor file the element env-
entry-val ue has the value htt p: // hydrogen/trans/ which points to the
folder t rans on server hydr ogen inside of the productivity environment of the

59

Implementation

web service. The value inside ej b-jar-1ocal . xm ishttp://local host/
R2M_Tr ansl at or W5_Tr ansl| at i ons/ and point to the local running web server
and thefolder R2MLTr ansl at or _Tr ansl at i ons on the same machine.

Figure 4.3. Packaging of the Translator Web Service

translator.jar

—— META-INF/
ejb-jar.xml
—— MANIFEST.MF
——r2ml/

TranslationErrorCode.class

TranslationException.class

Translator.class
—— Webservice.class

—— Webservicelnterface.class
—— saxon8-dom.jar

—— saxon8-dom4;j.jar

—— saxon8-jdom.jar

—— saxon8-sql.jar

—— saxon8-xom.jar

—— saxon8-xpath.jar

——saxon8.jar

Maybe you have already wondered why the class name Webser vi ce instead of
Transl at or Webser vi ce was chosen in the implementations model. First, the
name WebSer vi ce with the capital letter S was already used by the @\ebSer vi ce
annotation. But the name Webser vi ce with the small |etter s was available. A class
namelike Tr ans| at or Webser vi ce would of course been a better and more clearer
choice, but here we need knowledge about how the application server create the endpoint
URL'sfor the web services. The endpoint URL is created from the name of the server in
addition with his port, both separated by a colon e.g. | ocal host : 8080 . The name
of the enterprise application archive, heret r ansl at or (without the. j ar extension),
and the name of the class, here Webser vi ce, that implements the remote (business)
interface of the Enterprise JavaBean web service is used aswell. Every part is separated
by a slash. The complete endpoint URL for Figure 4.3, “Packaging of the Trandlator
Web Service” deployed on your local machine on port 8080 is therefore ht t p: //
| ocal host: 8080/ transl at or/ Webser vi ce . In order to receive the WSDL

60

Implementation

catalogue, the parameter WEDL need to be added to the endpoint URL of the web
service. The URL for theWSDL catalogueisthereforeht t p: / /| ocal host : 8080/
transl at or/ Webser vi ce?W5DL .

Enterprise JavaBeans applications are packaged to Java archive (JAR). When the
application has also a web component then this component is packaged to a web
component archive (WAR). Both the JAR and the WAR archive are packaged afterwards
to an enterprise application archive (EAR). The structure of such an example enterprise
application archive could be seen in Figure 4.4, “Packaging of an Enterprise Archive’.

Figure 4.4. Packaging of an Enterprise Archive

translator.ear

—— META-INF/
application.xml

persistence.xml
——lib/
—— library_1.jar

—— library_2.jar
——ejb3_application.jar
——web_component.war

The deployment descriptor files appl i cati on. xml and per si st ence. xm are
not required for the EAR archive and can aso be substituted by Java Annotations. The
librariesin the | i b folder are shared libraries used by both, the Enterprise JavaBeans
3.0 and the web component.

For the automation of the packaging process we can use the Apache ANT! tool. ANT

can be used inside of an integrated development environment like Eclips;e12 or on the
command line. ANT read XML files and executes the script code inside. The default file
name of an ANT script fileisbui | d. xm .

1 http://ant.apache.org/

12 http://www.eclipse.org/

61

http://ant.apache.org/
http://www.eclipse.org/

Implementation

Example 4.17. ANT bui | d. xm File

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect nane="R2M. Transl ator Wb Service"
default="build (chair net)" basedir=".">

<property nane="ej b3.fil enane" value="translator.jar"/>
<property nanme="JBoss | ocal . path"

val ue="c:/ Programe/j boss-4. 0. 5. GA/ server/

def aul t/ depl oy/ "/ >

<descri pti on>
This ANT file builds the JAR archive for the JBoss
application server.
</ description>

<t arget nanme="drop"
description="drop the EJB3 JAR archive">
<del et e>
<fileset dir=".
</ del et e>
</target>

i ncludes="%{ej b3.fil enane}"/>

<target nanme="create bin"
description="build the application for the JBoss server
of the chair network">
<nkdir dir="bin"/>
<nkdi r dir="bin/ META-| NF"/ >
<copy todir="bin">
<fileset dir="WEB-INF/cl asses"/>
</ copy>
<copy todir="bin">
<fileset dir="WEB-INF/Iib" excludes="javaee.jar"/>
</ copy>
</target>

<target nanme="build (chair net)" depends="create bin"

62

Implementation

description="build the application for the
productivity environenent" >

<l-- use the ejb-jar.xm file with the path to the
transl ati on descriptor of the productivity env. -->
<copy file="META-INF/ ejb-jar.xm"

todi r="bi n/ META- | NF"/ >

<jar destfile="%{ejb3.fil enane}">

<fileset dir="bin"/>

</jar>

<delete dir="bin"/>
</target>

<target nane="build (local host)" depends="create bin"
description="build the application for the
devel opment environment and deploy it" >
<l-- use the ejb-jar.xm file with the path to the
| ocal web server -->
<copy file="META-INF/ejb-jar-local.xm"
tofil e="bin/ META-INF/ ejb-jar.xm"/>
<jar destfile="%{ejb3.fil enane}">
<fileset dir="bin"/>
</jar>
<delete dir="bin"/>
<copy file="translator.jar"
toDir="${JBoss_| ocal . path}"/>
</target>
</ proj ect >

Every ANT script hasapr oj ect tagwherethenane of the project, thedef aul t task
and the with basedi r the base directory is specified. Nested inside of the pr oj ect
are pr oper t y tags used to define variables that can be used everywhere in the rest of
the script. The value of aproperty can be accessed by writing ${ name of the property} .
Tasksare specified witht ar get tags. They haveat leastananme andadescri pti on
attribute. The attribute depends specifies what other tasks are performed by ANT
before it start this very task. The values of the attribute depends are comma separated

63

Implementation

values of the nane attributes of other tasks in the pr oj ect. The | ar tag packages
afolder structure as Java archive file. In this case the previously created folder bi n is
packaged to the file namet r ansl at or . j ar . To check the content of a Java archive
you can use any ZIP extraction program, because the same compression algorithm than
in the ZIP format is used for the creation of Java archives. On a Windows XP machine
makefirst acopy of your JARfile, renamethefileextensionto. zi p and double-click on
the ZIPfilein order to open and view it. But the other way around isnot possible. A ZIP
archiveisnot aJavaarchive. Inside of aJavaarchive you find alwaysaMANI FEST. MF
file as could be seen in Figure 4.3, “Packaging of the Translator Web Service’. This
is another benefit of using ANT for the packaging of the application. We have not to
care much about these things and can package more complex application than with
the console JAR tool of the Java Standard Developer Kit. All other ANT tags used in
the bui | d. xm are self explaining. A complete documentation can be found at ANT
project website.

InFigure4.5,“ANT Integrationinthe EclipseIDE” could be seen how ANT isintegrated
into the integrated development environment Eclipse. Every ANT t ar get of the
bui | d. xm appears there as a button.

