A mean-shift tracker: implementationsin C++ and Hume

lain Wallace" Aug/Sep 2005

A Nuffield Foundation undergraduate research bursary working at
School of Mathematical and Computer Sciences,
Heriot-Watt University,

Whilst an undergraduate at the University of York

Liaw@macs.hw.ac.uk

Table of Contents

TAB LE OF CON T EN T S .ot 1
LN IO 11 L I 3
HOW D OES [T WO RK 2 e e 4
YV A= 1 e [0 1= L Ao [0 TSR 4
I L= AN [o o 1 1 PSP RRT TR 5
QL (=X o0 L0101 11010 To L= 5
Limitations Of the @ gOITNMoce et e e e te et e et e estesseesreesreenteesenneas 5
B (S35 6
L L=XoZ 0] I XU L1 oo [=Y B ot = o 6
L LT 7= o Lo [6
B L= 0 2T 7
RV R LT RS TSRO 7
RV R L IRVt (o TSRO 8
T R {1 0 10) = TSRO 9
1YL 1 [0 11
(08 o o (ol o 101 0 LSRN AT TS 11
(RS R (0 R VL= o (0] TR 12
VA <o: (0] =] (01 010)= 13
PERFORMANCE AND METRICS ..o e e 13
1< =0 o =T o 1 1 o] o USRS 14
BLIC=: =] o ST 14
L (S U {1 £ 14
(@700 (ST T 15
SUMM A R Y o e e e e e e 16
B IB IO G R A P HY e e e aaaas 17
APPENDIX A. RUNNING THE CODKE ..., 18
(O T 18
L1 1S 18
L0 01101 11 oo F OSSPSR 18
INPUL IMAGE SEQUENCES.eeuteeeeeeeeteesteesteetees e sstessaesteesseeseaseeaseesseeseesseesseassesseesseesseanseaneesnsesseanseenseensennsenseessenssensennes 18
L0 L= 0 RSP STR 18
Editing the HiStOQram FUNCLION.coiiiiieie ettt se s et s e te st s s e s se e sse e teenteesaessaesseesseesseeeesneesnnesneansennes 19
QLIS LY e 00 =0 1S 19
B I 1SN 0T TR 20
P OIMNIBNCE NMOLE........eeeieiieeeie ettt ettt e e ettt e e et e e s st e e e s ebeeesssasessesesessaabesessseeessasseeesassesesssesessssbsessenseeessasenassssenness 20

] 1S ST U TP SUPOPRPRPRURN 20

L0 L= 0 RSP SR 20
APPENDIX B. CODE ... ittt eaneeennns 22
LERT=72 RS T ot o] o SO SO SORU TSROSO 22
(ol [o 01 1Y Koo [=. 1N s IO STV S PRV TP UPTSTRU 28
(ool [o 0T 1Y Koo [= oi o] o BN OO TSRS U U RUPTSTRU 29
MEANSNIFE-TISES NUMIE......cee et e et e et e et r e n et r e n et renees 32
MEANSNIFE-VECTON SUIME ...t e et r et n et r e n et renn e 39
MEANSNIFE-DOXESIUME. ...t e et r et r e n et r e n et nrennees 47

Introduction

This technical report covers the work | carried out whilst working on a Nuffield Foundation
Undergraduate research bursary at Heriot-Watt University in the Dependable Systems Group. It was
carried out in August/September 2005 before my final year (masters) at the University of York.

The project was to implement a prototype motion tracking system in C++ and then compare this
version with a Hume [4] implementation.

This report describes the implementation of a mean-shift tracking algorithm (as described by D.
Comaniciu, V. Ramesh and P. Meer [1]) in C++, three Hume implementations and comparisons
between the four.

The three Hume implementations that were developed are; a list-recursion based version, vector
based without recursion and an entirely box-based approach. The methodologies to convert the
algorithm between these approaches are also detailed, as is benchmark data illustrating the
performance differences between the approaches.

A mean-shift tracker was chosen, asit is a simple tracker to understand, yet shows good results on a
wide variety of test data. It is also computationally inexpensive compared to other trackers, and
does not require any time-consuming tuning of parameters, as there is no motion or sensor model.

How does it Work?

What does it do?

All of the four versions of the code implement a mean-shift tracker. The input is an image sequence,
and an initial position of a target to track, and the output is a track of the target over the image
sequence. Below are sample output frames of the C++ version tracking a person walking across a
lobby (data from “CAVIAR test case scenarios’):

2 http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATAL/

The Algorithm

The agorithm used to perform the tracking is the mean-shift algorithm described by D. Comaniciu,
V. Ramesh and P. Meer [1].

The system is initialised with two coordinates describing a box containing the target, this is the
“target window” below.

The basic steps are as follows:

1. Initialise the target colour-model, §, using equations (2) and (4) from the above paper.

These equations reduce to be simply a kernel-weighted histogram over the target area.
2. Inthe same way, compute P, , the colour-model for the target, on the current centre position

of the target.

3. Update the weights for each pixel in the target window, using equation (10).

4. Compute the target displacement, using equation (11), and add it to the current centre
position.

5. Repeat steps 2-4 over the current frame until convergence, that is the displacement is zero.

6. load the next frame, and repeat from step 2.

In practice, the algorithm is also limited to a certain number of iterations over any given frame to
speed it up. Also, the iterations stop in the case of “oscillation” where on one loop the displacement
(dx) moves it back to the previous position, and so on. That is, when dx; + dx.+1 = 0.

The colour-model

An important consideration and the only real “tuning” that can be done to the tracker is the choice
of histogram function used. If abin is used for al possible colours in a 24bit image, then there are
256* 256* 256= 16 million bins! As the target window is likely to be thousands of pixels at the most,
the model will contain O for most of these bins — clearly a waste. Also there are several summing
operations performed over the model to normalise it, which would be very costly for 16 million
bins. As a result, the feature space must be quantised, and possibly use less than three colour
channels. The trade-off to be made is speed versus accuracy of tracking — if the feature space is too
gparse then the target will be lost. Similarly if less colour channels are used, they should be chosen
so that they best differentiate the object from the background.

Limitations of the algorithm

The tracking algorithm is unable to cope with certain conditions, mostly due to the fact that the
search for the target in frame n+1 is started at the location for frame n. This means that if the target
is fast moving relative to the frame-rate, then the target will not be present in the search area, so the
tracker will fail. The other main issue is that the search-window is of constant size, so if the target
“zooms’ by moving towards or away from the camera, the reference target model will be wrong.

Fast moving targets could be accounted for by incorporating a motion model, e.g. by feeding the
output into a Kalman filter [2]. Zooming can be handled by using the CAMSHIFT (continually
adjusted mean shift, [3]) method which adjusts the window size.

The C++

The C++ code is simple in its structure, using only the main procedure, a handful of functions and
one class for representing the colour models. The C++ code was developed first to have a reference
implementation of the algorithm for comparison, and the C++ is also easier to understand.

The col our Model class

This class is used for the §, and P, models, and contains methods to update the model,

index the model and get the bin number for a particular pixel in the window (used for the delta
functions).

The most important method is updat eMbdel (), which is called to calculate the colour models (in
steps 1 and 2 above). The function it calculates can be described as “each bin, u, in the modd is
equal to the normalised sum of all kernel values for the pixels faling in that bin” (see egn. (2) in

[1D).

Thisisimplemented by a 2D loop over the window (lines 90-102) which finds the bin for each pixel
(using f i ndBi n()), and uses that as an index into the model array, which then has the kernel value
for that pixel added to it. A 2D array the size of the window representing the kernel is passed into
the method. As the bin for each pixel is calculated, it is stored in the bins array — thisis to avoid re-
calculating it when the weights are updated.

The next two loops (lines 104-112) ssimply then sum al the values, and then divide each value to
normalise the model. The model isinitialised to zero, so that any bins not found in the window will
be correct.

ThefindBi n() function is the histogram function used to assign a particular RGB value to a bin
in the feature space. This is done by using the 3 values as an index into a 3-dimensiona space
represented by a 1-dimensional array.

The main code

The kernel, and the derivative kernel, are pre-calculated as the program initialises. This is because
they are constant and depend only on the size of the target window. Memory is also alocated for
the weights array, asit is passed around using pointers to prevent unnecessary copying.

Thefirst frame is loaded, and the model ¢, calculated for the initial centre position before the main

loop is entered. The main loop loads each frame, and has an inner loop to iterate over each frame
calculating the displacement. This inner loop, representing steps 2-4 above, terminates when the
displacement equals zero, the loop count reaches 20 or the current displacement plus the previous
equals zero (to catch oscillation).

Informally, the weights array is a 2-dimensional array the size of the window, with each value equal
to the square root of q,/ p, for uequa to the bin of the corresponding image pixel (see egn. (10) in

[1]). As has been mentioned above, many pixels may share the same bin, and the model will contain
many bins which are zero in value. Because of this, to calculate the weights efficiently and without

6

divide-by-zero exceptions, the updat eWei ght s() function first loops through the entire model,
setting a temporary array, R, to 0 where p, equals 0. For non-zero vaues of p, the division and

sguare-root are calculated. This avoids un-necessary computation, as if the value is non-zero then at
least one pixel must exist in the window for that bin, so the calculation will be needed. The next
step is to loop over the window (lines 117 to 123) and set each weight value to the value of R
indexed by the bin of the current pixel. The bin is found using the values pre-caculated at the
model update stage.

Informally the displacement is calculated by “the sum of: each pixel’s relative position * its weight
* the kernel derivative al over the sum of: the weight * the kernel derivative’.

This is calculated efficiently (lines 132-143) by looping over the target window and for each pixel
calculating the weight* derivative once, then keeping a running total for the sum of this value, and
the sum of this value times the relative position. The division is then carried out after the loop.

The Hume

There are three versions of the Hume ([4]) code, each version was devel oped using the previous one
as abase.

With lists

In the first version of the code al calculation is carried out using recursive functions, with lists for
the data structures. Boxes are only used for the input and output of frames. The ssimple box
configuration is as follows:

load_im

image

initmodel

image centre

writebox

Figure 2: Box configuration for vector and list based implementations

The main box which loops round loading frames is the i ni t model box. It has two rules, one to
match theinitial condition based on frame number and a second to process the frames. Thefirst rule

callsupdat eMbdel to create the g, model.

The main function that updat eModel calls that does the bulk of the work is doUpdat e, which is
the equivalent to updat eMbdel () in the C++, though operates differently due to the lists. The
three data structures of interest to the function are the image, the model and the kernel. As the
image is a vector so random-access is cheap, the functions behaviour to read it is not important. As
mentioned above, the model will likely contain more empty entries than filled ones, so even
although it's a list, random access is not that expensive, as it will be required for relatively few

values. However, each vaue from the 2d kernel list must be accessed, so the doUpdat e and
doYUpdat e functions operate on the kernel recursively to avoid repeated random access into the
seria data-structure.

The function to return the bin number of a particular pixel operates asin the C++, however note that
the indexing is from 1 in the Hume, as this avoids confusion with the vectors which index from 1in
the current version of Hume.

The other rule in the main box calls updat eCentre on each frame. This function then calls
fi ndNewCent r e with the displacement value for the current frame, this then loops recursively
until the convergence conditions are met.

The conmput eDi spl acenent function works quite differently to the equivalent C++ function.
Most of the work is done using t wodmi xmap. Thistakes in two equal-sized 2D lists, and afunction
that takes two arguments, the output is one 2D list that’s the corresponding values of the original
lists applied to the function. This alows for efficient calculation of the sums over the search
window required by equation (11) (Comaniciu et al, [1]). Thisis used to calculate the products for
the weight-lists and the kernel derivative, and also the relative pixel positions — which are pre-
caculated in a constant list. The suns, sumand csuns (co-ordinate version of suns) are ssimple
functions to do the sums required before the division.

The updat eWei ght s function, and its helpers, are actually misleading names — nothing is updated,
rather a new 2D weight lists is calculated. This is done recursively, using extra parameters for X
and Y in the helper functions to correctly terminate. updat eW is where the actual calculation takes
place, and the actual calculation is the same as the C++. If p, for aparticular pixel is zero, then the

weight is zero, else it's equal to the square-root of ¢,/ p,. Unfortunately this requires random

access into the model structures, but there is no way round this, except to iterate through the
models, which would be far slower.

