M anaging Softwar e Engineering Artefact M etadata

R.G.Dewar
Department of Computer Science, Heriot-Watt University, Edinburgh, UK
ri ck@macs. hw. ac. uk

Abstract. This article describes a proposed P2P-based environment called
SESAME to manage semantically enhanced artefacts from theaseft
engineering domain. We argue that such artefacts, for instades models

and documents, are not currently semantically enhanced (a statallwe
premantic) and that there are few tools that could manage and use such
metadata to derive some added value for searching, sharing and
organisation. Yet, semantic-based services can aid resource disemery
provide advanced information management. These services depend on the
guality of metadata extracted, however, to manually provide thisda is

an expensive process. Current tools that automatically acquaeegsrand
relate semantics to content are limited. Therefore, the $HESproject will
develop an open architecture and toolset to manage the elicitation and
configuration of artefact semantics; specifically in the donadi software
engineering.

1 Introduction

With software processes becoming increasingly complex, thergnsater demand for tool support
throughout the software-lifecycle. All software tools, regardielssheir use, produce software
artefacts and for combinations of tools to be truly effective, thegt work together [2]. However,

toolsets can be diverse and, despite almost two decades otheaedmractice after Wasserman'’s
seminal work, their integration is currently piecemeal at g3t [Tools often produce artefacts in
proprietary formats, which further restrict intercommunication.

Content-specific metadata presents additional benefits in an gpéware development
environment. Semantically enabled services could use informatiardneg artefact quality,
ownership and purpose to assist artefact management and mainteaarseedecisions, plagiarism
and searching within a complex component-based or model-driven informadice. #\dditionally,
traceable relationships that define connections between artefadtsbe established to group and
organise complex software projects using semantics.

However, a large number of software artefacts are not currently seripmtidceanced; here we call
their impoverished statgremantic. And the semantic payloads of these artefacts possess
considerable untapped resources that could benefit the softwareezimgjrprocess. Ontology exist
that describe certain content, but currently tool support for using theslogy to create semantic
descriptions is limited. There are also few tools that maaadaise semantically enhanced content
to derive some added value; for instance searching, sharing and linking.

In addition, software engineering tools and frameworks have often drtieised for being too
tightly coupled to other components and the data. This coupling has resufiadunacceptable
implementation overhead and lack of flexibility; in turn these probleave reduced take up and
impact. P2P technology offers lose coupling between artefactgjatetand tools, but has not been
fully exploited in this domain as yet.

We begin this article by considering background issues relewaonurt arguments, before we
present a motivating scenario and then go on to describe the propdsieecane for SESAME

(Software Engineering Artefact Management Environment) — not tocdrdused with the
TripleStore RDF Database of the same name [22].

2 Background

2.1 Integration in Software Engineering

Web-integrators such as SourceForge [3] provide a comprehensive reofteaelopment
environment for collaborative efforts in an Internet environment. Soelmomments offer useful
functionalities such as CVS, project administration, document managemailing lists, bug
tracking and file publishing. Nonetheless, although popular, these closadnements do not
provide semantic enhancements to artefacts or extensibility for usbsrarxdmmunities.

The rise and rise of Eclipse [4] as “a kind of universal todffgilan” has seen the possibility of
platform extensibility through its plug-in capabilities. Furthere, distributed collaboration is
commonly achieved through the use of Eclipse and the CVS repasivbi@murceForge. However,
such integration still currently lacks semantic enhancement. Inr otloeds, artefacts are
predominantly premantic; save for the occasional natural langdesgiptions added to CVS
version tags.

Of course, studies that look at the semantics of softwayieexring artefacts are not new. Cattaneo
et al. [5] consider the creation and management of the semantitscients associated with
software engineering projects. They also address issues atataiii and consistency, but the
approach does not consider the possibility of automatic generatioetafdata and relationships
and omits any notion of standard ontology for the domain. SimilarlyerOadnd Grundy [6] stop
short of automation and ontology.

On the other hand, Sherba and Anderson [7] do explore the possibilitperfageg relationships
by programmatically extracting and linking common terms (mgthod names) from different
artefacts.

2.2 Ontology-Based Software Development Environments

Having noted the omission of ontological consideration in some eadigs, we are now beginning
to see some efforts in this area.