Figure4.5. ANT Integration in the Eclipse IDE

E:f|3y Java |
CE.java = 0| oA 5 = O
ST A VES

= k] A2ZML Translator 'wWeb Service
£ build [chair net) [default]
- @ build (lacahost)

*ir---'i@ create bin

- i@ drop

i

age, Stri

Implementation

When the user double-clicks on abutton, the sel ected task i s started and the output written
to the integrated console. This makes the packaging and deploying of the application as
easy as clicking a button.

Figure4.6. ANT Console Output in the Eclipse IDE

Problems | Javadoc Declaration BERBar 20 4 Diebug Tasks b 4 L ® aH) | = d
<terminatedy B2MLT ranzlatorta™S build, sml [build (localhost]] [dnt Build] C:5Programme’] avabjre]. 5.0_125binavaw. exe (08,03, 2007 12.18:13)
Euildfile: Ctyprojectsiworkspacel BENLTranslatorWSybuild. xml L

create hin:
[mkdir] Created dir: C:%projectsiworkspace' RZNLTranslatorW3thin
[mkdir] Created dir: C:iprojectsi\workspace)\RZNLTranslatorW3tbin', META-INF
[copy] Copying 9 files to C:yprojectayworkspace)\RZMLTranslatorW3ihin
[cop¥] Copying 34 files to C:iprojectsiworkspace)\RZNLTranslatorW3tbin
build (localhost) :
[cop¥] Copying 1 file to C:iprojectsiworkspace\RZNLTranslatorW3tbin' META-INF
[iar] Building jar: C:%projects\workspace) RZNLTranzslatorW3h cranslator. jar
[delete] Deleting directory C:hprojects)workspacelRZMLTranslatorW3ibin
[copy] Copying 1 file to C:%Programme jboss-4.0.5.GAYserverh defaulthdepnloy
EUILD SIUCCEIIFUL
Total time: 5 seconds

3.5.7. Translation of Rule Languages

Thetrandation of rule languagesinside of the trandator system is made with the help of
socalled XSLT filesand an XSLT 2.0 processor. XSL isthe abbreviation for eXtensible
Stylesheet Language. Theletter T inthe abbreviation XSL T stand for transformation. An
XSLT processor transforms XML datawith the help of an XSLT in order to create anew
representation of the same data. In the case of the rule trandator we transform with the
help of an XSL T 2.0 processor rulesfrom one representation into another representation.
The meaning of the rule is in both representation formats the same. The representation
format we called aready before a rule languages. Concrete languages names are e.g.
F-Logic, Jena, Jess, JBoss Rules, RuleML, R2ML or Oracle Business Rules.

In Section 1, “Rule Languages’ we aready transformed arule from F-Logic step by step
to R2ML. Now we take a look in the XSLT file that describes the R2ZML to F-Logic
trandation. Since the complete XSL T trandlation file has more than 850 lines of source
code, only the mapping of R2ML's Ref er encePr opert yAt omis explained here.
Thiswas the only kind of atom used for the markup of the ancestor relation in R2ML.

65

Implementation

Example4.18. R2ZML Ref er encePr opert yAt om

<?xm version="1.0" encodi ng="UTF-8"?>
<r2m : Rul eBase
xmns:r2m ="http://ww. rewerse. net/|1/ 2006/ R2M." >

<r2m : Ref erencePropert yAt om
r2m : ref erencePropertyl D="fat her">
<r2m : subj ect >
<r2m : Cbj ectVariable r2m : name="X"/>
</r2m : subj ect >
<r2m : obj ect >
<r2m : Cbj ectVariable r2m : name="2"/>
</r2m : obj ect >
</r2m : Ref erencePropert yAt onr

</r2m : Rul eBase>

The Example 4.18, “R2ML Ref er encePr opert yAt oni is not valid against the
XML schema of R2ML. A complete R2ML rule can be validated against the XML
schemaof R2ML in order to be sure that the structureisvalid. The valid R2ML markup,
where this snippet is taken from, you can find in the Appendix A, . Since the right
structure of the data and not the data itself is relevant for the translation, we need to
look only at an abstract Ref er encePr oper t yAt omin order to understand how the
trangation of all reference property atoms are transformed.

Example4.19. XSLT Snippet of the R2ML to F-Logic Trandation

00] <?xm version="1.0" encodi ng="UTF-8"?>
01] <xsl:styl esheet version="1.0"

02| xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or n
03| xmns:r2m ="http://ww. rewerse. net/| 1/ 2006/ R2M."
04| xm ns:dc="http://purl.org/dc/elements/1.1/">

05| <xsl:output nethod="text"/>

The <xsl:styl esheet> tag is the root element in our XSLT stylesheet.
Therefore it is the first element after the XML prolog. With the version attribute in

66

Implementation

<xsl : styl esheet > the XSLT version need to be indicated. The xm ns attribute
declares XML namespaces. With xs| the namespace of XSLT, withr 2m for R2ML

and with dc the namespace of Dublin Core™® which is been used by R2ML. With the
<xsl : out put / > tag the output parameters can be specified. The net hod attribute
defines that the output format of this transformation ist ext .

06| <xsl:tenplate match="/">
07| <xsl:apply-tenpl ates/>
08| </xsl:tenpl ate>

The <xsl : t enpl at e> tag has an attribute mat ch. The value of the attribute is
a dlash, which symbolise the root node of an XML structure. The empty element
tag <xsl : appl y-t enpl at es/ > means that templates should be applied to nested
elements of the matched node. This are in our case the child elements of the node
r2m : Rul eBase.

09] <xsl:tenplate match="r2nm : Ref er encePr opert yAt ont >
10| <xsl:if test="string(./@2m :isNegated)="true'">
11| <xsl:text>NOT </xsl:text>

12| </xsl:if>

The template above matches all r2m : Ref er ecncePr opert yAt om elements
in an XML representation. The <xsl:if> element has always an attribute
t est, here with the value string(./ @2m :isNegated)="true' . This

statement is written as XPath function!* and means. If the string representation
of the attribute value of r2m : i sNegat ed of the currently applied node (here
r2m : Ref er encePr opert yAt on)isthesamethanthecharacter stringt r ue, then
the value of the attribute t est is true. If the attribute t est is true, then the child
elements are processed. The <xsl : t ext > elements simply print the nested text, here
it isthe word NOT followed by a space character.

13| <xsl:apply-tenpl ates sel ect="r2m : subject"/>
14| <xsl:text>[</xsl:text>

13TheDublin CoreMetadatalnitiativeisan open organi zation engaged in the devel opment of interoperable online metadata
standards that support a broad range of purposes and business models.” (http://dublincore.org/, August 15, 2007)

14 http:/www.w3.0rg/ TR/xpath-functions/

67

http://dublincore.org/
http://www.w3.org/TR/xpath-functions/

Implementation

15| <xsl :val ue- of

16] select="translate(string(@2m :referencePropertyl D),
17| UL H) >

18| <xsl:text>-> </xsl:text>

19| <xsl:apply-tenpl ates sel ect="r2m :object"/>

20| <xsl:text>]</xsl:text>

21| </xsl:tenpl ate>

The <appl y-t enpl at es> tag in line 13 applies the right template directly to all
matching child nodes r 2 : subj ect . The xsl : t ext tag prints here an opening
bracket. The xsl : val ue- of tag prints out the value of the selected statement.
The satement translate(string(@2m :referencePropertylD),

LT HY) means in natural language: the value of the attribute
r2m : referencePropertyl Das character string, where all : in the string are
exchanged with (or t r ansl| at ed to) the# sign .