With vectors

The vector implementation is very similar to the list-based version, only the recursion has been
removed in favour of vecdef and there are no lists. As such functions such ast wodmi xmap arere-
written to perform the same function on 2D vectors, in the form of vec2dm xmap.

As vectors may be accessed randomly with no performance penalty, the updat eMbdel function
(and its helpers) become much simpler, as they can loop over the window and index the kernel and
model as they wish.

The main changes happen in the updat eWei ght s function (and the kernel/derivative functions,
which follow basically the same structure). As before, there is no update, rather a new weight array
is created using vecdef calls. Lets are used so that partial application can be used for the function
passed to vecdef , which should only have one argument. This allows the function which generates
the value in the weight vector for a particular X,Y coordinate to have the X,Y coordinate passed to
it. Thisis best illustrated by the simple code to generate the derivative kernd (lines 193-207):

eval Deriv = vecdef x_size eval Dcol ums;

eval Dcolums X = let eval D Y = conputeDKernel XY
{/gcdef y_size eval b

comput eDKernel X Y = kernelDeriv (X-half_x) (Y-half_y);

kernelDeriv x y = if ((ned x y) > 1.0)

then 0.0
el se 1.0;

In thisexamplex_si ze,y_si ze, hal f _x and hal f _y are constant.

With boxes

In the box-based implementation, there are still no lists — only vectors are used, but only the
constants are calculated by functions (the same ones used in the vector version), the rest of the
calculation is performed by boxes. The wiring of these boxes is best illustrated by the overleaf
diagram (loop-back wiresin following table):

Load im Writebox

Reads in images Writes out images
image centre image
4
7 T I DX
. Loopbox Qu Do_weights 5
; The main box Calculates the new weight array /
A image—— |
9 A
> F——————centre——p|

const
const weights

centre image K-deriv Compute displacement
kernel 3
V2dmm_mul
IEEE S e 6 A 2D vector mix-
Y v P! -, map using multiply
, Model_update
2 Creates new .
N el Splitter
N mode Splits one
wire into 2 The win
model
+ A
V2dmm_mulc
A model Modelsum ~ A 2D vector mix-
3 Sums the entire A map using
4 model » coordinate multiply
model sum cvad
e v2dsum
+ % o Sum\slzadZSI;Tector 8~~ Sums a 2D
) Norm_model N ~al coordinate vector
4 Normalises each
2 element \ﬂ ¢—‘

Compute_dx

é Computes the

displacement

Figure 3: Box wiring of the mean-shift tracker

Loop Number Data on loop-back wires

1 State, centre, frames_|eft, Qu, dx, image, loopcount
Kernel, image, centre, X, y, model

Accumulator, model, size

Sum, size, model

Weights, Pu, Qu, image, centre, X, y

Vectorl, vector2, X, y, result

Vectorl, vector2, X, y, result

Vector, accumulator, X, y

Vector, accumulator, X, y

OR[N |01~ [W[N

10

The white grouping boxes identify functions that are performed by more than one box. For
example, to calculate the target-model there are three boxes. The first creates the model, the second
sums it and the third uses the model and the sum to normalise each element.

The section that computes the displacement does so in the same way as the list or vector based
implementations, only here the “mixmap” functions are replaced by boxes that perform the same
task, likewise the summing boxes.

Thel oopbox isthe “main” box that binds all the functions together, and iterates over each frame.
The operation of this box is shown below:

output the first frame to the nodel boxes to calculate Qu and
wai t

Qu input from nodel boxes, load it into a | oop-back wire

Qutput the frane and current centre to nodel boxes (get Pu),wait

Qut put Pu, Qu,frame and current centre to do_weights and wait for
t he displacenment to return

If a convergence condition is not met, update the current centre
and goto 3.

El se output the updated centre position to witebox, |oad a new
frame and goto 3.

o O AWN =

The do_wei ght s box operates in the same fashion as the vector and list based versions, the only
change here is that the looping is done by the box, using loop-back wiresto keep state.

Method

This section covers the techniques | used to develop the “final” box-based Hume implementation.
Some detail of how the versions differ has already been presented above, this section aims to cover
the methods used and the reasons for them.

C++ to Hume with lists

The initial version was in C++. The main reason for this was that | have used C++ extensively
before and am familiar with it, and also it is a natural choice of language to implement a tracking
system in. It isanatura choice, as it is a fast, mature language, and there are many libraries — e.g.
the image library — available to speed development. It was also of interest to see how easy it would
be to implement a C++ program in Hume.

The biggest difference to overcome was the change from passing around pointers to data structures
which are then used to assign values, to passing around references and being unable to do
assignment. With lists this problem is somewhat solved, as they allow insertion — however it is not
constant time asit iswith arraysin C++.

The other main change is using recursive functions to iterate over lists rather than loops-within-

loops. Thisis afairly simple transformation to make however, consider pseudo-code to loop over a
100x100 2D data structure setting it to O:

11

For x = 0 to x = 100
For y = 0y = 100
Array[x][y] =0
End for
End for

With recursion and lists, this becomes 3 functions:

do_| oop = I oop_x 100
f (x =0)
hen opy
lse ((loop_y x 100): (loop_x (x-1)))

loop_x x =i

t I

e (

loop_y xy =if (= 0)
t hen

el se (O (loop_y x (y-1)))

The x parameter is passed down to the | oop_y function to show how the list could be updated
based on both the X and the Y coordinate, as this is what’'s most commonly required. The “(H:T)”
notation is used to indicate the head and thetail of thelist, asit isin Hume.

The biggest conceptual change between the C++ and Hume implementations is in the use of
“mixmap” functions, to apply a function over a pair of 2D data-structures. This was in part
necessary to ensure that lists were accessed sequentially — i.e. as efficiently as possible, and it also
makes for clearer code. This shows one of the advantages of alanguage such as Hume — the ability
to pass functions as parameters.

Lists to vectors

The conversion from list based recursion to vectors, with no recursion, is a simple one. However, it
relies on having abuilt in vecdef function, which defines a vector of a given (constant) size using
a supplied function. The function supplied should take one argument, which is the position in the
vector. This creates a problem with 2D structures, where both the X and the Y coordinate are
needed by the inner-loop, however this can be overcome by using | et for partial application of
functions as shown below:

do_| oop = vecdef 100 | oop_x

loop_x X =1let loop_y Y = inside_loop XY
in
vecdef 100 | oop_y

inside loop xy =0

This code does the same as the previous code in the list section, but using vectors. Note that
although it just sets each element to O, the X and Y coordinate are still passed to the function
defining each component’ s value.

There is one fatal flaw in this approach — although it works in the current version of the Hume

interpreter, | et should not be used to define functions according to the specification. In addition,
partial application of any kind is also forbidden.

12

The use of vecdef also shows up aweakness is the type declaration syntax for the current version
of Hume. Vector types must be defined with a range, and this range must be a constant but only
constant digits are permitted by the syntax — not constant expressions. The implication is that use of
vecdef, to define vectors whose length is a constant expression, prevents the program being
typed. Thisimplementation gets away with it however, asthereis currently no type checking.

Other utility functions such as mixmap are easily re-written in this new style to accommodate
vectors. Thelist insertion routines can be replaced with the built-in updat e.

Vectors to boxes

The first step in creating a box based implementation was to write replacement “utility” boxes that
performed the functions such as 2D mixmap and summing. A box which loops over a 2D structure
and applies afunction to the elementsis relatively simple, to continue with the example used above,
we have:

box do_I oop
in (input_vector, x,y, vector)
out (x’,y’,vector’,ouput_vector)

mat ch

(w, _*, * *) -> (100, 100, w, *) |

(*, -1,-1,*) -> (-1, -1 * *) | --accepting state
(*, 0, *,v) ->(-1, -1, *, v) |

(*, x,0,v) -> ((x-1),100, v, *) |

(*y X, y, v) -> (X ,¥-1, (update2d v x y 0), *);

The x,y and vector wires are wired up as loop-back wires, and the input comes in on
i nput _vect or, the output on out put _vect or. The updat e2d utility function is simply the
normal vector updat e applied to a 2D vector.

This example has slightly more functionality than the previous examples in that it accepts an input
vector and “returns’ avector. Thisisto illustrate a useful technique for utility boxes. Asthe box is
expected not to run just once, but to be “caled” repeatedly, it is important that it returns to a
runnabl e state once processing is complete. This is achieved by the use of “-1” on both the counters
to alow it to indicate an accepting state. As the first rule matching on the input is before the
accepting state, it will take precedence in the event of further input requiring processing.

It is easy to see how this ssimple box could be extended to perform any of the previous
implementation’s functions that require looping — many more examples can be found in the code
(see the appendix).

Performance and metrics

The most important measure of performance is whether or not the different implementations give
the same output track for given input data. Having tested the four implementations on several test
data sets, they al give the same output. The only difference is in the boxes version of the Hume. It
differs in that there is no rule to match the “oscillation” convergence condition, as it would add
more, unnecessary complication in the form of additional wires. The difference this makes to the
output, isthat in the case where with each iteration the centre jJumps between the same two pixels,
it may come to rest on the pixel that the other versions do not land on.

13

There is also some difference in the intermediate data — for example the kernel data structures. This
seems to occur due to the different precision in the Hume implementations compared to the C++ -
Hume in theory allows the specification of precision, but thisis not yet implemented.

Speed of execution

Another measure of performance is the speed of execution. As | was working with somewhat
incomplete versions of the Hume interpreter, the speed of execution relative to the C++ is not realy
relevant, but included for interest. Or far more relevance is the difference between the Hume
versions.

Test setup

All the tests were carried out on “jove”’, which is a dua 933Mhz Pentium 3 machine, with 1Gb of
RAM, running linux kernel version 2.6.8-1.521smp and GCC 3.3.3. The C++ was compiled with
the options “-O2 -Wall -ansi -pedantic -ffast-math”. Times were measured using the unix “time”
command to get user-execution time.

The data used was again from the CAVIAR project, and was footage of some shoppers in a
shopping mall®. So that the test could be run in a reasonable time-frame (due to the poor
performance of the Hume) the images were reduced to 320x240, and the tests run over the first 150
frames. The PPM image format was used for the C++, and the Hume used the concatenated and
stripped PPMs produced by the C++ utilities.

Results

| mplementation Total time Timeless1/O
C++ 0m21.44s ~0.3s

Hume — Vectors 22m15.972s ~3mb3s
Hume- Lists 66m18.510s ~47m56s
Hume - Boxes 75m31.86s ~57m9s

The “Time less I/0” column is the time taken just for processing — without counting file I/O. This
number was obtained by using test programs to measure the time taken to load and save one frame,
and then scaling this up to gain an /O time value for the entire sequence.

The results are as expected. The C++ is fastest by along way, the vector version is the fastest Hume
version, followed by the lists then the boxes.

As the lists offer no advantage- they are smply the easiest to code, using simple recursion and they
do not allow for random-access it is easy to see why they are slower than the vectors. As vectors
allow for constant time update and reading, this provides great advantages — mostly in access to the
large model arrays.

? http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATAL/ EnterExitCrossingPathslcor.mpg

14

The box version, despite its use of vectorsis very slow. Thisis most likely attributed to the fact that
for each “cycle” every box must have its rules evaluated, even athough most of the time, most of
the boxes do not do anything. This extra evaluation of rules adds considerably to the cost.

Code size

Another interesting comparison is the amount of code needed by the various approaches. The
follow table shows afew metrics comparing the relative sizes:

No. Functions (utility) No. Characters
C++ N/A 12 N/A 11067
Hume - Lists 3 49 20 7411
Hume - Vectors 3 43 16 6457
Hume - Boxes 13 25 9 11572

The “(utility)” column lists the number of those functions that are utility ones e.g. map etc. The no.
of characters measure may not be very accurate — the results were found using “wc” and “grep” to
strip the lines of comments, though the formatting-spaces remained. Also it ignores the helper
programs used to prepare the input for the Hume versions and the image library used by the C++.

It is no surprise that the boxes version is largest — the syntax for wiring is quite verbose, and what
were originally simple functions are now complex rules to be matched.

The size for the C++ is also fairly irrelevant — it could have been written to be smaller, instead of
written to be fast and readable.

15

Summary

In summary, | have implemented a box-based motion tracker in Hume, which does not use any
recursive functions to carry out its task. | also implemented a C++ version for comparison, and two
other Hume versions were created in the course of developing the boxes version.