For instance, Falbo et al. [8] are working towards an Ontologgebasftware Development
Environment (ODE), comparable to a Semantic Web, where softwagiaeering knowledge is
organised and accessible to developers and tools. They concentratplatingxmetadata for
domain engineering but currently lack tool support for automated néemareation and
management.

Furthermore, the W3C’s Software Engineering Task Force [9] b&ted their intent to evaluate
ideas for Ontology Driven Architectures (ODAs). To this enden¢ work by Knublauch [10] has
focused on an ODA for Web services and agents for the semantic Wiebthd ontology do not
describe software engineering artefacts; the example scémdine paper uses the tourism domain.
However, the work shows that software architectures can beno#éideduring their development
(not just at run time) by an extant explicit ontology. Similarly, Oberkd.4¢11] have considered the
impact of ontology on application servers. They have implemented adtigrof ontology where
the most abstract describe software components, which are thealispdcby a profile of that
component and its API. The hierarchy then specialises down to displecnain ontology. This
ontological hierarchy, Oberle et al. argue, simplifies the dgveént and maintenance of software
components.

2.3 Metadata Modelling, Generation and Management

It is interesting to note, we could consider the UML [12] as an ongdengguage where the class
diagram might be employed to model the domain; particularly wheruged with OCL. Currently

the OMG have a live request for proposals to map the UML and (QB]LAs such, the UML may
yet prove to be the ontology language of choice for software engigesnce it is already well
know by domain experts. However, the richness and power of OWL wouwdrtzee conventional
choice at this stage. For this reason, there has been a Reguesbposal concerning the Ontology
Definition Metamodel [25]. This RFP is wide ranging and has evoh@tsiderably since its
inception, but one aspect relevant to our discussions is of ontology beingpaelvasing UML,
and implemented in the OWL. This may also allow ontology to be forward and revgnseezad.

Although it is clear a foundation for the description of resourcesddoelestablished, manually
inspecting large volumes of premantic legacy artefacts and then encodadataebout them is an
error-prone, time consuming and expensive task. However, in soméosisuiatis conceivable that
it may prove feasible and worthwhile to do just this on a well boundethet repository. In such
circumstances, any opportunities for automated support are certainly veelcom

While work to automate metadata generation is limited, thexesame notable exceptions. For
instance, Jenkins et al. [14] developed a system to automatictdactea RDF description from
HTML documents. Later Huang et al. [15] recognised the limmatiof metadata generation by
looking merely at the contents of isolated artefacts. Insteadatbek shows that thematic metadata
can be derived by applying artificial intelligence techniquegréaps of related textual artefacts; so
affording the possibility of concept searches. Subsequently, Cdsletaad. [16] have been able to
automatically generate metadata for learning objects. Tloegmese that metadata can be derived
from a single artefact and a group of related artefactsyedlsas from the context artefacts
experience and the uses that are made of them.

In terms of established tool support for metadata managemenet aitteenumerous tools, but worthy
of note are Protégé [23] (an extensible open-source ontology editdr'SNOBASE [24] (an
ontology management system that can allow queries to run across multiple ontologies

24 Peer-to-Peer Technology

In a Peer-to-Peer (P2P) network, peers give up central control gentise themselves dynamically
to provide file sharing. P2P success depends on a balanced dmtribfitdata; or at least
knowledge about data. Popular implementations of P2P technology haveNbgester and
Gnutella, and more recently BitTorrent.

With the rise of industrial exploitation of P2P networks, therensed for standardisation and the
IRTF Peer-to-Peer Research Group [19] has been set up with this remit in mind.

In the meantime, JXTA [20] technology does offer a set of open piettitat allow networked
devices to communicate and collaborate in a P2P manner. JXTA peats a virtual network
where any peer can interact with other peers. It enablegitiastisuch as finding peers and
resources on the network even across firewalls, sharing filessathe network and creating a
group of peers of devices across different networks.

One of the most important issues that SESAME has to deal withcisg artefacts and notifying
interested parties about those artefacts as they change. iShte be achieved using
Publish/Subscribe mechanisms [17]. Indeed, we have already smeputilish/subscribe P2P
networks have begun to support metadata about resources [1]. Furtheimioite, et al. have
suggested mechanisms for handling notifications when peers are off-line.

