
Managing Software Engineering Artefact Metadata

R.G.Dewar

Department of Computer Science, Heriot-Watt University, Edinburgh, UK

rick@macs.hw.ac.uk

Abstract. This article describes a proposed P2P-based environment called
SESAME to manage semantically enhanced artefacts from the software
engineering domain. We argue that such artefacts, for instance code, models
and documents, are not currently semantically enhanced (a state we call
premantic) and that there are few tools that could manage and use such
metadata to derive some added value for searching, sharing and
organisation. Yet, semantic-based services can aid resource discovery and
provide advanced information management. These services depend on the
quality of metadata extracted, however, to manually provide this metadata is
an expensive process. Current tools that automatically acquire, process and
relate semantics to content are limited. Therefore, the SESAME project will
develop an open architecture and toolset to manage the elicitation and
configuration of artefact semantics; specifically in the domain of software
engineering.

1 Introduction
With software processes becoming increasingly complex, there is a greater demand for tool support
throughout the software-lifecycle. All software tools, regardless of their use, produce software
artefacts and for combinations of tools to be truly effective, they must work together [2]. However,
toolsets can be diverse and, despite almost two decades of research and practice after Wasserman’s
seminal work, their integration is currently piecemeal at best [18]. Tools often produce artefacts in
proprietary formats, which further restrict intercommunication.

Content-specific metadata presents additional benefits in an open software development
environment. Semantically enabled services could use information regarding artefact quality,
ownership and purpose to assist artefact management and maintenance, re-use decisions, plagiarism
and searching within a complex component-based or model-driven information space. Additionally,
traceable relationships that define connections between artefacts could be established to group and
organise complex software projects using semantics.

However, a large number of software artefacts are not currently semantically enhanced; here we call
their impoverished state premantic. And the semantic payloads of these artefacts possess
considerable untapped resources that could benefit the software engineering process. Ontology exist
that describe certain content, but currently tool support for using these ontology to create semantic
descriptions is limited. There are also few tools that manage and use semantically enhanced content
to derive some added value; for instance searching, sharing and linking.

In addition, software engineering tools and frameworks have often been criticised for being too
tightly coupled to other components and the data. This coupling has resulted in an unacceptable
implementation overhead and lack of flexibility; in turn these problems have reduced take up and
impact. P2P technology offers lose coupling between artefacts, metadata and tools, but has not been
fully exploited in this domain as yet.

We begin this article by considering background issues relevant to our arguments, before we
present a motivating scenario and then go on to describe the proposed architecture for SESAME

(Software Engineering Artefact Management Environment) – not to be confused with the
TripleStore RDF Database of the same name [22].

2 Background

2.1 Integration in Software Engineering

Web-integrators such as SourceForge [3] provide a comprehensive software development
environment for collaborative efforts in an Internet environment. Such environments offer useful
functionalities such as CVS, project administration, document management, mailing lists, bug
tracking and file publishing. Nonetheless, although popular, these closed environments do not
provide semantic enhancements to artefacts or extensibility for users or their communities.

The rise and rise of Eclipse [4] as “a kind of universal tool platform” has seen the possibility of
platform extensibility through its plug-in capabilities. Furthermore, distributed collaboration is
commonly achieved through the use of Eclipse and the CVS repositories of SourceForge. However,
such integration still currently lacks semantic enhancement. In other words, artefacts are
predominantly premantic; save for the occasional natural language descriptions added to CVS
version tags.

Of course, studies that look at the semantics of software engineering artefacts are not new. Cattaneo
et al. [5] consider the creation and management of the semantics of documents associated with
software engineering projects. They also address issues of notification and consistency, but the
approach does not consider the possibility of automatic generation of meta-data and relationships
and omits any notion of standard ontology for the domain. Similarly, Olsen and Grundy [6] stop
short of automation and ontology.

On the other hand, Sherba and Anderson [7] do explore the possibility of generating relationships
by programmatically extracting and linking common terms (e.g. method names) from different
artefacts.

2.2 Ontology-Based Software Development Environments

Having noted the omission of ontological consideration in some earlier work, we are now beginning
to see some efforts in this area.

For instance, Falbo et al. [8] are working towards an Ontology-based software Development
Environment (ODE), comparable to a Semantic Web, where software engineering knowledge is
organised and accessible to developers and tools. They concentrate on exploiting metadata for
domain engineering but currently lack tool support for automated semantic creation and
management.