Comparing the versions, it is no surprise that the C++ is many times faster — however, that
difference is only a factor of 60 for the fastest Hume version (22 minutes for the vectors, compared
to 21 seconds for the C++). And this is using an interpreted implementation of Hume — | would
hope that future Hume compilers would see even greater speed gains.

A Hume implementation also does not require vastly more code than a C++ one —though it is not as
functional, and requires input pre-processing. However, | feel that the Hume code is not as readable
as the C++ - the boxes version in particular is tricky to read and understand, it is difficult to get an
immediate intuition of what a program does from lines of rules to be matched.

16

Bibliography

[1]

[2]

[3]

[4]

"kernel-based object tracking” D. Comaniciu, V. Ramesh, P. Meer, IEEE Trans. Pattern
Analysis and Machine Intelligence, vol 25 (5),pp564-577, August 2003

“ Kalman Filtering” Mohinder S. Grewal, Angus P. Andrews, Wiley-Interscience 2001,
ISBN: 0-471-39254-5

“Computer Vision Face Tracking For Use in a Perceptual User Interface”, Gary R.
Bradski, Intel Technology Journal Q2 '98, 1998

“ The Hume Report, Version 0.3, Kevin Hammond, Greg Michaelson, Technical report,
School of Maths and Computer Sciences, Heriot-Watt University/School of Computer
Science, University of St Andrews, 2005.
http://www-fp.dcs.st-and.ac.uk/hume/report/hume-report.ps

17

Appendix A. Running the code

The Hume CV'S repository contains a copy of this report, al the code and some example output
from the tracker run on various test sequences.

C++

Files

Y ou should have these files from the archive

CImg-docs -- The readme and license doc for the Cimg library.
Clmg.h --the Clmg library (it's self-contai ned)
colourModel.cpp/.h --the colour model object, used by meanshift.cpp
initTracker.cpp --code for the program to get initialisation co-ords

M akefile --the linux makefile for the code.

meanshift.cpp --code for the meanshift tracker.

segcons.cpp --for constructing image sequence files for the hume.
seqdes.cpp --for extracting images from the hume image sequences
Compiling

"make" will make al the targets. These are as follows:

initTracker
meanshift

seqcons
seqdes

Targets can be made individually. There are no dependencies, though the “imagemagik” toolbox
will mean that more image formats can be handled (to see if you have it, check if you have
"convert").

Input image sequences

The input images can be in any format supported by "convert” if you have it installed, otherwise
they must be simple formats such as ppm (see CImg docs for details). The input should be a series
of individual frames. If you have a video file, and wish to split it into frames, | used the excellent
Virtualdub (www.virtualdub.org).

Frame name should not be padded with Os.

E.g. "frame0" to "framel50" is ok, whereas "frame000" to "framel50" is not.

Usage

18

initTracker

All of the meanshift programs require initialisation parameters of the top left, and bottom right,
coordinates of a box containing the target in the first frame. To make this easier, the initTracker
program lets you select these by clicking on the image.

initTracker first _frame

Will run the program. First click the top left corner, then the bottom right - the target area will then
be highlighted and the terminal will ask if thisis ok. If you press 'n' then the process repeats, if you
press'y' the program exits with the coordinates of the target.

meanshift

This runs the tracker.

Typing "meanshift” will show the usage, it's best explained by example though:
.I'meanshi ft ./redcup/redcup .ppm O 99 77 63 148 151

In this case, the images are al in ./redcup, they are all .ppm and they are named redcupO.ppm to
redcup99.ppm (so the name_stem is ./redcup/redcup.

The top left corner is 77,63 and the bottom right is 148,151

Output will appear in the same place as the input images, and the same filenames but with "_out"
appended to the name.

Editing the Histogram Function

Thisisthe only way you can really "tune" the tracker, see the report or the paper for details on this.
It isset upinitially to use a 3 colour 16 bins per colour model, that is a feature space of 4096. If this
is changed then "make clean” MUST be run before a recompile as meanshift.cpp uses the header
too!

The bins-per-colour (BPC) can be changed in colourModel.h, but be sure to set BINSIZE to
256/BPS, and if less colour channels are to be used, then change NUMBINS too (e.g. "NUMBINS
BPC" for only one channel) and edit the "findBin" method to return O for the unused channels (see
comments for details).

The Utility Programs

segcons

This constructs image sequences for the hume. "./seqcons’ will display usage. Note the output is on
std_out. Again an exampleis easiest:

./seqcons ./redcup/redcup .ppm 0 99 > redcup. seq

19

This converts the redcup frames (in the meanshift example) to a single redcup.seq file.

The .seq file will be ascii ppm image data, concatenated and with no headers.

seqdes

This takes in a image sequence file (such as output from the hume code) and outputs an image
sequence. Note that you need to know the original image dimensions. An example:

./seqdes ./out./output .jpg 0 99 redcup.seq 320 240

This would output the redcup.seq sequence to ./out/outputO.jpg to ./out/output99.jpg and says that
it's a sequence of 320x240 images.

The Hume

Performance note

These all operate the same way, except the boxes version, which does not catch "oscillation” as a
termination condition (see the report). They run MUCH slower than the C++ code - again see the
report.

Compatibility note

Currently (19/9/05) the code only runs on the latest version of the Hume interpreter (contact Robert
Pointon for details). It requires support for the "vecdef" and "vecmap" operations, and also

"update”.

Perhaps more controversially, the vectors version uses "let" to define functions (for partial
application of functions) - this shouldn't be allowed in Hume.

Note the boxes version doesn't do this (except for the constants, which could be generated by boxes
t00).

Also, it uses the formatting input of the interpreter to load image data into 3d vectors.

Files

meanshift-boxes.hume --implemented using boxes for everything but cal culating the constants
meanshift-lists.hume -- Implemented in functions, using lists and recursion.

meanshift-vector s.hume -- implemented using vectors, primarily vedefs.

Usage

20

All of the versions are run the same way. For example:
hune neanshi ft - boxes. hune 2> out put. seq

The output is an image sequence on std_err - hence the pipe command above. This is because the
Hume file output doesn't flush until the EOF character is written, so for large sequences memory
usage is huge. Note that “2>" is the syntax for piping to std_err only for the “bash” shell, depending
on your shell you may need to use a different symbol.

The std_err will display progressin terms of traces on the number of frames remaining.

To set the input sequence file, the constant "im_seq" stream must be set in the "program parameters
section.

The size of the image frames is defined in the "image" type declarations, and the number of frames
is unfortunately hard-coded in the main looping box itself - see the comments in the files for help -
it's currently set for 150 frames.

target details are specified by the TL_X, TL_Y, BR_X,BR_Y constants, for the Top Left and
Bottom Right X,y coordinates.

To adjust the histogram model used, edit the BPC constant (bins-per-colour) and the
NUM_CHANNELS constant. Note that if a different number of colour channels are used then the
"findbin" function must also be changed - it's currently set to use 128 bins in the red channel only,
and the example 3 channel "findbin" function is currently commented out.

21

Appendix B. Code

meanshift.cpp

/I meanshift.cpp - a neanshift tracker
//1ain Wallace, 08/2005

// Based on the equations in "kernel-based object tracking"
//D. Cormaniciu, V. Ranmesh, P. Meer, |EEE Trans. Pattern

/1 Anal ysis and Machine Intelligence, vol 25 (5), pp564-577,
/ / August 2003

/I Ref erences to equations, and nunbers, refer to this paper.
/1Al so used matl ab code by Zsolt L. Husz from HW for reference

/] Sone notes on term nol ogy.
/1"wi ndow' refers to the user-defined region covering the target.

// TODO put references in to the eqns in the paper
#i nclude "Clng. h"

#i ncl ude <i ostreanr

#i ncl ude <sstreanp

#i ncl ude <string>

#i ncl ude <tine. h>

#i ncl ude "col our Model . h"

usi ng namespace cing_library;
usi ng namespace std;

doubl e kernel (int x,int y,int half_x,int half_y)

{
/1 This cones froma sinplified version of eqn(12).
//Note that this makes use of the fact that a |ot of the kernel terns cancel out,
/las it is primarily used in egn(2) and eqn(3).
//the distance to the point, normalised to unit radius fromthe centre
doubl e euclideanD stance = sqrt(pow ((double)(x)/(double)(half_x)) ,2.0) +pow ((double)(y)/(double)(half_y)) ,2.0));
if (euclideanDi stance > 1)
return(0.0);
el se
return(1.0-pow eucl i deanDi stance, 2));
}

voi d eval Kernel (double*** kArray,int half_x,int half_y)

//This function cal cul ates the Epanechni kov kernel over
//the size of the w ndow.
//x and y vary accoding to local co-ords with 0,0 at the centre

for (int x = -half_x;x < hal f_x; ++x)
for (int y = -half_y;y < half_y; ++y)

(*kArray) [x+hal f _x][y+hal f_y] = kernel (x,y, hal f_x, hal f_y);

}

void eval Kernel Deriv (int*** kArray,int half_x,int half_y)

{

/1 This function cal culates the derivative of the Epanechni kov kernel over

//the size of the wi ndow. Appears as "g" in the paper.
//x and y vary accoding to local co-ords with 0,0 at the centre
doubl e eucl i deanDi st ance;
for (int x = -half_x;x < hal f_x; ++x)
{
for (int y = -half_y;y < half_y; ++y)
{

eucl i deanDi stance = sqrt(pow ((double)(x)/(double)(half_x)) ,2.0) +powm ((double)(y)/(double)(half_y))

if (euclideanDi stance > 1)

size_x,int half_size_y,string nane)

(*kArray)[x+hal f_x][y+hal f_y] = 0;
el se
(*kArray) [x+hal f _x][y+hal f_y] = 1;
}
}
}
voi d witeFrane(Cl ng<unsi gned char>* franme,int centre_x,int centre_y,int half_
{
const unsigned char col our[3] ={255, 0, 0};
int x1 = centre_x - half_size_x;
int yl = centre_y - half_size_y;
int x2 = centre_x + half_size_x;
int y2 = centre_y + half_size_y;
//H ghlight the target in a fetching transparent red
(*frame).draw rectangl e(x1,yl, x2,y2, col our, 0. 4);
//This code wites the frane (wth box) to a file.
//Filenane will be the original, with "_out" appended before the extension.
string fil eNane(nane);
fileName.insert((name.size()-4),"_out");
(*frame).save(fileNanme.c_str());
}

voi d updat eWei ght s(doubl e*** wei ghts, col our Model *Pu, col our Model *Qu, unsigned int x_size,unsigned int y_size)

//This calcul ates the pixel weights for the wi ndow, based on the col our
// Described in eqn(10)

nodel .