22| <xsl:tenplate match="r2m : subject | r2m:object">
23] <xsl:apply-tenplates select="child::node()"/>
24| </xsl:tenpl ate>

When the template for r 2m : subj ect orr 2m : obj ect isapplied, it does nothing
more than simply apply again a matching template to the child node of the current node.

25| <xsl:tenplate match="r2m : Obj ect Vari abl e" >
26| <xsl:text>?</xsl:text>

27| <xsl:val ue-of select="@2n :nanme"/>

28| </xsl:tenpl ate>

29| </ xsl : styl esheet >

The template for r 2m : Obj ect Var i abl e prints simply out the question mark sign
followed by thevalue of theattributer 2 : nanme of the current node, which isthe node
r2m : Qbj ect Vari abl e.

With <xsl : message> tags, error messages or informations can be created inside of
XSLT transformations. Y ou remember in Section 4.2.4, “The Trandator Error Codes”
an error code document was introduced. These error codes are for the developer of
trandations and the trandator. The usage of these error codes in the translator part is
explained in Section 3.5.8, “Using the Saxon 8 XSLT 2.0 processor”. In addition to the

68

Implementation

3.5.8.

last XSL T transformation you can seein Example4.20, “Usageof xsl : message” how
easy such amessage can be created inside of XSLT transformations.

Example 4.20. Usage of xsl : nessage

<xsl:tenplate match="r2m : Producti onRul eSet
| r2m:IntegrityRuleSet | r2m : Reacti onRul eSet" >
<xsl : nmessage term nate="yes">
<xsl :text>][ERRO007] The translation input is not a
derivation rule.</xsl:text>
</ xsl : mnessage>
</xsl:tenpl ate>

F-Logic can only expressderivation rules. When for instance the transformed R2ML rule
is marked up as production rule, the XSLT trandation need to create an error message.
The attribute t er m nat e="yes" specifies that the XSLT transformation need to be
aborted. When the value is no then the message is written to the output along with the
tranglation result. This behaviour can be used to create additional informations. But this
is not useful for atrandation web service.

Asyou can see, thereisno magic behind atrandation of rules. When rules are marked up
right and the constructs of the source language can be distinguished exactly, it issimple
and straightforward.

Using the Saxon 8 XSLT 2.0 processor

In the previous section we saw how a X SLT transformation or translation of XML based
languages could look like. The translation wasreally simple and did not use any element
of XSLT 2.0 . But to give the trandation developers the opportunity to use the latest
version of XSLT the decision felt to use the Saxon 8 XSLT 2.0 processor. In this section
is explained how Saxon 8 instead of the default Xalan XSLT 1.0 processor can be used
in the Java programming language.

69

Implementation

Example 4.21. Implementation of thet r ansl at eDi r ect () Operation

00| private String translateDi rect(String sourcelLanguage,
01| String targetlLanguage, String xm | nput)
02|t hrows Transl ati onException {

03| String result = ;

04| URL url = getTransformation(sourcelLanguage,
05| targetlLanguage);
06|

07] StringWiter nessageStringWiter = new StringWiter();
08| MessageEm tter nessageEmitter = new MessageEmtter();

The operation t r ansl at eDi r ect we aready know from the Chapter 3, Design
especially from Figure 3.8, “Sequence Diagram: Trandation of a Rule”. In line 2 you
see that the operation can throw translation exceptions, which need to be handled by the
operation that want to usethisoperation. An empty string objectr esul t iscreated. This

string isused later to return the result of the direct trandlation after everything isfinished.

With the source and target language the URL™ to the matching XSLT trandation is
received. In order to support the <xsl : mnessage> tag, a Stri ngWiter and a
MessageEm tt er object need to be instantiated.

09| try {

10| System setProperty(

11| "javax.xm . transform Transf or mer Factory",
12| "net. sf.saxon. TransformnerFactoryl nmpl");
13|

14| TransfornerFactory transformnerFactory
15| = Transf orner Fact ory. newl nst ance() ;

16|

17| Transformer transforner

18| = transformer Fact ory. newTr ansf or mer (
19| new StreanSource(url.openStream()));

20|

21| nessageEm tter.setWiter(nmessageStringWiter);
22| Controller controller = (Controller) transforner;

Bynified Resource Locator

70

Implementation

23| controller.setMessageEnm tter(nessageEmtter);

In line 10 you see we set the implementation class that should be used
when we instantiate a new object of the class TransfornmerFactory.
When we set the property j avax. xm . transform Transf or ner Fact ory
to net. sf.saxon. Transformer Factoryl npl then we want to use the
implementation of Saxon 8 instead the default one (Xalan). Of course al libraries of
Saxon need to be accessible in the Java classpath.

Thet r ansf or mer object is necessary to transform later the rule in XML structure
to another rule representation. A new object of the class Tr ansf or mer is created
with the help of the previoudly instantiated object t r ansf or mer Fact ory and the
operation newTr ansf or mer . This operation need as parameter a St r eanfSour ce
object. Thisobject iscreated with the streamed content of the XSLT trandation by calling
the operationopensSt r eamof theur | object which pointstothe XSLT trandationfile.

In line 21 you see that the previously declared object nessageStri ngWit er of
the class Stri ngW it er is set as writer of the object messageEni tter. In the
next line is a new object controller created by type casting the object t r ansf or mer
to an object of the class Cont r ol | er . This need to done in order to use the operation
set MessageEm t t er whichisonly availablefor objectsof theclassCont rol | er .
By calling this operation we set the object nessageEni t t er as message emitter of
theobject cont r ol | er . Wheninsidethe XSLT transformation an <xsl : nessage>
isbeing created, the emitter writes the error messagetothenmessageStri ngWi t er
object.

24| StringReader input XM.=new StringReader(xm I nput.trimn());
25| StringWiter stringWiter = new StringWiter();

26| transfornmer. set Qut put Property(

27| Qut put Keys. OM T_XM._DECLARATI ON, "no") ;

28| transformer. set Qut put Property(

29| Qut put Keys. METHOD, "xm ");
30| transfornmer. setQut put Property(
31| "{http://xm .apache. org/ xslt}indent-amunt", "4");

32| transformer. set Qut put Property(

33| Qut put Keys. | NDENT, "yes");

34| transforner.transforn(new StreanSource(input XM.),
35| new StreanResult(stringWiter));

71

Implementation

36|
37| result += stringWiter.toString();

Thetri n() operation removes all whitespaces from the beginning and the end of
a string and it trims al ASCII control characters as well. With the xml | nput
which holds arule in XML structure as a string, a new object i nput XM of the class
St ri ngReader is created in line 24. Also ainstance of the class St ri ngW i t er
for the result of the XSLT transformation is required. From line 26 to 33 the default
output properties for tranglations are overridden. The transformer should not omit the
XML declaration, which is also known as XML prolog, when he is creating the output.
Aswell should XML be the output method and tags should be indented with the amount
of 4 characters.

In line 34 the t ransf or m operation of the transforner is caled with two
parameters. Thefirst parameter isthe XML rule represented by theobjecti nput XM as
new instance of the class St r eanfSour ce. The second isthe object st ri ngWi t er
asanew instance of theclass St r eanResul t . That meansin thislinewe set the XML
input and write theresult tothestri ngWi t er.