Furthermore, the W3C’s Software Engineering Task Force [9] have stated their intent to evaluate
ideas for Ontology Driven Architectures (ODAs). To this end, recent work by Knublauch [10] has
focused on an ODA for Web services and agents for the semantic Web. Here the ontology do not
describe software engineering artefacts; the example scenario in the paper uses the tourism domain.
However, the work shows that software architectures can be influenced during their development
(not just at run time) by an extant explicit ontology. Similarly, Oberle et al. [11] have considered the
impact of ontology on application servers. They have implemented a hierarchy of ontology where
the most abstract describe software components, which are then specialised by a profile of that
component and its API. The hierarchy then specialises down to a specific domain ontology. This
ontological hierarchy, Oberle et al. argue, simplifies the development and maintenance of software
components.

2.3 Metadata Modelling, Generation and Management

It is interesting to note, we could consider the UML [12] as an ontology language where the class
diagram might be employed to model the domain; particularly when it is used with OCL. Currently

the OMG have a live request for proposals to map the UML and OWL [13]. As such, the UML may
yet prove to be the ontology language of choice for software engineering since it is already well
know by domain experts. However, the richness and power of OWL would be a more conventional
choice at this stage. For this reason, there has been a Request For Proposal concerning the Ontology
Definition Metamodel [25]. This RFP is wide ranging and has evolved considerably since its
inception, but one aspect relevant to our discussions is of ontology being developed using UML,
and implemented in the OWL. This may also allow ontology to be forward and reverse engineered.

Although it is clear a foundation for the description of resources could be established, manually
inspecting large volumes of premantic legacy artefacts and then encoding metadata about them is an
error-prone, time consuming and expensive task. However, in some situations it is conceivable that
it may prove feasible and worthwhile to do just this on a well bounded artefact repository. In such
circumstances, any opportunities for automated support are certainly welcome.

While work to automate metadata generation is limited, there are some notable exceptions. For
instance, Jenkins et al. [14] developed a system to automatically extract a RDF description from
HTML documents. Later Huang et al. [15] recognised the limitations of metadata generation by
looking merely at the contents of isolated artefacts. Instead their work shows that thematic metadata
can be derived by applying artificial intelligence techniques to groups of related textual artefacts; so
affording the possibility of concept searches. Subsequently, Cardinaels et al. [16] have been able to
automatically generate metadata for learning objects. They recognise that metadata can be derived
from a single artefact and a group of related artefacts, as well as from the context artefacts
experience and the uses that are made of them.

In terms of established tool support for metadata management, there are numerous tools, but worthy
of note are Protégé [23] (an extensible open-source ontology editor) and SNOBASE [24] (an
ontology management system that can allow queries to run across multiple ontologies).

2.4 Peer-to-Peer Technology

In a Peer-to-Peer (P2P) network, peers give up central control and organise themselves dynamically
to provide file sharing. P2P success depends on a balanced distribution of data; or at least
knowledge about data. Popular implementations of P2P technology have been Napster and
Gnutella, and more recently BitTorrent.

With the rise of industrial exploitation of P2P networks, there is a need for standardisation and the
IRTF Peer-to-Peer Research Group [19] has been set up with this remit in mind.

In the meantime, JXTA [20] technology does offer a set of open protocols that allow networked
devices to communicate and collaborate in a P2P manner. JXTA peers create a virtual network
where any peer can interact with other peers. It enables activities such as finding peers and
resources on the network even across firewalls, sharing files across the network and creating a
group of peers of devices across different networks.

One of the most important issues that SESAME has to deal with is tracing artefacts and notifying
interested parties about those artefacts as they change. This is to be achieved using
Publish/Subscribe mechanisms [17]. Indeed, we have already seen that publish/subscribe P2P
networks have begun to support metadata about resources [1]. Furthermore, Chirita et al. have
suggested mechanisms for handling notifications when peers are off-line.

