Effective Communication of Scenarios of Usage
[image: image1.jpg]Lustitute of
Software
Crgineering

A HWISE Technical Report

from the OPHELIA

(Open Platform and Methodologies for Development Tools

Integration in a Distributed Environment)

Project

IST-2000-28402 and IST-2000-28402D

September 2003

Pauline Wilcox

paw@macs.hw.ac.uk

School of Mathematical and Computer Sciences

Heriot-Watt University

http://www.macs.hw.ac.uk/hwise/

http://www.macs.hw.ac.uk/ophelia/

Effective Communication of Scenarios of Usage

Pauline A. Wilcox

(P.A.Wilcox@hw.ac.uk)

Department of Computer Science

School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh, UK

A project may have a detailed and comprehensive set of requirements, but you may still be left asking “what is this project really all about?” or more specifically “what is the problem that we are trying to solve?”. This is exactly the situation we found ourselves in during a recent distributed software development project. This article discusses the importance of scenarios of usage in regaining a focus for the project. It reflects on the need for effective communication of such scenarios and, based on our experiences, recommendations for best practice in applying the UML.

Identifying and understanding scenarios of usage is key to the successful design and development of information systems. This article describes our experiences of using the UML use case and activity diagrams to document scenarios of usage in the context of a distributed software engineering project, where the project partners are spread throughout Europe. Interestingly, the project is itself about developing an infrastructure to facilitate the interoperation of tools to support distributed software development. The following sections introduce the project and the difficulties encountered which lead us to examine key scenarios of usage. The approach to using UML to communicate user scenarios is illustrated, as well as a number of pitfalls that we encountered. Towards the end of the article we wrap things up by suggesting a best practice for communicating scenarios of usage on future projects.

Background to the project

The majority of system modellers and software developers would tend to agree that distributed software development is complex. The complexity increases with the number of partners you have in a project, and the range of geography and culture that separates them. The OPHELIA (Open Platform and meTHodologies for deVELopment tools and IntegrAtion in a distributed environment) project is a European Union funded initiative that aims to develop a platform to support software engineering in a distributed environment. The project is currently midway, with completion due at the end of September 2003. The project involves the design and implementation of an infrastructure to support the plugin of commercial and open source tools, and the ways in which these tools can interact through a common interface. As a software development project this was an interesting exercise, since there was no single customer to whom we were answerable. The project involves partners in six different geographical locations; Spain, Italy, Czech Republic, Poland, Germany and the United Kingdom. The OPHELIA project then presents us with the difficulties that the project aims to address i.e. how can people so geographically spread work in a productive manner.

The project work is divided into a number of workpackages, for example we have a modelling module, a metrics module, a requirements module etc. Each of these workpackages represents a typical category of tool that we would want to plug into the distributed architecture. Two partner organizations in the project represent our customer base, and they were responsible for developing a set of requirements - which all other partners have contributed to. A key component of the infrastructure is the support for traceability of objects across tools supported within the OPHELIA framework. This represents the added value of linking a number of tools into OPHELIA.

As fascinating as the OPHELIA project is, this article is not about the project itself. This article is about our experiences in this project, and how the identification and communication of scenarios of usage helped keep a sight on our goal – and how we achieved this through UML. However, this has presented a little bit of background and scene setting is important so that you can follow the thread of our story ...

How scenarios of usage help

A key contribution to the success of such a project is the early identification of scenarios of usage. We suffered confusion in our project because we failed to do this. We took it for granted that we understood the problem that we were all trying to address, because we all know that distributed software development is difficult - don’t we? We realized that, as interesting as the series of requirements was, it was not helping the distributed project team focus on the problem with distributed software development that we were trying to address.

Before we carry on into the examples, it is perhaps helpful to recap what we mean by a scenario of usage (a.k.a. user scenario). A scenario describes a particular user getting something useful done. Scenarios are typically linked to use case modelling, where a use case is a set of similar scenarios all with the same type of user and all ending when the user finds out that the process is complete. The user must begin a use case and must know when it is complete. The user is an active entity (represented in the use case diagram as an actor) and communicates with the system to achieve the goal of the use case. User scenarios are not just a series of requirements – though there should ideally be some mapping between user scenarios and the eventual set of requirements!