The operation += appends the string representation of the content of the object
stringWiter tother esul t string.

38| } catch (javax.xm .transform Transfornmer Exception te){
39| if((nmessageStringWiter.toString()).equals("")) {

40| t hrow new Transl ati onExcepti on(

41| Transl ati onErr or Code. ERRO011

42| + " (" + te.getMessageAndLocation() + ")");
43| } else { //if a xsl:message appears,

44| t hrow new Transl ati onExcepti on(

45| messageStringWiter.toString());

46| }//if

The part above describes what should be done if during the transformation an
exception happens. In line 39 you see that if the string representation of the object
messageStringWiter isempty, a new Tr ansl at or Excepti on should be
thrown. This means the operation that called thist r ansl| at eDi r ect operation need
to handle this exception. The exception reason is a concatenation of the error message of

72

Implementation

the trandlation error code 11 and the message plus location of the error in the structure
of the XML rule.

The el se branch defines the behaviour which should happen when at least one
<xsl : nessage> was created during the transformation. In this case all messages are
used to create a tranglation exception as well.

The difference between both casesis the first case is an exception created by the XSLT
processor. The second in contradiction, is a exception created by the XSLT trandlation.

47| } catch (1 OException ioe) {

48| Systemerr.println(TH S_APPLI CATI ON
49| + "created an input/output exception "
50| + "during translation.");

51| }//catch

52| return result;

53|}/ /transl ateDirect ()

In line 19 we use the operation openSt r eamon a object of the class URL. In case the
file at the location could not be found an input output exception need to be caught. As
you see above no tranglator exception isthrown. If this case happens, there is something
wrong with the tranglations files and therefore with the complete translator system. No
client need to know about this. A good sol ution herewould be to inform the administrator
per email. The explanation of such an implementation is not purpose of this document.

73

Chapter 5. Web Interface

In this chapter a web service client is introduced. The client act as an web interface
for the previoudly build rule translator web service. He shows how web services can be
accessed. Since the client is pretty easy to implement, we do not need to use the Model
Driven Architecture (MDA).

A web interface for a web service differs not much from other dynamical created web
appearances. The user of the web interface does not even know that aweb serviceis used
in the background. The connection to a web service can be made by the programmer
itself by parsing the web service description catalogue and creating the corresponding
SOAP messages. Or the programmer can do that with a SOAP client library that handles
and hides all the complicated things. For the dynamical website that could be seen in
Figure 5.1, “R2ML Trandator Web Interface’ the latter solution was chosen because
this solution is more convenient and error proof. There are at least two different types of
available SOAP libraries. Both are created from the web service description catalogue.
The first kind of SOAP library is created on the fly. This solution is used by script

languageslike PHP, JavaScri ptl or ECMA Script. Script languagesare alwaysinterpreted
and not compiled. For compiled languages like Javaor C#, the source codes of thelibrary
is generated and need to be compiled afterwards. Advanced programming interfaces
(API) for any kind of Java applications can be generated with Apache Axis. Such a
generated API alows usto connect to this specific web service from the JavaBean of the
web presentation layers like JavaServer Pages or JavaServer Faces.

1javaScript SOAP Client: http://www.codeproject.com/Ajax/JavaScriptSOAPClient.asp (13/08/2007)

74

http://www.codeproject.com/Ajax/JavaScriptSOAPClient.asp

Web Interface

Figure5.1. R2ML Translator Web Interface

R EWE RS E‘i R2ML Translator Web Interface

reasoning on the welb ¥ documentation

<rZml:conditionss>
<rZml:ReferencePropertyitom riml:referencePropertyID="father™:>
<rZml:subject>
<riZml:ChjectVariable rZml:name="I"/>
</rZml:subject>
<rZml:ohject>
<riZml:ChjectVariable rZml:name="I"/>
</rZml:ohject>
</rZml:ReferencePropertyitom>
<rZml:ReferencePropertyitom riml:referencePropertyID="ancestor™>
<rZml:subject>

<riZml:ChjectVariable rZml:name="I"/>
</rZml:subject>
<rZml:ohject>
rZml o ObhdectWarisgbhle r2ml:name="%" r2ml:tyneCategorw="sst"

FR2hL [V]tcu | F-Logic [V][translate

<?xml version="1.0" encoding="UTF-57"2>
<!-—// F-logic output of R2ZHNL derivation rules—--»
<flogics
<ns xwlns:xsi="hoop://vww, w3, org/ 2001/ ZNLSchema— instance™
xmlns:riZml="http://vyw. reverse.net/ I1/2006/RZHL™
¥mlng:ide="hoop://purl,org/de/elements,/ 1. 1/ "/ >
<pre>

RULE DROOS: FORALL 22X, 2Z,?T ?X[ancestor->2Y] <- ?EZ[father->7?I] AND ?IZ[ancestor->2¥].

</prex>
</flogic>

The Hypertext Preprocessor language (PHP) is an open source script language for web
servers. Today amost every web server supports it. PHP is easy understandable and
provided by many web space hosting vendors. Thus makes it easy for amost every web
developer to use web services. Choosing the PHP language for the web interface has
only one reason. It is a completely different language than Java, which is used for the
Enterprise JavaBeans 3.0 web service, and this shows the language independence of
the trandlator web service. Another free opportunity would have been a web interface
made in JavaServer Pages. But for JavaServer Pages running on the same application
server we do not need really a web service. In this case we would have packaged the
JavaServer Page in one enterprise archive and connected them internally via the local
business interface of the Enterprise JavaBean.

1. Design Hints

Beforeadynamical websiteismadeitisgood to createfirst astatic version. Thisgivesus
the opportunity totest and designit. A websiteismarked up with the help of the Hypertext
Markup Language (HTML). The design of a website is defined with Cascading Style
Sheets (CSS). It is possible to style HTML elements, classes or elements with a special
identity. In Example 5.1, “CSSfor HTML t ext ar ea element” you see a snippet CSS
codethat stylesall t ext ar ea elements.

75

Web Interface

Example5.1. CSSfor HTML t ext ar ea element

t ext area

{

position: relative;
float: left;

left: lem
wi dt h: 98%
hei ght: 40. 5%

}

Thew dt h and hei ght of thet ext ar ea element has arelative value. That means
the width of thet ext ar ea element is 98 percent of the available width and the height
is40. 5 percent of the available height of the current browser window. Such CSS code
make your website independent from a fixed browser resolution. This is an important
issue. People today are using very high display resolutions and their browser maybe full
screen. When people want to use the web interface, of course they want to have a benefit
of their huge display and of course they want to have a huge text area where they have
a better overview over the rule markup code.

Actually, more than 5 different display resolutions are common. An overview can be
seenis Table 5.1, “Displays and Resolutions”.

Table 5.1. Displays and Resolutions

Size[inch] Resolution [pixel] Format
12", 14", 15" 1024 x 786 XVGA
i 1280 x 1024 SXGA

19" 1400 x 1080 SXGA+
22" 1600 x 1200 UXGA+
22" (wide screen) 1680 x 1050 WSXGA+

Another issue are JavaScript pop up windows. These pop up windows are often used
to display advertising when people are surfing around in the Internet. The Firefox web
browser for instance has a option to block pop up windows. Thus makes it hard to show

76

Web Interface

warning or error messages in form of a new window. When we use JavaScript's pop up
windows there is a huge chance that these warning or error messages are never be seen
by the user. The question is: How can we display warning or error messages when the
browser would block pop up windows?