Evolving out of earlier manifestations of JXTA was SPLASH2® Pepository for learning objects
popular in academic circles [21]. SPLASH also provides metadgting capabilities for these
artefacts. One of the reasons that SPLASH diverged from J¥a$Athat these learning objects can
become large (e.g. a movie file of a one hour lecture), SORhASH developers required a more
reliable connection mechanism than was needed for sharing sheall Ifiterestingly, a lesson
learned by the SPLASH community was that the artefactdioasitfind it difficult to enter
meaningful and consistent metadata about those artefacts; making imtempretation difficult —

never mind enabling automatic machine reasoning. This chimeshaitimdtivations of Cardinaels
et al. [16], mentioned earlier. Another practical realisationthaislearning objects need to be used
in a variety of situations such as their author's own teachindgL8ASH network and in a local,
proprietary virtual learning environment. As such, it is important timatartefacts should not be
customised for, or tightly coupled to, P2P technology; or indeed their own metadata.

3 Motivating Scenario of Use
To help illustrate SESAME'’s potential impact, we present the following scena

Software development company A maintains a large number of dpes®ntic artefacts created
by different tools at various points in the development lifecyade eikample, legacy COBOL code,
J2EE component code, models in UML/XMI and ER diagrams, and docuimoentat¥Vord, Adobe
and Lotus formats.

Company A has two key objectives. Firstly they wish to makeetiméstoric artefacts more readily
available for future projects in order to encourage re-use and suppedtglanning and design;
identifying and targeting potentially reusable components will redlie time to market of future
projects. The second objective is to measure the quality of output grojects. This will help
Company A learn from past experience, manage current activity and impravetdheiards.

A technical solution is proposed that uses metadata such as uniquigeidecbde descriptions and
guality assessments, to enable company-wide searching and sHarveyer, to achieve this, they
need to invest a significant amount of time and resources manuediting semantic information
and links for each artefact; which can only be achieved by eromiesubjective observation. This
is unfeasible for large software development projects where they have thoakartdfacts.

Imagine now they had SESAME, which Company A could use to defir®oggtand rules to
automate the acquisition and management of metadata from tleéactst content. Once Company
A has generated this collection of semantically enhanced compptractsability concepts in the
SESAME system would allow for the creation of relationships eetwartefacts. As a result,
Company A can deliver resources to support re-use in future prdjeeisdition, they will be able
to see artefact dependencies and can assess the provenance of the artefacts

In addition, the P2P implementation of SESAME means that theretight@oupling between the
semantics of an artefact and the artefact itself. Eachipesffectively a designated file storage
location which can function without alteration as a host for premanmtefacts. This will prove
particularly useful to Company A as there may be collectionartefacts that remain partially
premantic and which need to be used by traditional toolsets and ptbgctse not yet interested
in semantic enrichment.

4 Proposed Architecture

In support of scenarios such as this, we propose to develop an architecture and toolsagédaimea
definition, elicitation and configuration of artefact semanticsci§ipally in the domain of software
engineering. In particular, SESAME will be: a distributed, PRRirenment, with cooperating,
heterogeneous artefact sources; extensible through a plugiraniem; and supportive of multiple
platforms. SESAME will provide built in mechanisms for creatinghtxecure corporate semantic
networks and generic software engineering communities shénegig experience and public
artefacts.

We consider two areas of semantic enhancement; knowledge acquishiene the semantic data
is created to describe a software artefact, potentiallpebe from the artefact content itself and its
context), and knowledge management (where that semantic data is managed Jai8pas#itally,
SESAME’s architecture comprises of four layers. With refeeeto Fig. 1, the Artefact Layer refers
to an environment containing resources that are not semantigetihed; what we calpremantic.
This environment could be comprised of different data repositorigs i(e our diagram a file

system, database, and CVS repository). It could be globallybdittd, or limited to a single

organisation in a single location.

Semantic Data mining System Pattem Rule Client /
based Configuration Identification Workflow
services layer
Relationship Search Event Artefact IDE plugin
Discovery Mechanism \isualisation (e.g. Eclipse)
%
°©
.SE Semantics Semantics Semantics
Q > <>
% Resource A Resource B Resource C
c
= \ T /
(@)
)
% :7; ; Uses Rulesto establish
348 Knowledge Semantic Manager e traceable relationships,
292 Management Traceability / || relationship types and
T © Layer relations event mechanisms.
— <
© ©
QO
2 o
o 8 . . .
o semantics semantics semantics
S
% = Resource A Resource B Resource C
S
2
G>->\ o Knowledge \ T /
@ % Acquisition
<=(Ll“j Layer Semantic Generator Establish resourc
D) ——m type, trust, quality

ratings, ownership and
purpose

Plug-in
(default)