,2.0)),

23

doubl e R[NUMBI NS] ;

for (int i = 0;i< NUMBINS; ++i)
{
/I Note if there're no pixels in a bin we'll never need to use the val ue,
//so set corresponding Rto O
/I Necessary, as otherwi se there will be divide-by-zero errors.
if ((*Pu)[i]==0)

R

0.0;

sqrt((C*Q[i]/(*Pu)[i]))

-
1

}
for (unsigned int x = 0; Xx<x_size; ++x)

for (unsigned int y = 0;y<y_size; ++y)

{
}

(*weights)[x][y] = RI(*Pu).theBin(x,y)];

}

voi d conput eDi spl acenent (doubl e*** wei ghts,int*** kArray, unsigned int centre_x,unsigned int centre_y,int half_x,int half_y,int *dx,int *dy)
{

doubl e wei ght _sum = 0;

doubl e x_sum =0, y_sunO0;

doubl e cur Pi xel Wi ght ;

for (int x = -half_x;x < hal f_x; ++x)

{
for (int y = -half_y;y < half_y; ++y)

//the bottom half of eqn(11) (sumthe weights under the kernel)
cur Pi xel Wi ght = (*wei ghts) [x+hal f _x+1] [y+hal f _y+1] *(*kArray) [x+hal f _x+1] [y+hal f _y+1];
wei ght _sum += cur Pi xel Wi ght ;
// The top hal f of Egn(11)
X_sum += x*cur Pi xel Wi ght ;
y_sum += y*cur Pi xel Wi ght ;
}

//do the division

*dx = (int)floor(x_sunlwei ght_sum;

*dy = (int)floor(y_sum wei ght_sum;

}

int main(int argc, char **argv)

if (argc !'=09)

24

// TODO nmake the usage nore hel pful once I know what it does!

cout << "Usage: neanshift nane_stem extension start_franme_no end_franme_no TL-X TL-Y BR-X BR-Y" << endl;

cout << "name-Stem = the invariant part of the image's filenanes" << endl;
cout << "extension = the file extension of the inmages" << endl;

cout << "start and end frame no - fairly self-explanatory" << endl;

cout << "TL-X = top-left corner X co-ord" << endl;

cout << "TL-Y = top-left corner Y co-ord" << endl;

cout << "BR-X = bottomright corner X co-ord" << endl;

cout << "BR-Y = bottomright corner Y co-ord" << endl;

exit(1);

//First off, save the argunents

int startNo = atoi (argv[3]);

int endNo = atoi (argv[4]);

string naneSten{argv[1]);

string extension(argv[2]);

//Use a stringstreamfor creatign inage filenanes, as it's easier to manipul ate
stringstream cur FrameNanme(i os_base::in | ios_base::out);

int x0 = atoi (argv[5]);
int yO = atoi (argv[6]);
int x1 = atoi(argv[7]);
int yl = atoi(argv[8]);

int curFrameNo = start No;

//calculate the centre of the window, and the half-size (size fromcentre to edge)
//Note this inplicitly makes the wi ndow an odd size, which is required so there is
//a centre pixel (not halfway)

int centre_x = (int)floor((x1-x0)/2.0)+x0;

int centre_y = (int)floor((yl-y0)/2.0)+y0;

const int half_size x = centre_x - xO0;

const int half_size_y = centre_y - yO;

const int x_size = 2*hal f_size_x+1;

const int y_size = 2*hal f_size_y+1;

cout << "Initialising the weight array" << endl;
//declare a 2d array the size of the w ndow
//This is used to store the pixel weights, as described in eqn(10)
doubl e **wei ght _array;
wei ght _array = new doubl e*[x_si ze] ;
for (int i=0;i<x_size;++i)
wei ght _array[i] = new doubl e[y_size];

cout << "Initialising the kernel" << endl;
//declare a 2d array the size of the window, and fill it with the kernel function

doubl e **kernel _array;
kernel _array = new doubl e*[x_si ze];
for (int i=0;i<x_size;++i)
kernel _array[i] = new double[y_size];
//the value of the kernal is static, as the only variable is the position of the pixels
/lrelative to the centre, and the w ndow size is constant.

25

eval Ker nel (&ernel _array, hal f _si ze_x, hal f _si ze_y);
cout << "Initialising the kernel derivative" << endl;

/I now the derivative of the kernel

/IAS with the kernel, this is needed, but also constant (as the kernel is constant)

int **kernel Deriv_array;
kernel Deriv_array = new int*[x_size];
for (int i=0;i<x_size;++i)
kernel Deriv_array[i] = new int[y_size];

eval Ker nel Deri v(&ernel Deriv_array, hal f_size_x, hal f_size_y);
cout << "Initialising the nodel (Qu)" << endl;

//this is odd - why does it clear the buffer rather than set it??

// Hence the code "seens" to put naneStemin the stringstreamtw ce, but
/lactually only does once.

cur FrameNare. str(nameSten ;

cur FrameNanme << nanmeStem << cur FraneNo << ext ensi on;

cout << "Loading: " << curFrameNane.str().c_str() << endl;
Cl mg<unsi gned char> frame(curFrameNane.str().c_str());

//we need the nodel of the wi ndow
col our Model Qu;

Qu. updat eModel (&f rane, centre_x, centre_y, hal f_si ze_x, hal f _si ze_y, &ernel _array);

cout << "Witing the first frame" << endl;

/I NOTE: currently the witeFrame routine just draws the rectangle, output is
//to display only.

writeFrame(& rame, centre_x, centre_y, hal f _size_x, hal f _si ze_y, cur FraneNane. str());
/1 Cl mgDi spl ay nmi n_di sp(frane, "output", 0, 0);

col our Mbdel Pu;
int dx = 0, dy=0, pdx = 0, pdy = 0;

//for sone stats
int aviters = 0;
int mxlters 0
int mnlters 9

9999:

tinme_t start, end;

time(&start);

cout << "****Beginning tracking****" << endl;

for (curFrameNo = startNo+1; cur FraneNo <= endNo; ++cur Fr anmeNo)

// Load the frane
cur FranmeNane. str(nameSten ;
cur FrameNanme << nanmeStem << cur FraneNo << ext ensi on;

26

cout << "Loading: " << curFraneNane.str().c_str() << endl;
frame = franme. | oad(curFrameNane.str().c_str());
/W iterate over the current frame until it converges.

int |1oopCount = 0;
bool exit = fal se;

while (exit == fal se)
{

pdx = dx;

pdy = dy;

| oopCount ++;
Pu. updat eMbdel (& rane, centre_x, centre_y, hal f _si ze_x, hal f _si ze_y, &ernel _array);
updat eWei ght s(&wei ght _array, &Pu, &, x_si ze, y_si ze);
/I now conput e the displacenent
conput eDi spl acenent (&wei ght _array, &ernel Deriv_array, centre_x, centre_y, hal f _si ze_x, hal f _si ze_y, &Ix, &dy);
/[/cout << "dx =" << dx << " dy =" << dy << endl;
centre_x += dx;
centre_y += dy;
// Check if we've converged
/1 Al'so, strictly a better convergence rule could be used
/'l - see steps 4-6 on p567 in the paper.
/1 There is a check for "oscillation" due to rounding errors.
if (((dx ==0) & (dy == 0)) || (loopCount > 20) || ((pdx + dx == 0) && (pdy+dy==0)))
exit = true;
}
avlters += | oopCount;
if (loopCount > naxlters)

maxlters = [oopCount;
if (loopCount < mnlters)
mnlters = | oopCount;

/Imow wite out the frane

/I NOTE: currently the witeFrame routine just draws the rectangle, output is
//to display only.

writeFrame(& rame, centre_x, centre_y, hal f_size_x, hal f _si ze_y, cur FraneNane. str());
[/ mai n_di sp. di spl ay(frane);

}

time(&end);

cout << "****Done tracking****" << endl;

cout << "Average iterations per frame =" << (avlters/curFraneNo) << endl;
cout << "Max iters =" << maxlters << endl;

cout << "Mn iters =" << mnlters << endl;

cout << "Ave. Fps: " << (curFrameNo/difftime(end,start)) << "fps" << endl;
cout << "Ave. ips: " << (avlters/difftime(end,start)) << "ips" << endl;

//be a good little programand free the nenory :-)
for (int i=0;i<x_size;++i)

del ete[] weight_array[i];
del ete[] kernel _array[i];

del ete[] kernelDeriv_array[i];

del ete[] wei ght_array;

del ete[] kernel _array;

del ete[] kernel Deriv_array;
exit(0);

colourModel.h

/'l col our Model . h - defines the col our Model object

/1 This is used to create the wei ghted histogramused by the nean-shift tracker.
/1 lain Wallace 16/08/05

#i f ndef COLOURMODEL_H

#defi ne COLOURMODEL_H

/1 Uses the Cing library, found at http://cing.sourceforge. net/
#i nclude "Clng. h"

/11 MPORTANT: Changes to these values WLL cause crashes unless you do "nake cl ean”

//then rebuild nmeanshift.o aswell, as it uses thenl
#define BPC 16 /1 bins per col our
#define BI NSI ZE 16 /lsize of each bin MJST BE BPC/ 256

#defi ne NUMBI NS BPC*BPC*BPC //total nunber of bins
/1if only two colours are used then

/| #def i ne NUMBI NS BPC*BPC

/1if only one col our

/| #defi ne NUMBI NS BPC

cl ass col our Model

L

public:
col our Model () ; /linitially the histogramwi |l be enpty.
~col our Model () ;
/1 The [] operator indexes into mnodel.

//Note index is O to nunBins-1
doubl e operator[] (unsigned int bin);

//returns the bin-no. of a RGB val ue
unsi gned int findBin(unsigned char R unsigned char G unsigned char B);

/lenmpties the nodel for updating.
voi d cl ear Model ();

//takes in a kernel covering the RO too, and instead of a regul ar histogram
//creates the nodel for the RO based on the kernel too.
/1 Used for Qu and Pu

28

voi d updat eMbdel (cing_library:: Cl ng<unsi gned char>* image, //The inmage in question

unsi gned int centreX, //X co-ord of centre
unsi gned int centreY, /1Y co-ord of centre
int hal f_x, //half the x-size of the w ndow
int half_y, //half the y-size of the w ndow
doubl e*** kArray); //the kernel

//returns the bin-nunber of the pixel at x,y in the binallocation table
//unsafe! well kinda, returns O and prints to std-err for errors

/1 MPORTANT! This takes an index 0-x_size, not the -half_x to half_x indexing
/' lused el sewhere!

unsi gned int theBin(unsigned int x, unsigned int y);

private:

doubl e m_nodel [NUMBI NS] ;
unsi gned i nt** bins;

bool binslnit;

unsi gned int mX_di m my_di m

}s
#endi f // COLOURMODEL H

colourModel.cpp

/ / col our Mbdel . cpp - the col our Model object
//1ain Wallace 16/08/05

#i ncl ude "col our Model . h"

#i ncl ude <math. h>

#i ncl ude <i ostreanr

usi ng nanespace cing_library;
usi ng nanmespace std;

col our Model : : col our Model ()

{
/I model nust be initialised to O
menset (m nodel, '\0', sizeof(mnodel));
//Se we can tell if the nmenory's been allocated
binslnit = fal se;
}
col our Model : : ~col our Model ()
{

//Free the bins nenory, if it's assigned.
if (binslnit)

for (unsigned int i=0;i<mX_dim++i)
del ete[] bins[i];

29

del ete[] bins;

}
doubl e col our Model : : operator[] (unsigned int bin)
{
/1 Use GITE as index is fromO
if (bin >= NUVBI NS)
{
cerr << "ERROR! Tried to access a nodel bin that doesn't exit!" << endl;
return O;
}
return m nodel [bin];
}

unsi gned int col our Model :: findBi n(unsigned char R, unsigned char G unsigned char B)
{
//return the bin nunmber of a pixel according to its RGB val ue.
/I Note that the constants defined in the header file, and this function
//control the only real tuning of the tracker.

/lscal e the col ours
unsigned int r,g,b;

r = (unsigned int)floor((float)(R BINSIZE));

g = (unsigned int)floor((float)(d BINSIZE));

b = (unsigned int)floor((float)(B/BINSIZE));

/11f, for exanple, the blue channel is not to be used, then change for:
I1b = 0;

return (r + BPCrg + BPC*BPC*b);

}
voi d col our Model : : cl ear Model ()
{
menset (mnodel, '\0', sizeof(mnodel));
}

//This perfornms the function described by egn(2) and eqn(4) (effectively the sane)

/11t saves the bin that each pixel is allocated too, as this prevents it being

//re-cal cul ated when the weights are updat ed.

voi d col our Model : : updat eModel (cing_l i brary:: Cl ng<unsi gned char>* inage, //The inage in question

unsi gned int centreX, /1 X co-ord of centre

unsi gned int centreY, /1Y co-ord of centre

int half_x, //half the x-size of the w ndow
int half_y, /lhalf the y-size of the w ndow
doubl e*** KArray) /'/the kernel

cl ear Model () ;
//first tine this is called, create bins with the size of the w ndow

30

/I NOTE: nore cunni ng nenory nanagenent woul d be required for reszizing w ndows!
if (!'binslnit)
{

cout << "Allocating a bin allocation table" << endl;

//allocate the nenory

mX_di m = 2*hal f _x+1;

nmY_di m = 2*hal f _y+1;

bi ns = new unsigned int*[mX_diny;

for (unsigned int i=0;i<mX_diny++i)

bins[i] = new unsigned int[mY_dini;
binslnit = true;

}
for (int x = -half_x;x <= hal f_x; ++x)

for (int y = -half_y;y <= half_y; ++y)

{
//update the bin allocation table at the sanme tine
int i X = centreX + Xx;
int iY =centreY +vy;
bi ns[x+hal f _x][y+hal f _y] = findBin((*image)(iX iY,0),(*image)(iX iY,1),(*image)(iXiY,2));
//addi ng on the kernel function, instead of summing |like a regul ar histogram
/laccounts for the delta function in the eqgns.
m_nodel [bi ns[x+hal f_x][y+hal f _y]]+= (*kArray)[x+hal f_x][y+hal f _y];

}

// The nmodel val ues nust by normali sed.
doubl e total = 0;

for (int i = 0;i< NUMBINS; ++i)
total += monodel [i];

}

for (int i = 0;i< NUMBINS; ++i)

{

m nodel [i] /= total;
}
}
unsi gned int col our Model ::theBin(unsigned int x, unsigned int y)
if ((x >mXdim || (y >mv_dim || (!binsinit))
{

cerr << "ERROR! Attenpted to access a pixel out of the window" << endl;
return(0);

el se

return(bins[x][y]);

meanshift-lists.hume

--nmeanshi ft. hune - a neanshift tracker
--lain Wallace, 08/2005

--Based on the equations in "kernel -based object tracking"
--D. Commniciu, V. Ramesh, P. Meer, |EEE Trans. Pattern
--Anal ysis and Machine Intelligence, vol 25 (5), pp564-577,
- - August 2003

--References to equations, and nunbers, refer to this paper.
--Al'so see ny C++ inplenentation of this algorithm
--as | feel it's easier to understand.