Figure5.2. Pop-up Blocker Resistant M essage Window

|R EW E RS E R2ML Translator Web Interface

reasoning on the web MFdocumentation

<7l wersion="1.0" encoding="UTF-S" 2>
<rZml:BuleBase wmlna:iriml="http://wuw.rewerse.net/ I1/2006/RZNL"™ xmlna:do="httn:,
¥mlna:xai="http://wuw. w3 .org/ 20017 XML3chema—inatance™ x3iiachemalLocation="httn:,
http:/foxygen. informatik. tu-—cotthus.de/RENL/0. 4/ RENL . wad™>
<rZml:Derivatioad
<riml:Derivat|SEEeeis i =) ¥

<rZmwl:Dog ==
<rZml:Rul [ERRDOOSJ The tl’aﬁS|§ltIOﬁ f ¥ has a father Z and this Z
T.</riml:RuleText |ﬂDUt|5 not a productuam
crzml:soufl rule. I [CDATA[

FORALL X, L@ »Z] AND Z[ancestor—::Y].

11x</rZml:3ourceCoder
</frZml:Documentations

R2rL M to | JBossRules M [translate EFFOr Messages

Pop-up blocker resistant windows can be created very simple. As you can see in
Example 5.2, “Pop-up Blocker Resistant Message Window”, an areais created with the
help of the <di v> element. The style attribute defines that this area has a width of 250
pixel and appears 150 pixel away from the left and top side in the browser. In line 3 can
be seen that the style attribute definition which startsin line 1 isnot closed with a second
double quote. In line 4 the <?php characters defines that PHP script code are following
until the tag is closed with the ?> characters.

77

Web Interface

Example 5.2. Pop-up Blocker Resistant M essage Window

00| <div id="ErrorWndow'

01| styl e="position: absol ut e;

02| w dt h: 250px; left:150px; top: 150px;
03| border: 1px solid bl ack;
04| <?php

05| if($showkrror W ndow) {

06| print "visibility: visible;";
07| } else {

08| print "visibility: hidden;";

09 }

10| ?>

11 ">

12| <p><?php print $exception->detail ->
Transl ati onExcepti on- >nessage; ?></p>
13| <a href="javascript: hideError Wndow);
return fal se">0K</ a>
14| </ di v>

The PHP script code from line 5 to 9 means that if the variable showEr r or W ndow
is true then print the characters string vi si bi lity: visi bl e; otherwise print
visibility: hidden;.PHP isa script language that is being executed on the
server. If aerror appearsthe variable shower r or W ndowis set to true and the HTML
code is generated on the web server. Afterwardsit is being send to the web browser that
interprets the HTML markup. The browser never see anything of the PHP code. In the
error case, the browser seethein the style attributevi si bi l i ty: vi si bl e andthis
tellshimto show the<di v> areaand all nested elements. Inthe exampleaboveinline 12,
anested paragraph element isused to show the error message. Again PHPisused toinsert
the content. Itisthenessage of theTr ansl at i onExcept i on,whichisadet ai
of a super-imposed PHP except i on. The operation call hi deEr r or W ndow() is
used to close the error window. The implementation of this JavaScript operation need
to be executed by the web browser. He need to search for the element with the i d
value Er r or W ndow (seeline 1) and changesthevi si bi | i t y attribute inside of the
st yl e attribute to the value hi dden in order to hide the error window.

78

Web Interface

2. Using Web Services with PHP

When you want to create a web interface for a web service like in Figure 5.1, “R2ML
Trandator Web Interface”, you need to put several technologies together. The HTML
markup styled with cascading style sheets (CSS), the pop up blocker resisted way of
showing warnings and error messages and the dynamic content creation controlled by
PHP. In this section the parts where PHP is used to communi cate with the rule trand ator
Web Service, introduced in this document, are explained.

Example 5.3. PHP Web Service Call: get Sour ceLanguages()

01| <htm >

02| <body>

03| <h2>R2M. Transl ator Wb Servi ce</ h2>

04| <?php

05| $WebSer vi ceEndpoi nt URL = ' htt p://hydrogen. i nformati k.
t u- cott bus. de: 8080/ transl at or/ Webser vi ce' ;

06| $WsDL = " $WebSer vi ceEndpoi nt URL?wsdl *;

07| $cli ent = new SoapC ient ($WsDL) ;

08|

The endpoint URL of the web service is specified in line 5 with the assignment of a
character string. The URL of the web service description catalogue is a concatenation of
the endpoint URL and the characters ?wsdl , asyou can seein line 6. In order to access
a web service we need to create an new object of the class SoapCl i ent . The only
mandatory parameter is the URL that points to the web service description catalogue.
The class Soapd i ent provides afterwards the same operations than the web service
and can be used in the same way as all other PHP operations.

09|try {

10| $result Cbj ect = $client->get Sour ceLanguages();
11| $sourcelLanguages = $result Object->result;

12| if(gettype($sourcelLanguages) '= "array') {

13| print "Source Language: </ b>";

14| print $sourcelLanguages;

15| } else { //if we get an array of results

79

Web Interface

16/ print "Source Languages: </ b>";
17| print "";

18| f oreach($sour ceLanguages as $avai | abl eSour ceLanguage) {
19| print "$avail abl eSour ceLanguage</1i>";

20| }//foreach

21| print "";

22| }//if-else

23|} catch (SoapFault $exception) {

24| print "ERROR in get SourceLanguages()";
25|}/ /try-catch

26|

27| ?>

28| </ body>

28| </ htm >

In order to catch exceptions we write the script code, that want to use an operation of
the web service, inside of a try-catch statement. In line 10 you see how the operation
get Sour ceLanguages() of theweb serviceisused. The object r esul t Obj ect
that holds the result of the operation has an attributer esul t . The name of the attribute
r esul t correspondstothevalue of thenane attribute of theelement whichisdefinedin
the conpl exType with the name get Sour ceLanguagesResponse inthe XML
Schema part of the web service description catalogue. The corresponding part you see
in Example 5.4, “WSDL: Response Type Declaration”.

80

Web Interface

Example 5.4. WSDL : Response Type Declar ation

<?xm version="1.0" encodi ng="UTF-8"?>

<definitions ...>
<types ...>
<schema ...>

<conpl exType nane="get Sour ceLanguagesResponse" >
<sequence>
<el enment nane="result"
maxQOccur s="unbounded" m nCccurs="0"
nillable="true" type="string"/>
</ sequence>
</ conpl exType>

</ schema>
</types>
</definitions>

Inline 12 of Example 5.3, “PHP Web Service Call: get Sour ceLanguages() ” you
see how in PHP could be distinguished between the two kinds of result values. Thefirst
case is when the result attribute itself holds the result value. Thisis the case when only
one result element is returned. The second case is that the type of the result is an array
of values. Then the result values can be accessed like every PHP array. An example you
seeinline 18.

