Cross-species Mapping between Anatomical Ontologies: Terminological and Structural Support

by
Sarah Luger, Stuart Aitken & Bonnie Webber
sluger@inf.ed.ac.uk, stuart@aiai.ed.ac.uk, bonnie@inf.ed.ac.uk
XSPAN/University of Edinburgh
A Mapping Problem

- Mouse Tail
A Mapping Problem

- C. Elegans Tail
A Mapping Problem

• In mouse:
 embryo . organ system . sensory organ . eye . optic stalk . optic nerve

• In drosophila:
 larva . larval organ system . larval nervous system . larval central nervous system . larval brain . medulla anlage . optic nerve
A Mapping Problem

• Given
 – Mouse: 3559 anatomical parts
 – Drosophila: 506 anatomical parts
 – C. Elegans: 242 anatomical parts

• Can their terminologies and anatomical ontologies suggest what parts may be similar (homologous)?
A Mapping Problem

• Mouse tail to C. elegans tail
 – Same name, different function

• Mouse optic nerve to drosophila optic nerve
 – Same name, same function
 – The ontologies show different paths.

• The goal is to suggest the anatomical parts that maybe similar. Does language suggest similarity? What clues can we use?
A Related Problem

• In two different models of human anatomy, do parts with similar names always denote similar tissues?

• In GALEN:

 Lobe of left lung

 Maps in FMA to:

 Upper Lobe of left lung
 Lower lobe of left lung

• Extrapolate from intra-human to inter-species comparisons.
XSPAN

• A framework for recording expert knowledge about anatomy.

• A Web server with information about evolutionary, functional, developmental and cellular anatomy:
 – Homology relationships
 – Functional similarities
 – Lineage relationships
 – Cell types
XSPAN: Background

Cell Type: Mouse and Drosophila eyes both have photoreceptors

Analogy: Mouse and Drosophila limbs have a common function

Homology (common lineage): Mouse epidermis and Drosophila cuticle are both ectoderm derivatives and bounding epithelia

Examples of anatomical relationships between mouse and Drosophila
Current Species Comparisons
Example Ontologies: COBrA
Comparison Examples

Earlier I gave the impression that comparison between terms was based on a “short form.” That is not exactly true. The short form needs to be understood in context.

mouse . embryo . organ system . sensory organ . ear . external ear . pinna . **mesenchyme**

mouse . embryo . organ system . visceral organs . alimentary system . gut . foregut . pharynx . associ**ated mesenchyme**

mouse . embryo . organ system . nervous system . central nervous system . brain . forebrain . telencephalon . corpus striatum . caudate nucleus . head
Comparison Motivation

- Two motivations for using more than the leaf label:
 - Context is important as terms are not uniquely denotated across the ontologies.
 - The important terms are spread across the labels of the path, they are not restricted to the leaf terms.
- This reflects the choices biologists made in grouping and structure.
Lexical Analysis

• Normalize terms to limit the effect of different descriptive styles including dealing with American and English variants.
• Compare content words by removing stop words.
• Ensure comparable forms of words by stemming and lemmatizing.
• Results are then treated as an unordered set.
Lexical Analysis Examples

• Use example pairing for comparison:

 1) arch of aorta
 2) aortic sinus
 3) visceral muscle of larval heart

 1’) arch aort
 2’) aort sinu
 3’) viscer muscl larval heart
Lexical Analysis Examples

mouse . embryo . organ system . cardiovascular system . heart . aortic sinus

drosophila . embryo . embryonic organ system . embryonic circulatory system . embryonic . larval dorsal vessel . embryonic . larval heart . visceral muscle of larval heart

1. *Node* comparison or leaf node in a tree.
 aortic sinus to visceral muscle of larval heart

2. *Path-based* comparison or sequence of node labels from root to leaf.
Methodology

• Tissue pairs assessed structurally.
• Use a similarity threshold to limit the number of results.
• Resultant pairs have one to many mappings:

 EMAPA: 16039 | FBbt: 00000052
 EMAPA: 16039 | FBbt: 0000111
 EMAPA: 16039 | FBbt: 00006005
 EMAPA: 16069 | FBbt: 00001056
 EMAPA: 16103 | FBbt: 0000125
Structural Analysis

• Evaluate structural similarity by taking the ontologies as graphs with directed but unlabeled edges.
 – First examine the intra-species relationships
 – Check to see if the relative positions are consistent between species.
 – There may not be evidence.
Structural Analysis

A valid mapping:
the A-C/A'-C' relationships are preserved

An invalid mapping:
the B-D/B'-D' relationships are not preserved
Results

• Node-based comparisons
 – Approximately 80% of lexical mappings have support from the ontology.
 – Less than 16% of proposed mappings have either no evidence for or against, or are contradictory across the three comparisons.

• Path-based comparisons
 – With lexical mappings at 75% similarity, the number of contradictory matches was reduced to zero.
Results
Pairwise Results

<table>
<thead>
<tr>
<th></th>
<th>C. elegans</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>2732</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>79% positive</td>
<td>2121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15% no evidence</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6% contradictory</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>Drosophia</td>
<td>1625</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>82% positive</td>
<td>1337</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2% no evidence</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16% contradictory</td>
<td>256</td>
<td></td>
</tr>
</tbody>
</table>
Pairwise Results

<table>
<thead>
<tr>
<th></th>
<th>Drosophila</th>
<th>Mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>78% positive</td>
<td>2732</td>
<td>2121</td>
</tr>
<tr>
<td>13% no evidence</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>9% contradictory</td>
<td>254</td>
<td></td>
</tr>
</tbody>
</table>

Examples of anatomical relationships between mouse and Drosophila

- **Cell Type**: Mouse and Drosophila eyes both have photoreceptors.
- **Analogy**: Mouse and Drosophila limbs have a common function.
- **Homology (common lineage)**: Mouse epidermis and Drosophila cuticle are both ectoderm derivatives and bounding epithelia.
Future Work

Average path length in nodes

Mouse 7.9
Drosophila 6.4
C. elegans 6.0

Weighting paths helps normalize specificity.
Future Work

mouse . organ systems . circulatory system . heart . valve muscle
1 2 4 8 16

The last term is weighted more than all prior terms combined. This filters out the “garbage” when comparing similar root-to-leaf paths with vastly different levels of specificity.

drosophila . organ system . upper torso . circulatory system .
1 2 4 8
valve network . heart . valves . valve muscles
16 32 64 128
Future Work

• Augment the three m.o. datasets with synonyms and abbreviations.
 – Some are provided in the anatomies, but not systematically or consistently
 – Introduce synonyms from an anatomical reference.

• Establish the effect of additional information on previous results.
References