--The output images will be to std-err, so it should be
--piped into a file, which seqdes can then be run on.
--The std out will display the traces, that is the nunber

--of frames remaining and the current centre |ocation.

program

--sone basic types, used all over the place
type Int = int 32;

type Float = float 32;

type nodel = [Float];

--this is a sequence of inages, ascii ppmw th headers stripped, concatenated into one file.
--output is the sane, use the C++ progs to construct/split the files

streamimseq from"person-smseq";

streaminms_out to "person-track-out.seq";

stream out putscreen to "std_out";
streamouterror to "std_err";

--CHANGEME this section, specific to image size
type pixel = vector 1..3 of Int;

type imrow = vector 1 .. 320 of pixel;

type inmage = vector 1..240 of imrow,

type coord = vector 1..2 of nat 64,

32

-- CHANGEME t hese are target details

constant TL_X = 109;
constant TL_Y = 59;
constant BR X = 134;
constant BRY = 127;

constant hal f_x
constant half_y

((BR.X - TL_X) div 2);
((BRLY - TL_Y) div 2);

constant x_size
constant y_size

(2*hal f _x);
(2*hal f _y);

constant init_centre = << (TL_X + half_x), (TL_Y + hal f_y)>>;

-- CHANGEME These are the settings used to define

--the histogram The things to change are BPC (bins per col our)
--and the Nunmber of col our channels. (NUM _CHANNELS)

--Note that changing the nunber of channels requires selecting
--and appropriate "findbin" function bel ow.

constant BPC = 128;

constant BINSIZE = (256 div BPQO);

const ant NUM CHANNELS = 1;

constant NUMBINS = (BPC ** NUM _CHANNELS) +1;

expressi on "nunbins";

expressi on NUMBI NS;

--hel per functions to update a 2d vector (inage)

update2d tdvector x y item = update tdvector x (update (tdvector@) y iten);
--note update can be defined in terns of vecdef |ike so

--nmyupdate vec pos val = let

-- ff i =if i == pos

-- then val

-- el se vec@

-- in vecdef (length vec) ff;

sqr :: Float -> Float;
sgr X = X*X;

--Define the map function

map £ [1 =[] ;
map f (h:t) =f h:map f t;

--function to multiply two nunbers
ml x y = x*y;

--this maps a function over 2 EQUAL SIZE lists, resulting in one |ist
--that's the conbination of the two.

--Kinda like a zip and a fold all rolled into one.
mxmap f [] [1 =[];

mxmap f (hi:t1) (h2:t2) = ((f hl h2):(nixmap f t1 t2));

--mxmaps 2 equal size 2d lists together, returns a 2d i st

--again like a map over 2dlists, and a fold.

twodm xmap f [] [] =11;

twodm xmap f (h1l:t1) (h2:t2) = ((mixmap f hl h2):(twodm xmap f t1 t2));

--define foldr
foldr f z [] = z;
foldr f z (x:xs) =f x (foldr f z xs);

--and an "add" function
add x y = x +vy;

--suma |ist
suml| = foldr add 0.0 I;

--sumthe sublists in a list of lists
sums | = map suml;

--returns a pixel in the inmage, indexed using the centre and a range 0-x_size
getP :: image -> Int -> Int -> coord -> pixel;
getPimx y cen = (im@(cen@) +y-hal f_y)) @ (cen@) +x- hal f _x);

di vCoord :: coord -> Float -> coord;
di vCoord dx sum = << (((dx@) as Float)/sum) as Int,(((dx@) as Float)/sum) as Int >>;

mul Coord :: coord -> Float -> coord;

mul Coord dx sum = << (((dx@) as Float)*sun) as Int,(((dx@) as Float)*sun) as Int >>;

addCoord x y = << x@ + y@, x@ + y@>>;
csum| = foldr addCoord <<0, 0>> |;

csums | = csum (map csuml);
--a function returning a list-of-lists, representing the Epanechni kov kernel
--over the search w ndow

--This cones froma sinplified version of eqn(12).
--Note that this nmakes use of the fact that a |ot
-- of the kernel terns cancel out, as it is
--primarily used in egn(2) and egn(3).

normal i sedEucl i deanDi stance :: Int -> Int -> Float;

nor mal i sedEucl i deanDi stance x y = sqgrt(sqr((x as Float) / (half_x as Float)) + sqgr((y as Float) / (half_y as Float))

--just to renane it to nake the code a bit nore nanagbl e.
ned x y = normalisedEuclideanDi stance x vy;

kernel :: Int ->1Int -> Float;

)

kernel x y =if ((ned x y) > 1.0)
then 0.0
else (1.0 - sqgr(ned x vy));

eval Kcols :: Int ->1Int -> [Float];
eval Kcol s columNo ypos = if (ypos == half_y)
then [kernel columNo ypos]
el se ((kernel columNo ypos): (eval Kcol s col utmNo (ypos+1)));

eval Krows :: Int -> [[Float]];

eval Krows xpos = if (xpos == hal f_x)
then [eval Kcol s xpos (0-hal f_y)]
el se ((eval Kcol s xpos (0-half_y)): (eval Krows (xpos+1)));

--the list returned is indexed first by X then by Y
--that is, it's alist of colums

--a list of lists of floats.

eval Kernel :: [[Float]];

eval Kernel = eval Krows (0-half_x);

--Functions to calculate the derivative kernel, as a |ist
--of lists, like the kernel. This is what appears as the
--"G' termin the equations in the paper.

kernelDeriv :: Int -> Int -> Float;
kernelDeriv x y = if ((ned x y) > 1.0)
then 0.0
el se 1.0;
eval Dcols :: Int -> Int -> [Float];
eval Dcol s columNo ypos = if (ypos == half_y)

then [kernel Deriv col umNo ypos]
el se ((kernel Deriv columNo ypos): (eval Dcol s col umNo (ypos+1)));

eval Drows :: Int -> [[Float]];

eval Drows xpos = if (xpos == hal f_x)
then [eval Dcol s xpos (0-half_y)]
el se ((eval Dcol s xpos (0-half_y)): (eval Drows (xpos+l)));

eval Deriv :: [[Float]];
eval Deriv = eval Drows (0-half_x);

------ MODEL STUFF- - === s s e e e e e e mm e e oo

--this is where things start to get a bit tricky...
--Note that results are not the same as the C++!
--..could be rounding differences etc. though.... :-S

--scale a colour into the histogram s range
scale :: Int -> Int;
scale ¢ = (c div BINSIZE);

--Find the bin nunber of a pixel (R G B vector)
findBin :: pixel -> Int;

--this is the 3-channel findbin
--findBin P = scal e(P@) + BPCtscal e(P@) + BPC*BPC*scal e(P@) + 1;--cos we don't index fromO!!

--this is the red-channel only findbin.
findBin P = scal e(P@) +1;

--adds a value onto the value in a given nodel position
--Note the first position in the list is position 0O!!
addToModel :: Int -> Float -> nodel -> nodel;
addToModel pos val (h:t) =if (pos == 0)
then ((h+val):t)
el se (h: (addToMbdel (pos -1) val t));

--this initialises the nodel to be entirely 0, of a given size.
makeEnpt yModel :: Int-> nodel;
makeEnpt yModel size = if (size ==0)

then []

el se (0.0: (makeEnpt yModel (size -1)));

--this assunes certain constants are al ready defined
-- returns a nodel, NUMBINS in size

--WARNING this is where it starts to get tricky,

-- just start crying now ;-)

--This perforns the function described by eqn(2) and eqn(4) (effectively the sane)
--it's the sane as the "updatenndel" function in col ournodel in the C++.

doYUpdate :: image -> coord -> Int -> Int -> nodel -> [Float] -> nodel;
doYUpdate imcen Xno y tnmodel (h:t) =if (y == half_y)
then (addToModel (findBin((im@(cen@)+y))@(cen@)+Xno))) h tnodel)
-- then 5/0
el se doYUpdate i mcen Xno (y+1l) (addToModel (findBin((im@(cen@)+y))@(cen@)+Xno))) h tnodel) t;

doUpdate :: image -> coord -> Int -> Int -> nmodel -> [[Float]] -> nodel;

doUpdate imcen x y tnmodel (h:t) =if (x == half_x)
then (doYUpdate imcen x y tnodel h)
-- then 5/0
el se doUpdate imcen (x+1) y (doYUpdate imcen x y tnodel h) t;

--we need to be able to normalise the nodel histogram
norm:: nodel -> Float -> nodel;
norm[] theSum= [];

norm (h:t) theSum = (h/theSum:(normt theSum;

normal i seMbdel :: nodel -> nodel;
nor mal i seModel tnodel = normtnodel (sun(tnodel));

[Float]] -> nodel;

updat eMbdel :: image -> coord -> |
= nor mal i seMbdel (doUpdate frame centre (0-half_x) (0-half_y) (makeEnptyMddel NUMBINS) kernel);

updat eMbdel frame centre kernel

--Functions used to update the weights, note these could probably be nore efficent
--they have nore in common with the equation, rather than the C++ function.

--This cal cul ates the pixel weights for the wi ndow, based on the col our nodel.
--Described in eqn(10)

updat eWei ghts :: nodel -> nodel -> inage -> coord -> [[Float]];
updat eWei ghts Pu Qu frame cen = updateWK 0 Pu Qu franme cen;

updateWK :: Int -> nodel -> nodel -> image -> coord -> nodel;
updateWK x Pu Qu frame cen = if (x == x_size)
then [updateW x O Pu Qu frane cen]
el se ((updateW x 0 Pu Qu frame cen): (updateWK (x+1) Pu Qu frame cen));

--FIXME this uses list indexing ARRRG (and into nodels at that!)
updateWy :: Int -> Int -> nodel -> nodel -> inmage -> coord -> [Float];
updateWr x y Pu Qu frane cen = if (y == y_size)
then (if ((Pu@findBin(getP frame x y cen))) == 0.0)
then [0.0]
else [sqgrt((Qu@findBin(getP frame x y cen)))/(Pu@findBin(getP frame x y cen))))])
else (if ((Pu@findBin(getP frame x y cen))) == 0.0)
then(0.0: (updateWr x (y+1) Pu Qu frame cen))
else ((sqrt((Qu@findBin(getP frame x y cen)))/(Pu@findBin(getP frane x y cen))))): (updateWr x (y+1) Pu Qu
frame cen)));

--Below are the functions used to cal culate the displacenent
--this is eqn(11) in the paper.

--FIXME arg, i do the mixmap several tinmes! no need!
--Also, incredibly cryptic code!

conmput eDi spl acement :: [[Float]] -> [[Float]] -> coord -> coord,;
conput eDi spl acenent wei ghts kderiv = divCoord (csunms (twodm xmap mul Coord theWn (twodm xmap nmul weights kderiv))) (sum (suns(twodm xmap nmul wei ghts
kderiv)));

--functions to | oop the whole op over the frame untill convergence
--this is ugly!!!!