When the lines 9 to 25 of the PHP script code of Example 5.3, “PHP Web Service Call:
get Sour ceLanguages() " are exchanged with the following script code, you have
a second working example of the usage of an web service operation in PHP. The big
difference to the previous example is that the operation get Tar get Languages()

need a parameter that specify the source language.

81

Web Interface

Example5.5. PHP Web Service Call: get Tar get Languages()

$sour ceLanguage = ' R2ZM'
$paranmeter = array(' sourcelLanguage' => $sourcelLanguage);
try {
print "<h3>Target Languages of $sourcelLanguage :</h3>";
$resul t bj ect = $client->get Tar get Languages($par anet er) ;
$t ar get Languages = $resul t Obj ect->resul t;
i f(gettype($targetlLanguages) != "array') {
print "Target Language of $sourcelLanguage :";
print $targetlLanguages;
} else { //if we get an array of results
print "Target Languages of $sourcelLanguage : </ b>";
print "";
f oreach($t ar get Languages
as S$avai l abl eTar get Language) {
print "$avail abl eTar get Language</|i >";
}//foreach
print "";
Y} /if-else
} catch (SoapFault $exception2) ({
print "ERROR in get Target Languages(...)";
}//try-catch

Theusage of thet r ansl| at e() operation of theweb serviceisamost the samethanin
Example 5.5, “PHP Web Service Call: get Tar get Languages() ”. The parameters
inside of a PHP array are separated with a comma.

2.1. SOAP Exception Handling

The good exception handling isanimportant part during the devel opment of applications.
In PHP it is not necessary in order to run the script, but to handle exceptions does also
not make an application instable. Quite contrary does is make an application absolute
more stable and let the developer think about error cases that could might happen.

82

Web Interface

Example 5.6. PHP: SOAP Exception Handling

$paranmeter = array(' sourcelLanguage' => $sourcelanguage,
'target Language' => $target Language,
"xm | nput' => $input);

try {

$translation = $client->transl ate($paraneter);

} catch (SoapFault $exception) {

print $exception->detail->Transl ati onExcepti on->nmessage;
}//try-catch

In the example PHP script code you see the call of the web service operation tranglate
is wrapped in a try-catch clause. If a SoapFaul t exception happens this exception
is printed. The attribute name nessage can be found again in the node el enment
in the XML Schema section of the conpl exType declaration in the web service
description catalogue. The attribute Tr ansl at i onExcept i on is the name of the
custom exception class we created in the implementation phase of the translator web
service application. According to the SOAP 1.1 specification “is the detail element [...]
intended for carrying application specific error information related to the Body element.
" [DEK+]

Another much smarter ideaisthe following. Instead of simply printing out the exception
message, this message could be stored in a PHP variable and showed inside of the error
message window which was introduced in Section 1, “Design Hints".

2.2. SOAPClient Bugs

PHP before version 5.1.6 had problems with the mapping of parameter names
of operations. The parameters of the operation t r ansl at e(sour ceLanguage,
target Language, xm I nput) for instance are mapped to a complex type
t r ansl at e in the schema definition of types in the web service description catalogue
(in document style). A snipped of the parameter mapping can be seen in Example 5.7,
“WSDL: Parameter Mapping of an Operation”.

83

Web Interface

Example5.7. WSDL : Parameter M apping of an Operation

<?xm version="1.0" encodi ng="UTF-8"?>

<definitions ...>
<types ...>
<schema ...>

<conpl exType nane="transl ate">
<sequence>
<el enent nane="sour ceLanguage"
nillable="true" type="string"/>
<el enent nane="t ar get Language"
nillable="true" type="string"/>
<el enent nanme="xnl | nput
nill able="true

type="string"/>
</ sequence>
</ conpl exType>

</types>
</ schema>
</definitions>

Thelibrary SOAPClient that came along with PHP before version 5.1.6 did not parse the
parameter names right. The library call every time the first parameter St ri ng_1, the
second St ri ng_2 andthethird St ri ng_3. She works pretty well when we avoid to
use the @\ebPar amannotation in our Enterprise JavaBean 3.0 web service to specify
the name of the parameter in operations. But as we already know a parameter name like
sour ceLanguages saysmorethan St r i ng_ 1. Thisbug inthe PHP implementation
was not so easy to find. The PHP web interface worked fine in the development, but not
the productivity environment. After analysing the log files of the web server | had aclue.
It was necessary to update and recompile the PHP implementation of the productivity
server.

As could be seen it is quiet easy to develop dynamical websites with PHP, but
you can never expect that your PHP script code is portable and runs on every PHP
implementation. Finding bugs in the PHP implementation can be very tricky. Thisisthe
reason why always good to check another opportunities.

84

Chapter 6. Conclusion

With basic knowledge about technologies like the Java programming language and
Enterprise JavaBeans 3.0 it is possible to develop easy and fast, web services on Java
Enterprise Edition 5 application servers. In order to build translation web servicesfor the
rule interchange, it is absolute necessary to understand the markup of rules in order to
choose the right interchange language. Sophisticated knowledge about XML as superior
language of dialects like SOAP and WSDL, is essential to build a working system. For
the trandlation system, introduced in this document, isknowledge about XSL T inevitable
aswell. Understanding about different server and client side programming languages|like
PHP or JavaScript isuseful for testing the whole system and hel pful for the devel opment
of web interfaces or basic examples for other developer or researchers.

1. Extensions of the System

The implementation of the rule trandlator system, introduced in this document, use only
XSLT transformations to translate rules. Since XSLT describes only transformations of
XML data, thislanguageisnot useful for rulelanguages written in adifferent syntax than
XML. One opportunity to support the trandlation of rule languages, that are not based on
XML, isto use another kind of trandation language. In order to support other kinds of
translation alternatives, the definition of atrandglation interface, that describestransl ations
independent from area implementation, is necessary. Only this would open the system
for other trandlation methods. In order to use the existing translation method with XSLT
2.0, the next logical step would be to use a separate XSLT 2.0 processor component.
This could be a separate Enterprise JavaBeans 3.0 application deployed on the same
application server. Every application on the application server could then access the
XSLT processor Enterprise JavaBean application over their remote (business) interface.

Another trandation aternative next to XSLT could be the Atlas Transformation
Languagel. Milan Milanovic already proved that is possible to trandate with the Atlas
Transformation Language (ATL) from SWRL to R2M L2 or OCL to R2ML3 and back

LATL (Atlas Transformation Language) has been defined to perform general transformations within the MDA framework
(Model Driven Architecture) recently proposed by the OMG.” http://www.sciences.univ-nantes.fr/lina/atl/ (23.08.2007)

2 http://oxygen.informatik.tu-cottbus.de/transl ator/SWRL toR2M L/
8 http://oxygen.informatik.tu-cottbus.de/transl ator/OCLtoR2M L/

85

http://www.sciences.univ-nantes.fr/lina/atl/
http://oxygen.informatik.tu-cottbus.de/translator/SWRLtoR2ML/
http://oxygen.informatik.tu-cottbus.de/translator/OCLtoR2ML/

Conclusion

again. This can be tested with R2ZML Translator web application. In order to use
aready existent ATL transformations of Milan Milanovic, they need to be migrated to
Enterprise JavaBean 3.0 platform. The current implementation of Milan Milanovic use
the underlying file system to find in Java archives the meta models for the trand ations.
Dueto the direct file access, the current implementation of the ATL transations can not
be used inside of a Enterprise JavaBean container. But this is a only implementation
specific problem that can be solved by redesigning the source codes.