Identifying scenarios of usage are important to the requirements capture process and to the project as a whole. It’s about giving people a focus – especially in a large project such as OPHELIA. It is easy to loose the plot of what we are trying to do once we become embroiled in a range of technical issues, requirements and related discussions.

While it is common to think of user scenarios at the use case level, there is a more abstract level that can really help us find common ground. In her paper, Ending Requirements Chaos, Susan August talks about the importance of the day in the life system context use case. The view we are taking here mirrors Susan’s view that the scenario of usage is a high level usage story that can help us to clarify and evaluate both the problem and the solution. In the case of the OPHELIA project, we wanted to identify scenarios that clearly represented the problem that the project was trying to address. We could then identify a further scenario of usage that represented how our software infrastructure and nominal tool set would address these problems and benefit the user generally. It was vital therefore that we could clearly identify a before and an after image.

Applying the UML

We made use of the following UML notations/diagrams to structure and present the scenarios of usage:

1) Packages – these were used to identify different groups of scenarios. The example described here comes under the package of Modelling [better to describe as Developer package?] as it originated from our experiences working on the modelling module of the OPHELIA project.

2) Use Case diagrams – these were used to show the high level picture to give the scope of the problem and the key actors involved/affected.

3) Activity Diagrams – these were used to document the actual scenarios of usage.

We also experimented using the interaction diagrams, specifically the sequence diagrams. Our experience was that the activity diagram offers more flexibility, especially allowing clear identification of alternative paths through decision points. A further difficulty with interaction diagrams is the need to identify objects that interact - these can often be at such an abstract/artificial level that they are not entirely helpful and can confuse people.

Example scenario of usage

The scenario of usage that we are going to present and discuss here concerns our experiences working on the modelling module. These scenarios were documented within the Modelling package within Rational Rose. Our work on the OPHELIA project makes use of two different CASE tools; Rational Rose and argoUML. Rational Rose was chosen to document the scenarios of usage work, specifically for its ability to handle activity diagrams well and also web publish the resulting model. We’ll return to the benefits of web publishing later on.

We (the project team) were the perfect model users of the OPHELIA software environment being proposed – since we were developing software through the contribution of distributed groups. A key scenario we identified was therefore from our own experiences, i.e. what was the key difficulty we were experiencing as a development team on the modelling module. The outline scenario description shown in figure 1 was identified. The implementation work is split between development teams in different countries. The work of one group of developers can impact on the work of another developer, for example changing module interfaces, so developers need to know when a change has being made. In an ideal situation, the developers should know ahead of a change being made such that the implications of the proposed change can be properly assessed. However, problems occur because people are people, and the ideal situation does not always occur for many more reasons than we can go into here. Note that whilst our original scenario named names, we consider it more appropriate here to generalize to DeveloperA and DeveloperB!

Figure 1: Outline scenario description

Use Case Diagrams

The use case diagram provided the initial focus to discuss the scope of the scenario. This helped by identifying the key participants as actors, and provided a focus to express what we were actually doing. This scoped the scenario, which in turn would help us to identify the hotspots. A series of use case diagrams were developed. Each iteration represented a more focussed view of the problem area. The first illustration is shown in figure 2. The diagram most closely represents the scenario described in steps 1 through 7 above.