Evolving out of earlier manifestations of JXTA was SPLASH; a P2P repository for learning objects
popular in academic circles [21]. SPLASH also provides metadata tagging capabilities for these
artefacts. One of the reasons that SPLASH diverged from JXTA was that these learning objects can
become large (e.g. a movie file of a one hour lecture), so the SPLASH developers required a more
reliable connection mechanism than was needed for sharing small files. Interestingly, a lesson
learned by the SPLASH community was that the artefacts’ authors find it difficult to enter
meaningful and consistent metadata about those artefacts; making human interpretation difficult –

never mind enabling automatic machine reasoning. This chimes with the motivations of Cardinaels
et al. [16], mentioned earlier. Another practical realisation was that learning objects need to be used
in a variety of situations such as their author’s own teaching, a SPLASH network and in a local,
proprietary virtual learning environment. As such, it is important that the artefacts should not be
customised for, or tightly coupled to, P2P technology; or indeed their own metadata.

3 Motivating Scenario of Use
To help illustrate SESAME’s potential impact, we present the following scenario.

Software development company A maintains a large number of diverse premantic artefacts created
by different tools at various points in the development lifecycle. For example, legacy COBOL code,
J2EE component code, models in UML/XMI and ER diagrams, and documentation in Word, Adobe
and Lotus formats.

Company A has two key objectives. Firstly they wish to make these historic artefacts more readily
available for future projects in order to encourage re-use and support project planning and design;
identifying and targeting potentially reusable components will reduce the time to market of future
projects. The second objective is to measure the quality of output from projects. This will help
Company A learn from past experience, manage current activity and improve their standards.

A technical solution is proposed that uses metadata such as unique identifiers, code descriptions and
quality assessments, to enable company-wide searching and sharing. However, to achieve this, they
need to invest a significant amount of time and resources manually creating semantic information
and links for each artefact; which can only be achieved by error-prone subjective observation. This
is unfeasible for large software development projects where they have thousands of artefacts.

Imagine now they had SESAME, which Company A could use to define ontology and rules to
automate the acquisition and management of metadata from their artefacts’ content. Once Company
A has generated this collection of semantically enhanced components, traceability concepts in the
SESAME system would allow for the creation of relationships between artefacts. As a result,
Company A can deliver resources to support re-use in future projects. In addition, they will be able
to see artefact dependencies and can assess the provenance of the artefacts.

In addition, the P2P implementation of SESAME means that there is no tight coupling between the
semantics of an artefact and the artefact itself. Each peer is effectively a designated file storage
location which can function without alteration as a host for premantic artefacts. This will prove
particularly useful to Company A as there may be collections of artefacts that remain partially
premantic and which need to be used by traditional toolsets and projects that are not yet interested
in semantic enrichment.

4 Proposed Architecture
In support of scenarios such as this, we propose to develop an architecture and toolset to manage the
definition, elicitation and configuration of artefact semantics, specifically in the domain of software
engineering. In particular, SESAME will be: a distributed, P2P environment, with cooperating,
heterogeneous artefact sources; extensible through a plug-in mechanism; and supportive of multiple
platforms. SESAME will provide built in mechanisms for creating both secure corporate semantic
networks and generic software engineering communities sharing their experience and public
artefacts.

We consider two areas of semantic enhancement; knowledge acquisition (where the semantic data
is created to describe a software artefact, potentially extracted from the artefact content itself and its
context), and knowledge management (where that semantic data is managed and used). Specifically,
SESAME’s architecture comprises of four layers. With reference to Fig. 1, the Artefact Layer refers
to an environment containing resources that are not semantically enriched; what we call premantic.
This environment could be comprised of different data repositories (e.g. in our diagram a file

system, database, and CVS repository). It could be globally distributed, or limited to a single
organisation in a single location.

Establish resource
type, trust, quality

ratings, ownership and
purpose

Database CVSFile system

Semantic Generator

Knowledge
Acquisition

Layer

Plug-in
(e.g. code)

Resource A

semantics

Resource B

semantics

Resource C

semantics

Resource A Resource B Resource C

Semantic ManagerKnowledge
Management

Layer

Resource A

Semantics

Resource B

Semantics

Resource C

Semantics

Uses Rules to establish
traceable relationships,
relationship types and

event mechanisms.

Search Artefact
Visualisation

Semantic
based

services layer

System
Configuration

Pattern
Identification

Artefact
Layer

Semantic
wrapper

Plug-in
(default)

Traceability
relations

Rules

Event
Mechanism

Rule Client /
Workflow

IDE plugin
(e.g. Eclipse)

Data mining

Relat ionship
Discovery

•A
ll

la
ye

rs
 a

re
 p

re
se

nt
 a

t
a

ll
p
ee

rs
.