Another and more simpler way to extent the current implementation of the rule translator
Web Service isto alow external XSLT trandations. Thus would make it possible for
others researchers to use the web service to tranglate their XSLT transformations. But
when such abehaviour isallowed, we need to test every XML input if itisarule, in order
to check that not ordinary XML datain contradiction is used to became transformed by
web service.

Nice features are often statistics. The translator application could be extended to create
statistics about the usage of the application and the most used rule translations. These
statistics could be stored in a database and were accessible afterwards maybe by a web
interface for selected user groups.

86

Appendix A.

Example A.1. R2ZML Rule: Ancestor Relation

<?xm version="1.0" encodi ng="UTF-8"?>
<r2m : Rul eBase
xmns:r2m ="http://ww. rewerse. net/11/2006/ R2M."
xm ns:dc="http://purl.org/dc/el ements/1.1/"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi :schemaLocati on="http://ww.rewerse. net/|1/2006/ R2M
http://oxygen.informatik.tu-cottbus.de/ R2M./ 0. 4/ R2ZM.. xsd" >
<r2m : Derivati onRul eSet >
<r2m : DerivationRule r2m :rul el D="DR005" >
<r 2m : Docunent ati on>
<r2m : Rul eText r2m :textFormat="plain">
If X has a father Z and this Z has ancestors Y then X
has anchestors Y.</r2m : Rul eText >
<r2m : Sour ceCode r2m : | anguage="FLogi c" >
<! [CDATA[
FORALL ?X, ?Y, ?Z ?X[ancestor->?Y] <- ?X[father->?Z]
AND ?Z[ancest or - >?Y] .
11></r2m : Sour ceCode>
</r2m : Docunent ati on>
<r2m : conditions>
<r2m : Ref erencePropert yAt om
r2m :referencePropertyl D="fat her">
<r2m : subj ect >
<r2m : Obj ect Vari abl e r2m : name="X"/>
</r2m : subj ect>
<r 2m : obj ect >
<r2m : Obj ect Vari abl e r2m : name="2"/>
</r2m : object>
</r2m : Ref erencePr opert yAt onr

<r2m : Ref erencePr opert yAt om
r2m :referencePropertyl D="ancestor">

87

<r2m : subj ect >
<r2m : Obj ect Vari abl e r2m : name="2"/>
</r2m : subj ect>
<r 2m : obj ect >
<r2m : Obj ect Vari abl e r2m : name="Y"/>
</r2m : object>
</r2m : Ref er encePr opert yAt onr
</r2m :conditions>
<r 2m : concl usi on>
<r 2m : Ref er encePr opert yAt om
r2m : referencePropertyl D="ancestor">
<r2m : subj ect >
<r2m : Obj ect Vari abl e r2m : name="X"/>
</r2m : subj ect>
<r 2m : obj ect >
<r2m : Obj ect Vari abl e r2m : name="Y"/>
</r2m : object>
</r2m : Ref erencePropert yAt onr
</r2m : concl usi on>
</r2m : DerivationRul e>
</r2m : Derivati onRul eSet >
</r2m : Rul eBase>

88

Appendix B.

Ich erkl&re hiermit an Eides statt, dass ich die vorliegende Bachelorarbeit selbsténdig
und ohne unerlaubte Hilfe angefertigt habe, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt und die den benutzten Quellen wortlich oder inhaltlich
entnommenen Stellen a's solche kenntlich gemacht habe.

Cottbus, den

Unterschrift:

89

Bibliography

[BRF 05] 9th International Business Rules Forum. Copyright © Business Rules Forum.
2005. UServ Product Derby Case Sudy [http://mww.businessrulesforum.cony
2005 _Product_Derby.pdf] .

[ONTOPRISE 04] Ontoprise. November 2004. How to Wkite F-Logic Programs [http://
www.ontoprise.de/documents/tutorial_flogic.pdf] .

[WEINDEL 06] Martin Weindel. Ontoprise. 28-10-2006. F-Logic Forum: Results and Open
Issues left [http://mww.informatik.uni-freiburg.de/~dbis/wor kshop/slides/weindel %620-
%20f-10gic%20forum.ppt] .

[BHM+ 04] World Wide Web Consortium (W3C). 11-02-2004. Web Services Architecture [http:/
mww.w3.org/TR/ws-arch] .

[HENDERSON 06] Ca Henderson. May 2006. O'Relilly. Building Scalable Web Stes - The Flickr
Way. 0-596-10235-6.

[OMG] Object Management Group Inc. (OMG). Model Driven Architecture (MDA) FAQ [http:/
mwww.omg.org/mda/fag_mda.htm] .

[SIEGEL 02] Dr. Jon Siegel. 15-10-2002. Object Management Group Inc. (OMG). Making
the Case:. OMG's Model Driven Architecture [http://www.sdtimes.comvarticle/special-
20021015-01.html] .

[BALZERT 01] Helmut Balzert. Spektrum Akademischer Verlag. 16-02-2004. Lehrbuch der
Software-Technik, 2. Auflage. 3-8274-0480-0.

[BELL 04] Donald Bell. IBM developerWorks. 16-02-2004. UML's Sequence Diagram [http://
www.ibm.comydevel operwor ks/rational/library/3101.html] .

[HOGG 03] John Hogg. IBM Software Group. 13-06-2003. Brass Bubbles: An
Overview of UML 2.0 (and MDA) [http://mww.omg.org/news/meetings/workshops/
UML%202003%20Manual/Tutorial 7-Hogg.paf] .

[JACOBSON 99] Dr. Ivar Hjalmar Jacobson. 1999. Interview with Ivar Jacobson (by Adriano
Comai) [http://mww.analisi-disegno.com/uml/Jacobsoninterview.html] .

[JSR181] Copyright © BEA Systems. 27-02-2005. JSR 181: Web Services Metadata for the Java
Platform, Version 2.0 [http://jcp.org/aboutJava/communityprocess/final/jsr220/] .

