<table>
<thead>
<tr>
<th>Course Code:</th>
<th>F29AI</th>
<th>Course Title:</th>
<th>Artificial Intelligence and Intelligent Agents</th>
<th>Course Co-ordinator:</th>
<th>Verena Rieser/Patricia Vargas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-requisites:</td>
<td>Elementary knowledge of logic at the level of undergraduate Computer Science. Knowledge of high-level programming language concepts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Aims:** | ♦ To introduce the fundamental concepts and techniques of AI, including planning, search and knowledge representation
♦ To introduce the scope, subfields and applications of AI, topics to be taken from a list including natural language processing, expert systems, robots and autonomous agents, machine learning and neural networks, and vision.
♦ To develop skills in AI programming in an appropriate language |
| **Syllabus:** | ♦ Search algorithms (depth first search, breadth first search, uniform cost search, A* search)
♦ constraint satisfaction problems;
♦ games (min-max, alpha-beta pruning);
♦ logic, resolution, introductory logic programming
♦ knowledge representation – logic, rules, frames
♦ goal and data-driven reasoning
♦ practical rule-based programming
♦ Overview of main fields of AI (Vision, Learning, Knowledge Engineering)
♦ In depth view of one field of AI (e.g. Planning, Natural language)
♦ Autonomous agents
♦ Applications of AI
♦ AI programming |
| **Learning Outcomes:** | |
| **Subject Mastery** | Understanding, Knowledge and Subject-Specific Skills
♦ Critical understanding of traditional AI problem solving and knowledge representation methods
♦ Use of knowledge representation techniques (such as predicate logic and frames).
♦ Critical understanding of different systematic and heuristic search techniques
♦ Practice in expressing problems in terms of state-space search
♦ Broad knowledge and understanding of the subfields and applications of AI, such as computer vision, machine learning and expert systems.
♦ Detailed knowledge of one subfield of AI (e.g. natural language processing, planning) and ability to apply its formalisms and representations to small problems
♦ Detailed understanding of different approaches to autonomous agent and robot architectures, and the ability to critically evaluate their advantages and disadvantages in different contexts.
♦ Practice in the implementation of simple AI systems using a suitable language |
| **Learning Outcomes:** | Cognitive skills, Core skills and Professional Awareness
♦ Identification, representation and solution of problems
♦ Time management and resource organization
♦ Research skills and report writing
♦ Practice in the use of ICT, numeracy and presentation skills. |
| **Assessment Methods:** | Assessment: Examination: (weighting – 100%)
Re-assessment: Examination: (weighting – 100%) |