•E
ac

h
pe

e
r

w
ra

p
s

a
nd

 a
na

ly
se

s
its

 o
w

n
a

rt
e

fa
ct

s.

Fig. 1. The Proposed SESAME Architecture

The Semantic Generator in the Knowledge Acquisition Layer semantically enhances artefacts from
the Artefact Layer. It is composed of a semantic wrapper and multiple plug-ins. The semantic
wrapper has the ability to apply metadata to each artefact. It will have a default plug in to provide
core “default” metadata, such as the date the metadata was created. This simple service is extended
through interrogator plug-ins responsible for automatically examining an artefact type to extract
additional “artefact specific” metadata. Where automation is not possible, user interface plug-ins
will allow users to manually augment core metadata. However, such manual enhancement can be
facilitated optionally by the application of ontology which can suggest the necessary vocabulary.

Relationships between semantically enhanced artefacts are defined in the Knowledge Management
Layer. The semantic manager uses rules to create and define traceability relations between artefacts
and potentially derive extra metadata from such context.

Once inter-artefact relationships have been established, a number of semantic based services add
value to the overall architecture. There are clients to access and further define the traceability
relations, and the rules governing them. These rules can be used to define workflow within a
project, and therefore to specify the software development methodology to be followed. Artefacts
can be searched, and patterns identified within and between code artefacts. In addition, an event

mechanism can establish notifications between related artefacts and interested users. Finally, the
entire environment can be visualised to aid understanding.

SESAME’s usefulness and acceptance will be enhanced if it can be integrated into existing IDE
technology, so plug-ins for at least one major IDE (initially Eclipse) will be created. This will allow
the Eclipse user to access services from all three tiers of the SESAME system through the Eclipse
IDE.

Furthermore, pragmatics dictate that a thoroughbred P2P approach will not offer the performance or
flexibility that could be obtained if other paradigms were embraced. Therefore, SESAME will
incorporate super peers and novel resource discovery mechanisms to improve performance. In
addition, workflow orchestration would not discount the possibility of incorporating salient Web
services as they become available.

5 Conclusions
This article has described the motivations for, the background to and the architecture of SESAME.
The open development environment that this framework provides for software engineers addresses
a number of key socio-economic problems. SESAME’s resource discovery facilities, and the
resulting artefact metadata, will support component technologies and facilitate content reuse,
driving down costs and reducing time to market. Metadata can also contain an assessment of
quality, which should assist vendors to monitor and maintain higher standards and consumers to
make better-informed choices.

Furthermore, the creation of metadata will make artefacts more comprehensible, transparent and
searchable to users with different understandings and business needs. In addition, the semantic
based services of the SESAME architecture will help users to understand the system that produced
the artefacts. For example, artefact visualisation will provide an overview of all artefacts and their
relationships within a system, which can be mined for specific business perspectives.

Returning to Wasserman and his five dimensions of tool integration [2], we could argue that
platform and presentation integration as generally solved in contemporary environments. This
leaves data, control and process integration. Fundamentally, P2P technology provides data
integration, but SESAME’s rich architecture offers opportunities to accommodate the remaining
two dimensions. Combined with our discussions of low coupling between artefacts, tools and
environment, this all bodes well for our approach.

In developing a modern knowledge-based society, it will become increasingly important to
efficiently incorporate legacy data within semantic-enabled systems and services. Providing an
indication of artefact quality through metadata will encourage trust and confidence in those wishing
to access or reuse those artefacts. In addition, the detection of artefact signatures (e.g. the
identification of authorship from content, structure, use, etc) is an area SESAME will investigate.
Should this be achieved, issues of trust in both producer-to-customer and customer-to-producer
directions can be addressed. Moreover, the intellectual property rights of the developer could
potentially be upheld should an artefact be plagiarised or used out of licence, and consumers will
have greater assurances about the provenance of the artefacts they use.