[image: image2.jpg]-

Read Documentation

O White/Edit Documentation
‘Attend Meeting O\

Read Ema\\

N —
NS O

Pilot Implementation

Developer

MakefAnswer Phone Call

€

Investigate Technology

-

Build System

-

Wite/Edit Cade

DrawiEdit UML
Test Pvngvammes

Cormmit Change

Figure 2: Initial use case diagram

There are a number of comments that we made with regard to the diagram in figure 2. The graphic representation helped to stimulate discussion to ensure we shared a common view. It allowed people to check their own mental model of activities involved, in a way that a text description cannot so readily achieve. The diagram in figure 2 paints a detailed picture of the problem scope, but it is almost too detailed. This was helpful in that it stimulated discussion, but if you put too much detail in then it becomes difficult to generalize and identify the key problem. The diagram in figure 2 is almost down to task level. The actors represent the developers that we identified in our scenario description, but this does not entirely highlight the differing roles. As professional modelers and software developers it is important to practice what we preach, and not to become too focussed on fascinating levels of detail that are not relevant to the job in hand. The diagram in figure 2 was subsequently revised leading to the use case diagram in figure 3.

[image: image3.jpg]O CORBA IDL Madffcation
?Q\/\nvesngam Impact \?Q\

R’eacmv Instigator

Dialogue Exchange

O Code Madification

Update Documentation (inc UML)

Figure 3: Revised use case diagram

This modified diagram represents an abstraction from the detail in figure 2 to identify the higher level problem. A key point being the Dialogue Exchange use case in figure 3, which has basically subsumed the detail of the first diagram which reflected various mechanisms for exchange. The diagram in figure 3 also shows revised names for the actors to reflect that there was a distinction between the one instigating the change and the person having to react to the change. The revised diagram also identified different types of modification more clearly, for example CORBA IDL Modification, Code Modification, and Update Documentation. We latterly decided that this level of detail was not relevant, leading to the third and final iteration shown in figure 4. At this point we could agree that we had scoped the actors involved and the things that we were interested in.

[image: image4.jpg]52\ Investigate Impact ?Q\

R’ea:tnv

\nsﬂgamv

Moification (cm or
docunentation)

<@

Dialogue Exchange

Figure 4: Final use case diagram

Our aim in documenting the particular scenario of usage was to show the before and after image. By this we mean clearly showing the problem with the current way of working, and then to show how the use of the OPHELIA environment would mitigate this particular problem. In this particular scenario we therefore focussed on expressing the problems with the current inter-working of developers, and then to show how this problem would be resolved with the introduction of the traceability functionality afforded by the OPHELIA environment. This we achieve through the use of activity diagrams as we will show through the following section.

Activity Diagrams

The use case diagrams had proved useful in order to clarify the problem scope. We then introduced a series of activity diagrams to clarify the detail of the problem. The initial diagram, detailing the problem, is shown in figure 5 with swimlanes being used to identify the activities of the Instigator and Reactor. This initial diagram shows the problems of making code changes that can impact other developers. The main problem in this scenario that we began to identify is the activity called Choose/Remember to notify which lies in the Instigator domain. At the outcome of this activity there is a decision point shown, which clearly identifies a problem in that the notification of changes is by no means certain. Developers have to make a conscious decision about notifying other developers in the project – they may choose not to or forget to send such notification for a range of reasons. While we are not going to go into that in the scope of this article, it is important to recognize this is a weakness in the development process. This results in delays and difficulties in subsequent developments if other developers are left to discover that changes have been made to code that affect their own parts of the system.

Note that many other activities in figure 5, whilst relevant/interesting in the whole, are not particularly helpful in emphasizing the communication difficulties. As an example, consider the activities in the Reactor swimlane where we were trying to illustrate the potential parallel activities showing the Write/Edit code and Update UML models. We became distracted trying to indicate that new code might need writing, as well as modifying existing code, as well as capturing subsequent test activities. Whilst these activities are important in measuring the impact of changes, they are not entirely relevant for defining the communication problem between developers. We concluded that this level of detail was not helpful, and did not reflect the key problem that we were experiencing. The next iteration of activity diagram in figure 6 takes this into account and presents a much simpler picture.

