Cross-species Mapping between Anatomical Ontologies: Terminological and Structural Support

by Sarah Luger, Stuart Aitken & Bonnie Webber sluger@inf.ed.ac.uk, stuart@aiai.ed.ac.uk, bonnie@inf.ed.ac.uk XSPAN/University of Edinburgh

www.xspan.org

Bio-ontologies Workshop 2004

• Mouse Tail

www.xspan.org

Bio-ontologies Workshop 2004

C. Elegans Tail

• In mouse:

embryo . organ system . sensory organ . eye . optic stalk . *optic nerve*

• In drosophila:

Iarva . larval organ system . larval nervous system . larval central nervous system . larval brain . medulla anlage . optic nerve

- Given
 - Mouse: 3559 anatomical parts
 - Drosophila: 506 anatomical parts
 - C. Elegans: 242 anatomical parts
- Can their terminologies and anatomical ontogolies suggest what parts may be similar (homologous)?

- Mouse tail to C. elegans tail
 - Same name, different function
- Mouse optic nerve to drosophila optic nerve
 - Same name, same function
 - The ontologies show different paths.
- The goal is to suggest the anatomical parts that maybe similar. Does language suggest similarity? What clues can we use?

A Related Problem

- In two different models of human anatomy, do parts with similar names always denote similar tissues?
- In GALEN:

Lobe of left lung

Maps in FMA to:

Upper Lobe of left lung Lower lobe of left lung

• Extrapolate from intra-human to inter-species comparisons.

XSPAN Project

Funded by BBSRC:

Heriot-Watt University School of Mathematical and Computer Sciences

University of Edinburgh

School of Biomedical Sciences School of Informatics

XSPAN

- A framework for recording expert knowledge about anatomy.
- A Web server with information about evolutionary, functional, developmental and cellular anatomy:
 - Homology relationships
 - Functional similarities
 - Lineage relationships
 - Cell types

XSPAN: Background

Examples of anatomical relationships between mouse and Drosophila

Current Species Comparisons

Example Ontologies: COBrA

Comparison Examples

Earlier I gave the impression that comparison between terms was based on a "short form." That is not exactly true. The short form needs to be understood in context.

mouse . embryo . organ system . sensory organ . ear . external ear . pinna . mesenchyme

mouse . embryo . organ system . visceral organs . alimentary system . gut . foregut . pharynx . associated mesenchyme

mouse . embryo . organ system . nervous system . central nervous system . brain . forebrain . telencephalon . corpus striatum . caudate nucleus . **head**

www.xspan.org

Comparison Motivation

- Two motivations for using more than the leaf label:
 - Context is important as terms are not uniquely denotated across the ontologies.
 - The important terms are spread across the labels of the path, they are not restricted to the leaf terms.
 - This reflects the choices biologists made in grouping and structure.

Lexical Analysis

- Normalize terms to limit the effect of different descriptive styles including dealing with American and English variants.
- Compare content words by removing stop words.
- Ensure comparable forms of words by stemming and lemmatizing.
- Results are then treated as an unordered set.

Lexical Analysis Examples

- Use example pairing for comparison:
 - 1) arch of aorta
 - 2) aortic sinus
 - 3) visceral muscle of larval heart
 - 1') arch aort
 - 2') aort sinu
 - 3') viscer muscl larval heart

Lexical Analysis Examples

mouse . embryo . organ system . cardiovascular system . heart . aortic sinus

drosophila . embryo . embryonic organ system . embryonic circulatory system . embryonic . larval dorsal vessel . embryonic . larval heart . visceral muscle of larval heart

- 1. Node comparison or leaf node in a tree. aortic sinus to visceral muscle of larval heart
- 2. Path-based comparison or sequence of node labels from root to leaf.

Methodology

- Tissue pairs assessed structurally.
- Use a similarity threshold to limit the number of results.
- Resultant pairs have one to many mappings:

EMAPA: 16039 EMAPA: 16039 EMAPA: 16039 EMAPA: 16069 EMAPA: 16103 FBbt: 00000052 FBbt: 0000111 FBbt: 00006005 FBbt: 00001056 FBbt: 0000125

Structural Analysis

- Evaluate structural similarity by taking the ontologies as graphs with directed but unlabeled edges.
 - First examine the intra-species relationships
 - Check to see if the relative positions are consistent between species.
 - There may not be evidence.

Structural Analysis

www.xspan.org

Bio-ontologies Workshop 2004

Results

- Node-based comparisons
 - Approximately 80% of lexical mappings have support from the ontology.
 - Less than 16% of proposed mappings have either no evidence for or against, or are contradictory across the three comparisons.
- Path-based comparisons
 - With lexical mappings at 75% similarity, the number of contradictory matches was reduced to zero.

Results

Pairwise Results

	C. elegans	2732
Mouse	79% positive	2121
	15% no evidence	358
	6% contradictory	254
	C. elegans	1625
Drosophia	C. elegans 82% positive	1625 1337
Drosophia	J	
Drosophia	82% positive	1337

Pairwise Results

Drosophila

Mouse

78% positive	2121
13% no evidence	358
9% contradictory	254

2732

Examples of anatomical relationships between mouse and Drosophila

www.xspan.org

Bio-ontologies Workshop 2004

Future Work

Average path length in nodes

Mouse	7.9
Drosophila	6.4
C. elegans	6.0

Weighting paths helps normalize specificity.

Future Work

mouse . organ systems . circulatory system . heart . valve muscle124816

The last term is weighted more than all prior terms combined. This filters out the "garbage" when comparing similar root-to-leaf paths with vastly different levels of specificity.

drosophila . organ system . upper torso . circulatory system .1248valve network . heart . valves . valve muscles163264128

Future Work

- Augment the three m.o. datasets with synonyms and abbreviations.
 - Some are provided in the anatomies, but not systematically or consistently
 - Introduce synonyms from an anatomical reference.
- Establish the effect of additional information on previous results.

References

- Aitken, J.S., B.L. Webber and J.B.L. Bard. Partof Relations in Anatomical Ontologies: A Proposal for RDFS and OWL Formalisations. *Proc PSB 04*, 9:166-177(2004)
- Zhang, S., and O. Bodenreider. Investigating Implicit Knowledge in Ontologies with Application to the Anatomical Domain. *Proc PSB 04*, 9:250-261(2004)
- Zhang, S., P. Mork and O. Bodenreider. Lessons Learned from Aligning Two Representations of Anatomy. To be published in KR-MED 2004.