90

http://www.businessrulesforum.com/2005_Product_Derby.pdf
http://www.businessrulesforum.com/2005_Product_Derby.pdf
http://www.businessrulesforum.com/2005_Product_Derby.pdf
http://www.ontoprise.de/documents/tutorial_flogic.pdf
http://www.ontoprise.de/documents/tutorial_flogic.pdf
http://www.ontoprise.de/documents/tutorial_flogic.pdf
http://www.informatik.uni-freiburg.de/~dbis/workshop/slides/weindel%20-%20f-logic%20forum.ppt
http://www.informatik.uni-freiburg.de/~dbis/workshop/slides/weindel%20-%20f-logic%20forum.ppt
http://www.informatik.uni-freiburg.de/~dbis/workshop/slides/weindel%20-%20f-logic%20forum.ppt
http://www.informatik.uni-freiburg.de/~dbis/workshop/slides/weindel%20-%20f-logic%20forum.ppt
http://www.w3.org/TR/ws-arch
http://www.w3.org/TR/ws-arch
http://www.w3.org/TR/ws-arch
http://www.omg.org/mda/faq_mda.htm
http://www.omg.org/mda/faq_mda.htm
http://www.omg.org/mda/faq_mda.htm
http://www.sdtimes.com/article/special-20021015-01.html
http://www.sdtimes.com/article/special-20021015-01.html
http://www.sdtimes.com/article/special-20021015-01.html
http://www.sdtimes.com/article/special-20021015-01.html
http://www.ibm.com/developerworks/rational/library/3101.html
http://www.ibm.com/developerworks/rational/library/3101.html
http://www.ibm.com/developerworks/rational/library/3101.html
http://www.omg.org/news/meetings/workshops/UML%202003%20Manual/Tutorial7-Hogg.pdf
http://www.omg.org/news/meetings/workshops/UML%202003%20Manual/Tutorial7-Hogg.pdf
http://www.omg.org/news/meetings/workshops/UML%202003%20Manual/Tutorial7-Hogg.pdf
http://www.omg.org/news/meetings/workshops/UML%202003%20Manual/Tutorial7-Hogg.pdf
http://www.analisi-disegno.com/uml/JacobsonInterview.html
http://www.analisi-disegno.com/uml/JacobsonInterview.html
http://www.analisi-disegno.com/uml/JacobsonInterview.html
http://jcp.org/aboutJava/communityprocess/final/jsr220/
http://jcp.org/aboutJava/communityprocess/final/jsr220/
http://jcp.org/aboutJava/communityprocess/final/jsr220/

Bibliography

[JSR220] Sun Microsystems. 08-05-2006. JSR 220: Enterprise JavaBeans™, Version 3.0 [http:/
/jcp.org/aboutJava/communityprocess/final/jsr220/] .

[BM 06] Bill Burke & Richard Monson-Haefel. O'Reilly. Enterprise JavaBeans 3.0, Fifth Edition.
0-596-00978-X.

[CRENSHAW 99] Chris Crenshaw. Nova Laboratories. 1999. Developer's Guide
to Understanding Enterprise JavaBeans [http://java.sun.convproducts/ejb/devel opers-
guide.pdf] .

[BGT 05] Harold Boley. Benjamin Grosof. Said Tabet. Copyright © The RuleML Initiative[http://
www.ruleml.org/] . 13-05-2005. RuleML tutorial [http://mww.ruleml.org/paper s/tutorial -
ruleml.html] .

[ROTHAUG 04] Susanne Rothaug. 20-11-2004. SAP. The Difference Between RPC
and Document Style WSDL [https: //mwww.sdn.sap.convirj/serviet/prt/portal/prtroot/docs/
library/uuid/c018da90-0201-0010-ed85-d714ff7b7019] .

[JSR244] Bill Shannon . Sun Microsystems, Inc.. 11-05-2006. Java™ Platform, Enterprise
Edition 5 (Java EE 5) Specification [http://jcp.org/aboutJava/communityprocess/final/
jsr244/index.html] .

[BCE+] Jennifer Ball. Debbie Carson. lan Evans. Scott Fordin. Kim Haase. Eric Jendrock. Sun
Microsystems, Inc.. 16-06-2006. The Java™ EE 5 Tutorial [http://java.sun.convjavaee/5/
docs/tutorial/doc/] .

[YFC] Sun Microsystems, Inc.. 04-10-2006. Your First Cup: An Introduction to the Java EE
Platform [http://java.sun.convjavaee/5/docs/fir stcup/doc/fir stcup.pdf] .

[DEK+ 00] Don Box. David Ehnebuske. Gopal Kakivaya. Andrew Layman. Noah Mendelsohn.
Henrik Nielson. Satish Thatte. Dave Winer. World Wide Web Consortium. Copyright ©
2000 DevelopMentor, International Business Machines Corporation, Lotus Development
Corporation, Microsoft, UserLand Software. 08-05-2000. Smple Object Access Protocol
(SOAP) 1.1 [http://www.w3.0r g/ TR/2000/NOTE-SOAP-20000508/] .

91

http://jcp.org/aboutJava/communityprocess/final/jsr220/
http://jcp.org/aboutJava/communityprocess/final/jsr220/
http://jcp.org/aboutJava/communityprocess/final/jsr220/
http://java.sun.com/products/ejb/developers-guide.pdf
http://java.sun.com/products/ejb/developers-guide.pdf
http://java.sun.com/products/ejb/developers-guide.pdf
http://java.sun.com/products/ejb/developers-guide.pdf
http://www.ruleml.org/
http://www.ruleml.org/
http://www.ruleml.org/
http://www.ruleml.org/papers/tutorial-ruleml.html
http://www.ruleml.org/papers/tutorial-ruleml.html
http://www.ruleml.org/papers/tutorial-ruleml.html
https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/uuid/c018da90-0201-0010-ed85-d714ff7b7019
https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/uuid/c018da90-0201-0010-ed85-d714ff7b7019
https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/uuid/c018da90-0201-0010-ed85-d714ff7b7019
https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/uuid/c018da90-0201-0010-ed85-d714ff7b7019
http://jcp.org/aboutJava/communityprocess/final/jsr244/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr244/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr244/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr244/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/
http://java.sun.com/javaee/5/docs/tutorial/doc/
http://java.sun.com/javaee/5/docs/tutorial/doc/
http://java.sun.com/javaee/5/docs/firstcup/doc/firstcup.pdf
http://java.sun.com/javaee/5/docs/firstcup/doc/firstcup.pdf
http://java.sun.com/javaee/5/docs/firstcup/doc/firstcup.pdf
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

	Bachelor Thesis
	Table of Contents
	Acknowledgements
	Foreword
	1. Conventions Used in This Document

	Chapter 1. Plan of the Thesis
	1. Task Description
	2. Solution Approach

	Chapter 2. Introduction
	1. Rule Languages
	2. Web Services
	3. SOAP

	Chapter 3. Design
	1. Safeguard the System
	2. Source Control System
	3. Distribution of Responsibilities
	4. Model Driven Architecture
	4.1. Domain Model
	4.2. Design Model
	4.2.1. The Web Service
	4.2.2. The Translation
	4.2.3. The Translator
	4.2.4. The Translator Error Codes

	5. Use Cases
	6. Sequence Diagrams
	6.1. Translation of a Rule
	6.2. Reception of all Source Languages
	6.3. Reception of all Target Languages

	Chapter 4. Implementation
	1. Java Programming Language
	2. Application Server
	3. Implementation Model
	3.1. Enterprise JavaBeans 3.0 Technology
	3.2. Enterprise JavaBean Container
	3.3. Choice of the Interchange Language
	3.4. Management of Translations
	3.5. Explanation of the Source Codes
	3.5.1. Java Annotations
	3.5.2. WSDL Generation
	3.5.3. URL Injection during Deployment Time
	3.5.4. Deployment Descriptors
	3.5.5. Custom Exceptions
	3.5.6. Packaging of the Application
	3.5.7. Translation of Rule Languages
	3.5.8. Using the Saxon 8 XSLT 2.0 processor

	Chapter 5. Web Interface
	1. Design Hints
	2. Using Web Services with PHP
	2.1. SOAP Exception Handling
	2.2. SOAPClient Bugs

	Chapter 6. Conclusion
	1. Extensions of the System

	Appendix A.
	Appendix B.
	Bibliography