[image: image5.jpg]Reactor

Instigator

ke
modiizaton

Thoces Tremember
o it

ool

oo actionreq) Y. feqre dilogue]

Ergage er
g

lmodiicaton rsa)

Fecave Er)
Notfaton mai
= Toovar
impact change

Ergage e
i

Fevaree

WRATER codl G
Checkoua if reuired)

Tpése L
modls
Tpe Tort
Detumentation
o
Changez o v

Changes

Figure 5: Initial activity diagram describing problem

Figure 6 focuses more on the key problem activities rather than trying to build unhelpful detail into the model. The revised activity diagram is cleaner and avoids unnecessary distractions in the scenario, allowing us to remain focussed on what is important. The revised diagram in figure 6 provides a straightforward simplification of the Reactor swimlane with all detail of modifications to code and documentation hidden away inside a single activity.

The revised diagram also highlights the circular nature of the problem, in that the activities of a Reactor may turn a developer into an Instigator, thus triggering further changes. At this point we considered that the activity diagram in figure 6 clearly identified the problem that we were experiencing as developers. Our next task was to examine how the OPHELIA framework would modify our development capabilities and help to resolve this problem.

[image: image6.jpg]Reactor Instigator

?

Wiake Wiodieations (Eode and
documentation

Chooss /remembar

o not

Fecee Sand Noteation " _lres)
Noiisation (emairy)

Sudases Discaver

impact change

o seton rea] require dislogus]

ool

Engage in futher
dislogue

Engage in fuher
distogque

[moditcation req]
fotol

)

reverse]

Teverss
Changes

Wiake Wiodeations (Eode and
documentation)

Tommit
Changesto cvs

Figure 6: Revised activity diagram defining the problem

A modified activity diagram was now developed to show the same scenario of usage to that in figure 6, but in the OPHELIA environment. The key point was to show impact of the proposed traceability module. The traceability module aims to allow users (developers, project managers, analysts etc.) to register interest in objects within a given project. A key benefit of having such traces is that notifications can be sent automatically when a change occurs. In such an environment there is now no option involved - the Reactor will find out about the modification directly irrespective of the Instigators wishes.

Note that this is no silver bullet solution. It does not in itself stop a developer making changes to areas of code. This was not in itself our main concern – the concern we captured in the activity diagram in figure 6 was that such changes could go unnoticed until they cause a problem.

The mechanism of registering for notifications is outside the scope of this diagram and the scenario we were trying to communicate to our fellow developers. Our focus was to show the resulting consequences i.e. focussing on what behaviour was desirable rather than the implementation or how level of detail.

[image: image7.jpg]Reactor Traceability Module Instigator

:

Wiake Wiadieatians (Eode and
documentation)

Tommit
Changesto cvs

D oty Feered
otifpaion e
==
s
o0 acton req) X_lieauite didloauel _Erpage i uer BT
o S St

[moditcation rea)

fotol

o
1949 [reverse]

Teverms
Changes

Wiake Wiodeations (Eode and
documentation)

Tommit
Changesto cvs

Figure 7: Activity diagram showing problem solution

Summary of issues

The following is a summary of issues from our experiences:

Layout – the physical layout can aid or detract from the diagrams ability to communicate. For example, consider the activity diagram in figure 7 where there is a synchronization bar shown across the Traceability Module swimlane. Strictly speaking it is nothing to do with the Traceability Module – the synchronization is between the Instigator and Reactor swimlanes. We could take the time to rearrange and reorder the swimlanes, but at the same time there is perhaps benefit is seeing this new swimlane placed between the Instigator and Reactor giving the visual impression of a mediator. The layout of the diagram has to be a compromise at the end of the day.

Level of detail - As with any modelling exercise, it is important to use an appropriate level of detail in the model. Identify what you need to focus on, and don’t overwhelm people with unnecessary detail.

Physical size – the resulting physical size of the diagram can become a problem in presenting it to people. For example, consider the difficulties in presenting large diagrams in text documents that are limited to A4, as most documents are. Scroll bars can help when looking at such models on the screen, but this only helps up to a certain diagram size before people find it difficult to see the whole.

