1. Course Code: F21SA
2. Course Title: Statistical Modelling and Analysis
3. SCQF Level: 11
4. Credits: 15
5. School: Mathematical & Computer Sciences
6. Course Co-ordinator: Alasdair Gray
7. Delivery: Location & Semester
 - Edin: Sem 1
 - SBC: Sem……
 - Orkney: Sem……...
 - Dubai: Sem 1..
 - IDL: Sem…
 - Collaborative Partner: Name…………………….Sem……
 - Approved Learning Partner: Name …………………………………Sem………
8. Pre-requisites: Basic probability
9. Linked Courses (specify if synoptic): None
10. Excluded Courses: None
11. Replacement Courses
 - Code:
 - Date Of Replacement:
 - Degrees for which this is a core course: PGT Computer Science Programmes
12. The course may be delivered to: UG only ☐ PG only ☒ UG & PG ☒
13. Available as an Elective?: Yes ☐ No ☒
14. Aims
 The aim of this course is to impart a range of Statistical Modelling and Analysis techniques for data analysis and demonstrate their practical application.
15. Syllabus
 - Basic probability concepts: Random variables and their distributions; how distributions relate to sampling scenarios.
 - Joint distributions, Sums of random variables, Central limit theorems
 - Classical inference: Point estimation, moment estimators and maximum likelihood; Confidence intervals – calculation and interpretation; Hypothesis testing and p-values
 - Essentials of Bayesian inference: Priors and posteriors; Credible intervals; Predictive distributions
 - Modelling approaches: Regression and ANOVA; Generalised linear models; Time series models
 - Multivariate exploratory techniques: Principal Components Analysis + Factor Analysis; Introduction to non-parametric methods + randomisation tests
 - Experimental design
 - Practical elements using R or Python
17. Learning Outcomes (HWU Core Skills: Employability and Professional Career Readiness)

Subject Mastery

- Understanding, Knowledge and Cognitive Skills
 - Detailed and critical understanding of the concepts, issues, principles and theories of statistical modelling and analysis
 - Critical theoretical and detailed practical knowledge of statistical modelling and analysis techniques
 - Practical professional experience of analysing, designing, implementing and validating experiments using common statistical techniques.

Scholarship, Enquiry and Research (Research-Informed Learning)

Personal Abilities

- Industrial, Commercial & Professional Practice
- Autonomy, Accountability & Working with Others
- Communication, Numeracy & ICT
 - Ability to deal with complex issues and make informed professional judgements about statistical models and analysis
 - Exercise substantial autonomy and initiative in performing data analysis.
 - Showing initiative and good professional team working skills in shared data analysis. (PDP)
 - Demonstrate critical reflection on statistical modelling and analysis issues. (PDP)

18. Assessment Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Duration of Exam (if applicable)</th>
<th>Weighting (%)</th>
<th>Synoptic courses?</th>
<th>Method</th>
<th>Duration of Exam (if applicable)</th>
<th>Diet(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>2 hours</td>
<td>70%</td>
<td></td>
<td>Exam</td>
<td>2 hours</td>
<td>3</td>
</tr>
<tr>
<td>Coursework</td>
<td></td>
<td>30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19. Re-assessment Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Duration of Exam (if applicable)</th>
<th>Diet(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>2 hours</td>
<td>3</td>
</tr>
<tr>
<td>Coursework</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20. Date and Version

<table>
<thead>
<tr>
<th>Date of Proposal</th>
<th>Date of Approval by School Committee</th>
<th>Date of Implementation</th>
<th>Date of Implementation</th>
<th>Version Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2017</td>
<td>September 2017</td>
<td>September 2017</td>
<td>September 2018</td>
<td>1.0</td>
</tr>
</tbody>
</table>