--Sone slight error, if you run it to convergence on 1 franme, it shifts
--the centre 1 pixel to the right.

findDx :: coord -> coord -> coord -> Int -> image ->nodel -> coord;

findNewCentre centre dx ol d_dx | oopcount frame Qu =if ((dx == <<0,0>>) || (loopcount > 4) || ((addCoord dx ol d_dx) == <<0,0>>))
then centre

37

el se findNewCentre (addCoord centre dx) (computeDi spl acement (updateWei ghts (updatehodel
frame (addCoord centre dx) theKern) Qu frame (addCoord centre dx)) theDeriv) dx (loopcount + 1) frame Qu;

updat eCentre :: coord -> frane -> nodel -> coord,
updat eCentre centre frane Qu = fi ndNewCentre centre (conputeDi spl acenent (updateWi ghts (updateMdel
<<0,0>> 0 frame Q;

--create a wi ndowsized list-of-lists with the centre-relative
--coords in.

eval Wols :: Int -> Int -> [coord];
eval Wol s columNo ypos = if (ypos == half_y)
then [<< col umNo, ypos >>]
el se ((<<col umNo, ypos>>):(eval Wols columNo (ypos+1)));

eval Wows :: Int -> [[coord]];

eval Wows xpos = if (xpos == hal f_x)
then [eval Wol s xpos (0-half_y)]
el se ((eval Wol s xpos (0-half_y)): (eval Wows (xpos+1)));

eval Wn :: [[coord]];
eval Wn = eval Wows (0-hal f_x);

--evaluate the constants, speeds things up later.

constant theWn = eval Wn;
constant theKern = eval Kernel;
constant theDeriv = eval Deriv;

--a box that loads in an i mage. Makes use of the cunning 1/0O
--in the interpreter.

box load_im

in (im:inmage)

out (im::imge)

mat ch

i ->;

wire load_im (imseq) (initnodel.iny;

--a box to | oop over each frane

box i nit nodel

frame centre theKern) Qu frane centre) theDeriv)

38

in (im:imge,cen::coord, numins::|nt, Qu::nodel)

out (im::image, cen_out::coord, cen' ::coord,numleft::Int, Q' ::nodel,franmes_left::Int)

mat ch

(i,c,150,_) -> (i,c,c, (149), (updat eModel i c¢ theKern), (149)) |

(i,e,n, qg) -> (i,c,(updateCentreci q),(n-1),q,

Wi re initnodel

(n-1));

(load_imim,initnodel.cen' initially init_centre,initnmodel.numleft initially 150,initnmodel. Q' initially [])--CHANGEVE nunber of franes

(writebox.imwitebox. pos,initnodel.cen trace,
--the output box, draws a dot on the centre
box writebox
in (im:imge, pos::coord, num:Int)
out (im::imge)
mat ch
(o, 0) ->(5/0)|
(i,p,) -> ((update2d i (p@) (p@) <<0,255,0>>));

wire witebox

initnmodel . num.ins,initnmodel. Qu, witebox.numtrace);

--the /0 nakes it term nate

(initnmodel.im,initnodel.cen_out,initnodel.frames_|left)

(outerror);

meanshift-vectors.hume

--nmeanshi ft. hune - a neanshift tracker
--lain Wallace, 08/2005

--Based on the equations in "kernel-based object tracking"
--D. Comaniciu, V. Ramesh, P. Meer, |EEE Trans. Pattern
--Anal ysis and Machine Intelligence, vol 25 (5), pp564-577,

- - August 2003

--References to equations, and nunbers, refer to this paper.

--Al'so see ny C++ inplenentation of this algorithm
--as | feel it's easier to understand.

--The output images will be to std-err, so it should be
--piped into a file, which seqdes can then be run on.
--The std out will display the traces, that is the nunber

--of frames remmining and the current centre |ocation.

--VECTOR VERSI ON!'! ']

--This version uses vectors as opposed to the lists of the original.
--This poses probelns with types, as the vectors are created
--by "vecdef", and of constant size, but constant expressions

39

--can't be used to define types! This could be got around

--by manual ly entering the constant;s val ues everywhere instead
--of using expressions, and then typing would work.

--But it'd be a faff.

program

--sone basic types, used all over the place
type Int = int 32
type Float = float 32;

--Arg i have to put this (possibly incorrect) type in to run it!
--it's the vecdef const-expression probl em again!
type nodel = vector 1..4096 of Float;

--change these depending on the input data
--NOTE there are other coded-in values el sewhere in the code.
-- Bl ane Hune!

--this is a sequence of images, ascii ppmw th headers stripped, concatenated into one file.
--output is the sane, use the C++ progs to construct/split the files

streamimseq from"person-smseq";

streaminms_out to "person-track-out.seq";

stream out putscreen to "std_out";
streamouterror to "std_err";

--CHANGEME this section, specific to inmage size
type pixel = vector 1..3 of Int;

type imrow = vector 1 .. 320 of pixel;

type inage = vector 1..240 of imrow

type coord = vector 1..2 of nat 64;
-- CHANGEME t hese are target details

constant TL_X 109;
constant TL_Y = 59;

constant BR X
constant BRY

134,
127,

--constant TL_X
--constant TL_Y
--constant BR_X
--constant BR.Y

NNAD

40

constant half_x = ((BR.X - TL_X) div 2);
constant half_y = ((BR.Y - TL_Y) div 2);
constant x_size = (2*hal f_x);
constant y_size = (2*half_y);

constant init_centre = << (TL_X + half_x), (TL_Y + hal f_y)>>;

-- CHANGEME These are the settings used to define

--the histogram The things to change are BPC (bins per col our)
--and the Nunmber of col our channels. (NUM CHANNELS)

--Note that changing the nunber of channels requires selecting
--and appropriate "findbin" function bel ow.

constant BPC = 128;

constant BINSIZE = (256 div BPC);

constant NUM CHANNELS = 1;

constant NUMBINS = (BPC ** NUM_CHANNELS) +1;

expressi on "nunbins";

expressi on NUMBI NS;

--hel per functions to update a 2d vector (inage)

updat e2d tdvector x y item = update tdvector x (update (tdvector@) y item;
--note update can be defined in terns of vecdef |ike so

--nmyupdate vec pos val = let
-- ff i =if i == pos

-- then val

-- el se vec@

-- in vecdef (length vec) ff;

sqr :: Float -> Float;
sgr X = X*X;

--function to multiply two nunbers
mul X y = x*y;

vec2dm xmap f vecl vec2 = |et Xs x = vec2dmy f vecl vec2 x
i/(r-;cdef (length vecl) Xs;
vec2dmy f vecl vec2 x = let Ysy = index f vecl vec2 x y
i/(r-;cdef (length (vecl@)) Ys;
index f vecl vec2 x y = f ((vecl®) @) ((vec2@&) @);

--and an "add" function

41

add x y = x +vy;

--returns a pixel in the imge, indexed using the centre and a range 0-x_size
getP :: image -> Int -> Int -> coord -> pixel;

getPimx y cen = (im@(cen@) +y-hal f _y)) @(cen@) +x- hal f _x);

divCoord :: coord -> Float -> coord,
di vCoord dx sum = << (((dx@) as Float)/sum as Int,(((dx@) as Float)/sum) as Int >>;

mul Coord :: coord -> Float -> coord;
mul Coord dx sum = << (((dx@) as Float)*sun) as Int, (((dx@) as Float)*sun) as Int >>;

addCoord x y = << x@ + y@, x@ + y@>>;
csumvec v size = if (size == 1)
then v@a
el se addCoord (v@ize) (csunmvec v (size-1));
csumv = csumvec v (length v);
csunms vV = csum (vecrmap v csunj;

sumld vec = sumvec vec (length vec);

sunkd vec = sunild (vecmap vec sunid);

--a function returning a vector-of-vectors, representing the Epanechni kov ker nel
--over the search w ndow

--This cones froma sinplified version of eqn(12).
--Note that this nakes use of the fact that a | ot
-- of the kernel terns cancel out, as it is
--primarily used in eqgn(2) and eqgn(3).
nornal i sedEucl i deanDi stance :: Int -> Int -> Float;

nor mal i sedEucl i deanDi stance x y = sqrt(sqr((x as Float) / (half_x as Float)) + sqr((y as Float) / (half_y as Float)));

--just to renane it to nake the code a bit nore nanagbl e.
ned x y = normalisedEuclideanDi stance x vy;

kernel :: Int ->1Int -> Float;
kernel x y =if ((ned x y) > 1.0)
then 0.0

else (1.0 - sqgr(ned x y));

--functions to create a kernel in vectors
--TODO can't do the types because of the vecdef/constant vector thing
eval Kernel = vecdef x_size eval Kcol ums;

eval Kcolums X = let eval K Y = conputeKernel XY
in

vecdef y_size evalK;
--conput eKernel nust convert the range into -half_x to + half_x before calling the kernel.

conmput eKernel X Y = kernel (X-half_x) (Y-half_y);

--Functions to calculate the derivative kernel, as a vector
--of vectors, like the kernel. This is what appears as the
-"G' termin the equations in the paper.

kernel Deriv :: Int ->1Int -> Float;
kernelDeriv x y = if ((ned x y) > 1.0)
then 0.0
el se 1.0;

--TODO can't do the types because of the vecdef/constant vector thing
eval Deriv = vecdef x_size eval Dcol ums;

eval Dcolums X = |l et eval D Y = conputeDKernel XY
in
vecdef y_size eval D

--conput eKernel nust convert the range into -half_x to + half_x before calling the kernel.

conmput eDKernel X Y = kernel Deriv (X-half_x) (Y-half_y);

------ MODEL STUFF- - - - - m s mm e e e e e e e
--this is where things start to get a bit tricky...
--Note that results are not the sanme as the C++!
--..could be rounding differences etc. though.... :-S

--scale a colour into the histogram s range
scale :: Int -> Int;
scale ¢ = (c div BINSIZE);

--Find the bin nunber of a pixel (R G B vector)
findBin :: pixel -> Int;

--this is the 3-channel findbin
--findBin P = scal e(P@) + BPCtscal e(P@) + BPC*BPC*scal e(P@) + 1;--cos we don't index fromO!!

--this is the red-channel only findbin.
findBin P = scal e(P@) +1;

--adds a value onto the value in a given nodel position
--Note the first position in the list is position 1!!

--this uses "update" :-S
addToModel :: Int -> Float -> nodel -> nodel;
addToModel pos val tnodel = update tnodel pos (tnodel @os + val);

43

--this initialises the nodel to be entirely 0, of a given size.

makenod :: Int -> Float;

makenod i = 0.0;

makeEnpt yModel :: Int-> nodel;

makeEnpt yModel size = vecdef size makenod;

--this assunes certain constants are al ready defined
-- returns a nodel, NUMBINS in size

--WARNING this is where it starts to get tricky,

-- just start crying now ;-)

--This perforns the function described by eqn(2) and eqn(4) (effectively the sane)
--it's the sane as the "updatenndel" function in col ournodel in the C++.

---vector based update

doUpdate imcen x tnodel kernel = if (x == x_size)
then doYUpdate imcen x 1 tnodel Kkernel
el se doUpdate imcen (x+1) (doYUpdate imcen x 1 tnodel kernel) kernel;

doYUpdate imcen Xno y tnodel kernel =if (y == y_size)
then addToModel (findBin(getP imXno y cen)) ((kernel @no)@) tnodel
el se doYUpdate imcen Xno (y+1) (addToModel (findBin (getP im Xno y cen)) ((kernel @no)@) tnodel) kernel;

--we need to be able to normalise the nodel histogram

sunvec :: nodel -> Int -> Float;
sumvec tnodel size = if (size == 1)
t hen tnodel @
el se tnodel @i ze + (sunvec tnodel (size-1));

norm:: nodel -> Float -> nodel;
norm t nodel theSum = | et
divide i = i/theSum
in
vecrmap tnodel divide;

normal i seModel :: nodel -> nodel;
normal i seMbdel tnodel = normtnodel (sumvec tnodel NUMBINS);
updat eModel :: inmge -> coord -> [[Float]] -> nodel;

updat eModel frame centre kernel = nornaliseMdel (doUpdate frame centre 1 (makeEnptyModel NUMBINS) kernel);

--Functions used to update the wei ghts, note these could probably be nore efficent
--they have nore in common with the equation, rather than the C++ function.