Communication – this concerns the physical medium used to present diagrams to other people (for example, other project team members). If you have spent considerable time documenting diagrams in a tool such as Rational Rose, do you really want to spend time then reproducing information in a Word document? It is important to think how you expect to communicate information between people. A recommendation from our experience is to consider the benefits of web publishing the models as it makes use of material already keyed into a modelling tool. This is particularly beneficial where, as in our example, the people who are communicating the scenarios of usage are all members of the project team and therefore of a comparable technical skill level and familiar with navigating round tools and the Internet. However, with a little more instruction and detailed documentation the technology could also be used to communicate model information with people who are less technically skilled or conversant in UML.

Geographically and culturally separate groups – such project working is always going to be complex. In such projects an element of well placed and carefully crafted UML can help significantly – remember that old adage about a picture can replace a thousand words? In projects where language may be an additional barrier to communication the use of diagrams is even more important.

Different levels of experience with UML – this again concerns the use of an appropriate level of UML and endeavor to keep it simple. Our view is that the resulting scenarios of usage should be kept simple – the diagrams should be fairly intuitive and avoidance of dressing up the notation.

Best Practice

The following are our top ten tips that we would recommend for other projects to consider regarding scenarios of usage and application of the UML:

1. Start to identify scenarios of usage early in project. There is often still so much focus on technology that the project team may forget what the problem is that they are trying to resolve (especially in a project such as ours)

2. Identify key scenarios of usage rather than trying to identify them all – again information overload does not help to support project team focus.

3. Base on iterations. Accept that the appropriate level of detail will be developed through a series of iterations

4. Experiment early on with notation. Identify the level of UML experience of team, and how this might influence the range and scope of notation that may be appropriate – or additional training that the project members may require.

5. Be aware of implications of layout of diagrams – extra information may be implied intentionally or otherwise!

6. Make use of web publishing facilities to communicate scenarios of usage (and other model elements)

7. Be aware of compromises made in the model development when addressing clarity of presentation issues i.e. compromises made to keep the diagram streamlined and of an acceptable physical size.

References

Catherine Conner and Leonard Callejo, Requirements Management Practices for Developers, Rational Edge, July 2002, http://www.therationaledge.com/content/jul_02/m_requirementsManagement_cc.jsp
Susan August, Ending Requirements Chaos, Rational Edge, August 2002, http://www.therationaledge.com/content/aug_02/m_endingChaos_sa.jsp
This work was funded by the OPHELIA (Open Platform and meTHodologies for deVELopment tools and IntegrAtion in a distributed environment) project (IST-2000-28402-2000-20002). Further information about this project can be found through the following resources and publications:

Pauline Wilcox, Michael Smith, Alan Smith, Rob Pooley, Lachlan MacKinnon and Rick Dewar, OPHELIA: An architecture to facilitate software engineering in a distributed environment, 15th International Conference on Software and Systems Engineering and their Applications (ICSSEA), December 3-5, Paris, France 2002.

Rick Dewar, Lachlan MacKinnon, Rob Pooley, Alan Smith, Michael Smith and Pauline Wilcox, The OPHELIA Project: Supporting Software Development in a Distributed Environment, IADIS WWW/Internet 2002, 13-15 September 2002

Official OPHELIA Project Web site http://dev.omega-sistemi.it/
Heriot-Watt OPHELIA web site http://www.macs.hw.ac.uk/ophelia/
The web published scenarios of usage (including the Modelling example discussed in this article and others) can be found at the following location: http://www.macs.hw.ac.uk/~paw/ScenariosOfUsage/
DeveloperA makes a change to some code

DeveloperA then enters a dialogue with DeveloperB to notify of proposed change.

DeveloperB investigates impact of change

DeveloperA and DeveloperB may have further dialogue to clarify issues

If DeveloperB agrees to go ahead with change, the associated code and code documentation will be modified. This concerns modifying, testing and finally committing changes back into CVS

DeveloperB has final task to update associated modelling documentation, including text and related UML diagrams (if appropriate)

If DeveloperB disagrees, then DeveloperA may be forced to undo the changes (if the developers cannot agree amongst themselves, then the problem may be escalated).

©
 Copyright 2003 Heriot-Watt Institute for Software Engineering