Plug-in
e.g. code

Semantic
wrapper

N

Artefact
Layer

Resource A

Resource B

Resource C

T

S

T

Fig. 1. The Proposed SESAME Architecture

The Semantic Generator in the Knowledge Acquisition Layer secaliptenhances artefacts from
the Artefact Layer. It is composed of a semantic wrapper antipleuplug-ins. The semantic
wrapper has the ability to apply metadata to each artéfaeil have a default plug in to provide
core “default” metadata, such as the date the metadata vedsdcréhis simple service is extended
through interrogator plug-ins responsible for automatically exaigian artefact type to extract
additional “artefact specific’ metadata. Where automationoispossible, user interface plug-ins
will allow users to manually augment core metadata. Howeweh manual enhancement can be
facilitated optionally by the application of ontology which can suggest the aegessabulary.

Relationships between semantically enhanced artefacts amedlaf the Knowledge Management
Layer. The semantic manager uses rules to create and defwabifdy relations between artefacts
and potentially derive extra metadata from such context.

Once inter-artefact relationships have been established, a nombemantic based services add
value to the overall architecture. There are clients to aamdsfurther define the traceability
relations, and the rules governing them. These rules can be usetin® werkflow within a
project, and therefore to specify the software development methgdwidge followed. Artefacts
can be searched, and patterns identified within and between cogetartéi addition, an event

mechanism can establish notifications between related astedadt interested users. Finally, the
entire environment can be visualised to aid understanding.

SESAME'’s usefulness and acceptance will be enhanced if it camdugated into existing IDE
technology, so plug-ins for at least one major IDE (initialtyifise) will be created. This will allow
the Eclipse user to access services from all three tistee (BESAME system through the Eclipse
IDE.

Furthermore, pragmatics dictate that a thoroughbred P2P approbobtwaffer the performance or
flexibility that could be obtained if other paradigms were endmad herefore, SESAME will
incorporatesuper peers and novel resource discovery mechanisms to improve performance. In
addition, workflow orchestration would not discount the possibility of incotpayasalient Web
services as they become available.

5 Conclusions

This article has described the motivations for, the background tdharatdhitecture of SESAME.
The open development environment that this framework provides for sokwgneeers addresses
a number of key socio-economic problems. SESAME’s resource discta@lyies, and the
resulting artefact metadata, will support component technolages facilitate content reuse,
driving down costs and reducing time to market. Metadata cancalstain an assessment of
quality, which should assist vendors to monitor and maintain higher stisnaiad consumers to
make better-informed choices.

Furthermore, the creation of metadata will make artefactee momprehensible, transparent and
searchable to users with different understandings and busineds. heeaddition, the semantic
based services of the SESAME architecture will help usessderstand the system that produced
the artefacts. For example, artefact visualisation will prosid@verview of all artefacts and their
relationships within a system, which can be mined for specific business peespect

Returning to Wasserman and his five dimensions of tool integratiorwg]could argue that
platform and presentation integration as generally solved in contempengironments. This

leaves data, control and process integration. Fundamentally, P2P techmpotogges data

integration, but SESAME'’s rich architecture offers opportunitesidccommodate the remaining
two dimensions. Combined with our discussions of low coupling betweefacastetools and

environment, this all bodes well for our approach.

In developing a modern knowledge-based society, it will becomesasitrigly important to
efficiently incorporate legacy data within semantic-enablestesys and services. Providing an
indication of artefact quality through metadata will encouragée ams confidence in those wishing
to access or reuse those artefacts. In addition, the detectiortetdct signatures (e.g. the
identification of authorship from content, structure, use, etc) igem SESAME will investigate.
Should this be achieved, issues of trust in both producer-to-custarderuatomer-to-producer
directions can be addressed. Moreover, the intellectual property ofitse developer could
potentially be upheld should an artefact be plagiarised or used bo¢rmmée, and consumers will
have greater assurances about the provenance of the artefacts they use.

6 Acknowledgements
Grateful thanks are given to the partners in the SESAME project.

References

1. P.-A.Chirita, S.ldreos, M.Koubarakis, and W.Nejdl (2004) Publish/Subscrib&@ét-based
P2P Networks, The Semantic Web: Research and ApplicationsEeirgpean Semantic Web
Symposium (ESWS), Crete, Greece (Lecture Notes in Compuincgyj Vol.3053, pp.182 —
197.