6 Acknowledgements
Grateful thanks are given to the partners in the SESAME project.

References
1. P.-A.Chirita, S.Idreos, M.Koubarakis, and W.Nejdl (2004) Publish/Subscribe for RDF-based

P2P Networks, The Semantic Web: Research and Applications: First European Semantic Web
Symposium (ESWS), Crete, Greece (Lecture Notes in Computer Science), Vol.3053, pp.182 –
197.

2. A I Wasserman. “Tool integration in software engineering environments”. In F Long, editor,
The International Workshop on Environments (Software Engineering Environments), volume
647 of Lecture Notes in Computer Science, pages 137-149. Springer-Verlag, Berlin, September
1989. Chinon, France.

3. SourceForge, http://sourceforge.net/, last accessed 5/5/05.

4. Eclipse, http://eclipse.org/, last accessed 5/5/05.

5. F.Cattaneo, E.Di Nitto, A.Fuggetta, L.Lavazza, G.Valetto (2000) “Managing software artifacts
on the Web with Labyrinth”, 22nd International Conference on Software Engineering, pp.746-
749.

6. Olsen, T. and Grundy, J.C. (2002) “Supporting traceability and inconsistency management
between software artefacts”, IASTED International Conference on Software Engineering and
Applications, Boston.

7. SA Sherba and KM Anderson (2003) "A Framework for Managing Traceability Relationships
between Requirements and Architectures". Second International Workshop From Software
Requirements to Architectures at ICSE, USA.

8. R.A.Falbo, G.Guizzardi, Natali ACC, Bertollo G, Ruy FF, Mian PG (2002) “Towards Semantic
Software Engineering Environments”, International Conference on Software Engineering and
Knowledge Engineering, Italy.

9. Software Engineering Task Force, http://www.w3c.org/2001/sw/BestPractices/SE/, last
accessed 5/5/05.

10. H. Knublauch (2004) “Ontology Driven Software Development in the Context of the Semantic
Web: An Example, Scenario with Protégé/OWL”, 1st International Workshop on the Model-
Driven Semantic Web (MDSW2004)

11. D.Oberle, A.Eberhart, S.Staab, R.Volz (2004) “Developing and Managing Software
Components in an Ontology-based Application Server”, In Hans-Arno Jacobsen (ed.),
Middleware 2004, ACM/IFIP/USENIX 5th International Middleware Conference, Toronto,
Ontario, Canada, volume 3231 of LNCS, pp. 459-478. Springer.

12. UML, http://www.uml.org/, last accessed 5/5/05.

13. OWL, http://www.w3.org/TR/owl-features/, last accessed 5/5/05.

14. C.Jenkins, M.Jackson, P.Burden, J.Wallis (1999) “Automatic RDF metadata generation for
resource discovery”, Journal of Computer Networks, 31(11-16), pp.1305-1320

15. C.C.Huang, S.L.Chuang, L.F.Chien (2004) “Using a web-based categorization approach to
generate thematic metadata from texts”, ACM Transactions on Asian Language Information
Processing (TALIP), 3(3), pp.190-212

16. K.Cardinaels, M.Meire, E.Duval (2005) “Automating Metadata Generation: the Simple
Indexing Interface”, preprint of an Article accepted for publication in ACM International World
Wide Web Conference, WWW 2005, Chiba, Japan.

17. S. Baehni, P. Eugster and R. Guerraoui (2002) “OS Support for P2P Programming: a Case for
TPS”, Int. Conference on Distributed Computing Systems, (ICDCS), Austria.

18. M.N.Wicks and R.G.Dewar (2005) Ad Hoc Tool Integration; a Case Study, International
Conference on Software Development (SWDC-REK), Reykjavik, Iceland, (May-June)
accepted.

19. Peer-to-Peer Research Group, http://www.irtf.org/charters/p2prg.html, last accessed 5/5/05.

20. JXTA (2004) http://www.jxta.org/, last accessed 5/5/05.

21. SPLASH (2003) http://www.edusplash.net/, last accessed 5/5/05.

22. openRDF; home of Sesame (2005) http://www.openrdf.org/, last accessed 5/5/05.

23. Protégé (2005) http://protege.stanford.edu/, last accessed 5/5/05.

24. SNOBASE (2004) http://www.alphaworks.ibm.com/tech/snobase, last accessed 5/5/05.

25. ODM document (2003) http://www.omg.org/cgi-bin/apps/doc?ad/2003-03-40, , last accessed
5/5/05.