--This cal cul ates the pixel weights for the wi ndow, based on the col our nodel.
--Described in eqn(10)

--type info obviously now rubbish....
--updat eWi ghts :: nodel -> nodel -> image -> coord -> [[Float]];

updat eWei ghts Pu Qu frame cen = |let updateX x = updateWK Pu Qu franme cen Xx
in
vecdef x_size updateX;

updateWK Pu Qu frame cen x = let updateY y = updateWPu Qu frame cen x y
in
vecdef y_size updatey;

updateWPu Qu frame cen x y = if ((Pu@findBin(getP frame x y cen))) == 0.0)
then 0.0
el se sqrt((Q@findBin(getP frame x y cen)))/(Pu@findBin(getP frame x y cen))));

--Below are the functions used to cal cul ate the displacenent
--this is eqn(11) in the paper.

--FIXME arg, i do the mixmap several tinmes! no need!
--Al'so, incredibly cryptic code!

conmput eDi spl acement :: [[Float]] -> [[Float]] -> coord -> coord,;
conput eDi spl acement wei ghts kderiv = divCoord (csunms (vec2dm xmap mul Coord theWn (vec2dm xmap mul wei ghts kderiv))) (sunRd(vec2dm xmap rmul wei ghts
kderiv));

--functions to | oop the whole op over the frame untill convergence
--this is ugly!!!!

--Sone slight error, if you run it to convergence on 1 frane, it shifts
--the centre 1 pixel to the right.

findDx :: coord -> coord -> coord -> Int -> image ->nodel -> coord;
findNewCentre centre dx ol d_dx |oopcount frame Qu =if ((dx == <<0,0>>) || (loopcount > 4) || ((addCoord dx ol d_dx) == <<0,0>>))

then centre

el se findNewCentre (addCoord centre dx) (computeD spl acement (updateWei ghts (updatehbdel
frame (addCoord centre dx) theKern) Qu frame (addCoord centre dx)) theDeriv) dx (loopcount + 1) frame Qu;

updat eCentre :: coord -> frane -> nodel -> coord,
updateCentre centre frame Qu = findNewCentre centre (conputeDi spl acenent (updateWi ghts (updateMdel frame centre theKern) Qu frame centre) theDeriv)
<<0,0>> 0 frame Q;

--create a wi ndowsi zed vector of vectors with the centre-relative
--coords in. TODO use to speed up sone ops, well clarify at least :-)

eval Wn = vecdef x_size eval Wol s;

45

eval Wols X = let eval Y = getCoord XY
in
vecdef y_size eval;

get Coord x y = <<x-hal f_x,y-half_y>>;

--evaluate the constants, speeds things up later.

constant theWn = eval Wn;
constant theKern = eval Kernel ;
constant theDeriv = eval Deriv;

--a box that loads in an image. Makes use of the cunning I1/0O
--in the interpreter.

box | oad_im

in (im:inmage)
out (im::image)
mat ch

i ->1;

wire load_im (imseq) (initnodel.iny;

--a box to | oop over each frane

box initmodel
in (im:inmage, cen::coord, num.ins::Int, Qu::nodel)
out (im::image, cen_out::coord, cen' ::coord,numleft::Int, Q' ::nodel,franmes_left::Int)

--note the initial conditons for the nodel Qu are spec'd as and enpty list, but it's a vector!
mat ch

(i,c,150,_) -> (*,*,c, (149), (updat eModel i c theKern),*) |

(i,e,n, qg) -> (i,c,(updateCentre ci q),(n-1),q, (n-1));

Wi re initnodel
(load_imim,initnodel.cen' initially init_centre,initnodel.numleft initially 150,initnodel. Q' initially [])
(writebox.imwitebox. pos,initnodel.cen trace, initnmodel.num.ins,initnodel.Qu, witebox.numtrace);

--the output box, draws a dot on the centre
box writebox
in (im:imge, pos::coord, num:Int)

out (im::imge)

mat ch
(L, 0) ->(5/0) |

(i,p,_) -> ((update2d i (p@) (p@) <<0,255,0>>));

wire witebox
(initrmodel.im,initnodel.cen_out,initnodel.frames_|eft)
(outerror);

meanshift-boxes.hume

--nmeanshi ft. hune - a neanshift tracker
--lain Wallace, 08/2005

--Based on the equations in "kernel -based object tracking"
--D. Comaniciu, V. Ramesh, P. Meer, |EEE Trans. Pattern
--Anal ysis and Machine Intelligence, vol 25 (5), pp564-577,
- - August 2003

--References to equations, and nunbers, refer to this paper.
--Al'so see ny C++ inplenentation of this algorithm
--as | feel it's easier to understand.

--The output images will be to std-err, so it should be
--piped into a file, which seqdes can then be run on.
--The std out will display the traces, that is the nunber
--of frames remaining and the current centre |ocation.
--run like "hume neanshift.hune 2> output.seq"

--VECTOR VERS|I ON!'!1!

--This version uses vectors as opposed to the lists of the original.
--This poses probelns with types, as the vectors are created

--by "vecdef", and of constant size, but constant expressions
--can't be used to define types! This could be got around

--by manually entering the constant;s val ues everywhere instead
--of using expressions, and then typing would worKk.

--But it'd be a faff.

--BOXES VERSION'I'!']

--This version uses boxes to doo all of the main processing,

--rather than functions. However, the constants (kernel, derivative
--and rel ative window positions) are still calculated by functions.
--Note the equations calculated by the boxes aren't noted in comments
--this version's too conplex for that - see the report.

program

47

--sone basic types, used all over the place
type Int = int 32;
type Float = float 32;

--Arg i have to put this (possibly incorrect) type in to run it!
--it's the vecdef const-expression probl em again!
type nodel = vector 1..4096 of Float;

--a 2d vector of sone sort, used cos of the type issues
type bigv = vector 1..999 of bigv2;
type bigv2 = vector 1..999 of Int;

--and one for floats
type bigvf = vector 1..999 of bigv2f;
type bigv2f = vector 1..999 of Float;

--and one for coords
type bigvc = vector 1..999 of bigv2c;
type bigv2c = vector 1..999 of coord;

--change these depending on the input data
--NOTE there are other coded-in values el sewhere in the code.
-- Bl ane Hune!

--this is a sequence of images, ascii ppmw th headers stripped, concatenated into one file.
--output is the sane, use the C++ progs to construct/split the files

streamimseq from"person-smseq";

streaminms_out to "person-track-out.seq";

stream out putscreen to "std_out";
--the standard error is used for output due to i/o flushing issues.
streamouterror to "std err";

--CHANGEME this section, specific to image size
type pixel = vector 1..3 of Int;

type imrow = vector 1 .. 320 of pixel;

type inage = vector 1..240 of imrow

type coord = vector 1..2 of nat 64,

-- CHANGEME t hese are target details

constant TL_X
constant TL_Y
constant BR X
constant BRY

--a set of target details that are small, used for |oop testing

--constant TL_X
--constant TL_Y
--constant BR X

109;
59;

134;
127;

= 4
4;
7;

48

--constant BRY = 7;

- - CHANGEME These are the settings used to define

--the histogram The things to change are BPC (bins per col our)
--and the Nunmber of col our channels. (NUM CHANNELS)

--Note that changing the nunber of channels requires selecting
--and appropriate "findbin" function bel ow.

constant BPC = 128;

constant BINSIZE = (256 div BPC);

const ant NUM CHANNELS = 1;

constant NUMBINS = (BPC ** NUM_CHANNELS) +1;

expressi on "nunbins";

expressi on NUMBI NS;

constant half_x = ((BR.X - TL_X) div 2);
constant half_y = ((BR.Y - TL_Y) div 2);

constant x_size = (2 .
constant y_size = (2*half_y);

constant init_cen = << (TL_X + half_x), (TL_Y + hal f_y)>>;

sqr :: Float -> Float;
sqQr X = X*X;

--hel per function to update a 2d vector (inage)
update2d tdvector x y item = update tdvector x (update (tdvector@) y itemn);

--note update can be defined in terns of vecdef |ike so
--nmyupdate vec pos val = let

-- ff i =if i == pos

-- then val

-- el se vec@

-- in vecdef (length vec) ff;

--Defines an enpty 2d vector

zero i = 0.0;

vecdef2d x y = let Ys i = vecdef y zero
in
vecdef x Ys;

di vCoord :: coord -> Float -> coord;

di vCoord dx sum = << (((dx@) as Float)/sum) as Int,(((dx@) as Float)/sum) as Int >>;

mul Coord :: coord -> Float -> coord;
mul Coord dx sum = << (((dx@) as Float)*sun) as Int,(((dx@) as Float)*sun) as Int >>;

addCoord x y = << x@ + y@, x@ + y@>>;

49

ml x y = x*y;

--return a pixel in the inage.

--takes a centre, and an index 0 to x_size

getP :: image -> Int -> Int -> coord -> pixel;

getPimx y cen = (im@(cen@) +y-hal f _y)) @(cen@) +x- hal f _x);

--functions returning a 2d vector, representing the Epanechni kov kernel
--over the search w ndow

--This conmes froma sinplified version of eqn(12).
--Note that this nakes use of the fact that a | ot
-- of the kernel terns cancel out, as it is
--primarily used in eqgn(2) and eqn(3).

nor mal i sedEucl i deanDi stance :: Int -> Int -> Float;
nor mal i sedEucl i deanDi stance x y = sqrt(sqr((x as Float) / (half_x as Float)) + sqr((y as Float) / (half_y as Float)));

--just to renane it to nake the code a bit nore nanagbl e.
ned x y = nornmalisedEuclideanD stance x y;

kernel :: Int ->Int -> Float;
kernel xy =if ((ned x y) > 1.0)
then 0.0

else (1.0 - sqgr(ned x vy));

--functions to create a kernel in vectors
--TODO can't do the types because of the vecdef/constant vector thing
eval Kernel = vecdef x_size eval Kcol umms;

eval Kcolums X = let eval K Y = conputeKernel XY
in
vecdef y_size evalK;

--conput eKernel nust convert the range into -half_x to + half_x before calling the kernel.

conmput eKernel X Y = kernel (X-half_x) (Y-half_y);

--Functions to calculate the derivative kernel, as a vector
--of vectors, like the kernel. This is what appears as the
--"G' termin the equations in the paper.

kernel Deriv :: Int ->1Int -> Float;
kernelDeriv x y = if ((ned x y) > 1.0)
then 0.0
el se 1.0;

--TODO can't do the types because of the vecdef/constant vector thing
eval Deriv = vecdef x_size eval Dcol ums;

eval Dcolums X = let eval D Y = conputeDKernel XY
in
vecdef y_size eval D

--conput eKernel nust convert the range into -half_x to + half_x before calling the kernel.

conput eDKernel X Y = kernel Deriv (X-half_x) (Y-half_y);

--scale a colour into the histogram s range
scale :: Int -> Int;
scale ¢ = (c div BINSIZE);

--Find the bin nunber of a pixel (R G B vector)

findBin :: pixel -> Int;

- - CHANGEME change this al so dependi ng on col our nodel

--this is the 3-channel findbin

--findBin P = scal e(P@) + BPCtscal e(P@) + BPC*BPC*scal e(P@) + 1;--cos we don't index fromO!!
--this is the red-channel only findbin.

findBin P = scal e(P@) +1;

--adds a value onto the value in a given nodel position
--Note the first position is position 1!!