2. Al Wasserman. “Tool integration in software engineering enviramnsiieln F Long, editor,
The International Workshop on Environments (Software Engineering Enwérdsjmn volume
647 of Lecture Notes in Computer Science, pages 137-149. Springer-Vezthg, Beptember
1989. Chinon, France.

3. SourceForge, http://sourceforge.net/, last accessed 5/5/05.
4. Eclipse, http://eclipse.org/, last accessed 5/5/05.

5. F.Cattaneo, E.Di Nitto, A.Fuggetta, L.Lavazza, G.Valetto (2000) “IMdengasoftware artifacts
on the Web with Labyrinth”, 22nd International Conference on Softwaren&ewgng, pp.746-
749.

6. Olsen, T. and Grundy, J.C. (2002) “Supporting traceability and inconsisteaopgement
between software artefacts”, IASTED International ConferamtéSoftware Engineering and
Applications, Boston.

7. SA Sherba and KM Anderson (2003) "A Framework for Managing ThadgaRelationships
between Requirements and Architectures”. Second International Worksbop Software
Requirements to Architectures at ICSE, USA.

8. R.A.Falbo, G.Guizzardi, Natali ACC, Bertollo G, Ruy FF, Mian PG (2002wards Semantic
Software Engineering Environments”, International Conference astw&e Engineering and
Knowledge Engineering, Italy.

9. Software Engineering Task Force, http://www.w3c.org/2001/sw/BastiPes/SE/, last
accessed 5/5/05.

10.H. Knublauch (2004) “Ontology Driven Software Development in the ContetkteoSemantic
Web: An Example, Scenario with Protégé/OWL", 1st Internationalkdrap on the Model-
Driven Semantic Web (MDSW2004)

11.D.Oberle, A.Eberhart, S.Staab, R.Volz (2004) “Developing and Managofware
Components in an Ontology-based Application Server”, In Hans-Arno Jacdleseh
Middleware 2004, ACM/IFIP/USENIX 5th International Middleware Coefee, Toronto,
Ontario, Canada, volume 3231 of LNCS, pp. 459-478. Springer.

12.UML, http://www.uml.org/, last accessed 5/5/05.
13.OWL, http://www.w3.org/TR/owl-features/, last accessed 5/5/05.

14.C.Jenkins, M.Jackson, P.Burden, J.Wallis (1999) “Automatic RDF metadateragion for
resource discovery”, Journal of Computer Networks, 31(11-16), pp.1305-1320

15.C.C.Huang, S.L.Chuang, L.F.Chien (2004) “Using a web-based categmrizgiproach to
generate thematic metadata from texts”, ACM Transactmm#sian Language Information
Processing (TALIP), 3(3), pp.190-212

16.K.Cardinaels, M.Meire, E.Duval (2005) “Automating Metadata Geimera the Simple
Indexing Interface”, preprint of an Article accepted for pubiaain ACM International World
Wide Web Conference, WWW 2005, Chiba, Japan.

17.S. Baehni, P. Eugster and R. Guerraoui (2002) “OS Support for P2P renoigiga a Case for
TPS”, Int. Conference on Distributed Computing Systems, (ICDCS), Austria.

18.M.N.Wicks and R.G.Dewar (2005) Ad Hoc Tool Integration; a Case Studgrnational
Conference on Software Development (SWDC-REK), Reykjavik, Icelahiy-June)
accepted.

19. Peer-to-Peer Research Group, http://www.irtf.org/charters/p2prg.htindeessed 5/5/05.
20.JXTA (2004) http://lwww.jxta.org/, last accessed 5/5/05.

21.SPLASH (2003) http://www.edusplash.net/, last accessed 5/5/05.

22.0penRDF; home of Sesame (2005) http://www.openrdf.org/, last accessed 5/5/05.
23.Protégé (2005) http://protege.stanford.edu/, last accessed 5/5/05.

24. SNOBASE (2004) http://lwww.alphaworks.ibm.com/tech/snobase, last acces$¥d 5/5/

25.0DM document (2003) http://www.omg.org/cgi-bin/apps/doc?ad/2003-03-40, , lestsad
5/5/05.