--this uses "update" :-S
addToModel :: Int -> Float -> nodel -> nodel;
addToModel pos val tnodel = update tnodel pos (tnodel @os + val);

--this initialises the nodel to be entirely 0, of a given size.

makenod :: Int -> Float;

makermod i = 0.0;

makeEnpt yModel :: Int-> nodel;

makeEnpt yModel size = vecdef size makenod;

--create a wi ndowsi zed vector of vectors with the centre-relative
--coords in. TODO use to speed up sone ops, well clarify at least :-)

eval Wn = vecdef x_size eval Wol s;

eval Wols X = let eval Y = getCoord XY
in
vecdef y_size eval;

getCoord x y = <<x-hal f_x,y-half_y>>;

51

--evaluate the constants, speeds things up later.

constant theWn = eval Wn;

constant theKern = eval Kernel ;

constant theDeriv eval Deriv;

constant theEnpty makeEnpt yModel NUMBI NS;

--a box that loads in an i mage. Makes use of the cunning
--in the interpreter.

box | oad_im

in (im:imge)

out (im::image)

mat ch

i->1;

wire load_im(imseq) (loopbox.in;

--a box to | oop over each frane

box | oopbox

--inwires in this order:
--fromload_im

--looping to self for state
--fromthe nodel boxes
--from conput er _di spl acenent

in (im:imge,

110

state::Int, cen::coord, numimns::Int,Qu::nodel, ol d_dx::coord, | ocopcount::Int,cur_im:inmage,

nmodel _i n: : nodel ,
dx_in:: coord)

--out wires listed in the order:

--to writebox

--looping to self - for state

--to do_weights

--to the nodel - boxes

out (im::image, cen_out::coord, frames_left::Int,
state'::Int,cen ::coord, numleft::Int, Qu'::nodel,

imm:inmge, cen_m:coord)

dx::coord, cur_im::imge, |oopcount'::Int,
Pu_out : : nodel, Qu_out::nodel, imw :inage, cen_w :coord,

--Note, depends on the unfair matching to catch dx=0 term nation
--FIXME this won't ternminate frame-|ooping cos of oscillation

--FI XME the | oopcount should be a constant sonewhere

- - CHANGEME t he 151, 150 and 149s in here are for processing 150 franes.

--These rules could al nost certainly be reduced to fewer

sonehow. But it

hurts ny brain just thinking

about them:-(

52

--note the rules with 4 in - the start
--the states are as follows:

--The initialisation state, output to nodel
--loads the now calc'd qu into the | oop

boxes to create Q

--term nate as | oopcount reached, |oad new i mage, reset LC, wite out

--first iter, first dx done calc new nodel, next iter

--first iter, nodel done get dx

--first iter, no dx, no nodel, calc nodel

--as above termnate rule, but termnate cos dx is O.

-- dx done cal c new nodel, next iter

--first frane, nodel done get dx

--first frane, no dx, no nodel, cal c nodel

mat ch

(i,*, c,151,_*,dx, le,*, *,*) ->(*, *, *, *. c, 150, =, dx, i,
(*,*, c,150, _*, dx, lc,i, m*) -> (%, *, 3,c, 149, m dx, i,
(i,_*,c,n, Qu,dx, 0, im*,*) -> (im(addCoord c dx), (n 1), 3, (addCoord c dx), (n-1), Qu, <<0, 0>>,i,
(*,1, c,n, Qu,dx, 4, im*,dx_in) -> (*, *, , 3, (addCoord c¢ dx), n, Qu, dx_in,
(*,2, c,n, Qu,dx, 4, imP,*) -> (%, *, *, 1,c, n, Qu, dx,

(*,3, c,n, Qu,dx, 4, im*,*) -> (%, *, *, 2, ¢, n, Qu, dx,

(i,3, ¢,n, Qu,<<0,0>>lc,im*,*) -> (imc, (n-1), 3, c, (n-1), Qu, <<0, 0>>, i,
(*,1, c,n, Qu,dx, le,im*,dx_in) -> (*, *, *, 3, (addCoord c¢ dx), n, Qu, dx_in,
(*,2, c,n, Qu,dx, lc,imP,*) -> (%, *, *, 1,c, n, Qu, dx,

(*,3, c,n, Qu,dx, lc,im*, *) -> (%, *, *, 2, ¢, n, Qu, dx,

wi re | oopbox
(load_imim,
| oopbox. state', | oopbox. cen’
initially 4,1 oopbox.cur_im,
nor m nodel . nor m out, conput e_dx. dx)

initially init_cen ,|oopbox. numl eft

(writebox.imwitebox.pos trace, witebox. numtrace,
| oopbox. state trace, | oopbox. cen ,
nmodel _update.i min, nodel _update.cen_in);

on the centre

for closing a file if output’

--the output box, draws a dot
--note the state to wite a '\0'
box writebox

s to file.

in (im:imge, pos::coord, num:Int)
out (im::inmage)
mat ch
(o 0) ->("\0")
(i,p,_) -> ((update2d i (p@) (p@) <<0,255,0>>));
wire witebox
(1 oopbox.im , | oopbox. cen_out, | oopbox. frames_| eft)

(outerror);

-- this box creates the new nodel, passes it on to be normaliseed

initially 151, 1 oopbox. Q'

| oopbox. num_ i ns, | oopbox. Qu, | oopbox. ol d_dx
do_wei ghts. pu_i n, do_wei ghts. qu_i n, do_wei ghts.im.in, do_wei ghts.cen_in,

case is needed explicitly cos DXis reset to 0,0

lc,
lc,
4,

im3,
imd4,
imd4,

4,

im(lc-1),
imlc,
imlc,

Lol v N © B

R IR

EE

, | oopbox. cur _i m | oopbox. | oopcount,

* %
’

* %
’

* %
’

* %
’

Imc

* %
’

* %
’

* %
’

Imc

* %
’

addCoord c dx)

addCoord c dx)

— e

, 1l oopbox. dx initially <<0,0>>, | oopbox. | oopcount’

53

box nodel _update
in (cen_in::coord, imin::imge,
kernel :: bigvf, frane::imge, cen::coord, x::Int, y::Int, the_nodel::nodel)

out (kernel'::bigvf,frame'::image,cen' ::coord,x"::Int,y" ::Int,the_nodel"::nodel,
nodel _out : : nodel)
mat ch
(c,im_*,_*, * * _* _*) -> (theKern,imc, x_size,y_size, t heEnpty, *) |
Foxoox ook (-1),(-2),r) -> (*, *oor (-1, (-1), *, *) | --the accepting state
(* % _*, _*_* 0 _*,oom) -> (*, v (-1, (-1, *, m | --the output state
(*,*, k, f, ¢, x 0, m) -> (k, f, ¢,(x-1), (length (k@&)), m *) |
(*,*, k, f, ¢, x Y, m) -> (k, f, ¢, x, (y-1), (addToModel (findBin(getPf xy c)) ((k&)@) m,*);

wi re nodel _update
(1 oopbox. cen_m, | oopbox.imm
nmodel _updat e. kernel ' , nodel _updat e. frane' , nodel _updat e. cen', nodel _updat e. x' , nodel _update. y', nodel _updat e.t he_nodel ')

(nmodel _updat e. ker nel , nodel _updat e. f rame, nodel _updat e. cen, nodel _updat e. x, nodel _updat e. y, nodel _updat e. t he_nodel ,
nmodel sum m.in);

--suns the nodel to pass it to the bel ow normalising box
box mnodel sum
in (min::nodel,
m : nodel , acc: : Fl oat, si ze: : 1 nt)
out (m::nodel,acc'::Float, size ::Int,

acc_out I nt, mout:: nodel)
mat ch
(m_*,_* _*) ->(mo0.0, NUMBI NS, *, *) |
(*,*, 0.0,0) ->(*,0.0, 0, * *) | --accepting state
(*m ac, 0) -> (*,0.0, 0, ac, | --final state
(*,v, ac, pos) -> (v,(ac + (v@os)), (pos-1),*, *);

wi re nodel sum
(nmodel _updat e. nodel _out,
model sum m , nodel sum acc' initially 0.0, model sumsize' initially NUMBINS)

(rmodel sum m nodel sum acc, nodel sum si ze,
norm nodel . sum.in trace, normnodel.min);

--nornalises the nodel

box nor m nodel
in (min::nodel,sumin::Float,
m : nmodel , sum : Fl oat, si ze: : I nt)

out (m::nodel,sum::Float, size ::Int,

normout ::nodel)
mat ch
(ms,_*,_*, _*) ->(m s, NUMBINS, *) |
(*,*,*, 0, 0) ->(*, 0, 0, *) | --accepting state
(*,*,v, _*, 0) ->(*, 0, 0, v) | --final state
(*,*,v, sumpos) -> ((update v pos ((v@os)/sum),sum (pos-1), *);

Wi re norm node
(rmodel sum m out, nodel sum acc_out,
norm nodel . M, norm nodel . sum , norm nodel . size' initially NUVBINS)

(norm nodel . m nor m_nodel . sum nor m_nodel . si ze ,
| oopbox. nodel _in);

--wei ghts box

--hel per function, ensures no /0 errors
w_update Pu Qu frane cen x y w=if ((Pu@findBin(getP frane x y cen))) == 0.0)
then update2d wx y 0.0
el se update2d w x y (sqrt((Q@findBin(getP frame x y cen)))/(Pu@findBin(getP frame x y cen)))))

box do_wei ghts
in (pu_in::nmodel, qu_in::nodel, imin::inmge, cen_in::coord,
wei ghts::bigvf, Pu::nobdel, Qu::nodel, franme::inmage, cen::coord, Xx::Ilnt, y::Int)

out (weights'::bigv,Pu'::nodel,Q'::nodel,frame'::imge,cen ::coord,x ::Int,y" ::Int,

wei ghts_out : : bi gvf)
mat ch
(p,q,i,c,*,*, * * * _* _*) ->((vecdef2d x_size y_size), p, q, i, c, X_size,y_size, *)
(*, ¥, * %, ¥ *x * X o (-1, (-1)) -> (*, *ox X * (-1, (-1, *) | --the terminating state
(*,*, %, %, w, _*, _* * _*, 0,) -> (, *ox X * (-1, (-1, W) | --the output state
(*,*,*,*, w, Pu, Q, frane, cen, x, 0) -> (w , Pu, Qu, frane, cen, (x-1), (length (w@&)),*) | --finished a colum
(*,*,*,*, w, Pu, Q, frane, cen, x, y) -> ((w_update Pu Qu frame cen x y W), Pu, Qu, frane, cen, x, (y-1), *); --the state that updates

wire do_wei ghts
(1 oopbox. Pu_out, | oopbox. Qu_out, | oopbox. i m w, | oopbox. cen_w,
do_wei ght s. wei ghts', do_wei ghts. Pu', do_wei ghts. Qu', do_wei ghts. frane', do_wei ghts.cen', do_wei ghts.x',do_wei ghts.y")

(do_wei ghts. wei ght s, do_wei ght s. Pu, do_wei ght s. Qu, do_wei ght s. frane, do_wei ghts. cen, do_wei ghts. x, do_wei ghts.y
v2dmm mul . w_i n)

--do the mix-map (mul)

box v2dmm nu
in (w_n::bigvf
vl1::bigvf,v2::bigvf,xdim:Int,ydim: Int,result::bigvf)
out (v1'::bigvf,v2' ::bigvf,xdim::Int,ydim::Int,result'::bigvf,
result_out:: bigvf)

mat ch

(w,*, *, _*, _* =) -> (w, theDeriv,x_size,y_size, w, *)

% (-1, (-1,) -> (%, %, (-1, (-1, *, *) | --final state

PN O _*, result) -> (*, *, (-1), (-1), *, result) | --detect when al
el ements are processed

(*,vl,v2, X, 0, result) -> (vi,v2, (x-1), (length (vi@)),result, *) | --reached the bottomof a

col um

(*,vl,v2, X, Y, result) -> (vi,v2, X, (y-1), (update2d result x y (ml ((vi&x) @) ((v2&x)@))), *);--hmm uses update - urg

Wi re v2dmm nu
(do_wei ghts. wei ghts_out,
v2dmm mul . v1', v2dmm nmul . v2' , v2dmm mul . xdi m, v2dmm nmul . ydimi |, v2dnm mul . resul t*')

(v2dmm nul . v1, v2dmm nul . v2, v2dmm nul . xdi m v2dmm_nmul . ydi m , v2dmm nul . resul t,
splitter.a);

--a box to split the output

box splitter

in (a::bigvf)
out (b::bigvf,c::bigvf)
mat ch

(a) -> (a,a);

wire splitter
(v2dmm nul . resul t _out)

(v2dsumv_in,

v2dmm mul c. w_i n);

--a box to do the sum
box v2dsum

in (v_in::bigvf,v::bigvf,acc::Float,xdim:Int, ydim:Int)

out (v'::bigvf,acc'::Float,xdim::Int, ydim:: Int,acc_out::Float)

mat ch

(v,*, _*, _* _*) -> (v, 0.0, X_si ze,y_si ze, *)
(. (-1, (-1)) ->(*, *, (-1, (-1, =)
(*,_*,aCC,O, _*) -> (*! *! (-1)! (-1)! aCC) |
(*,v, acc,X, 0) -> (v, acc, (x-1), (length (v@)),*)
(*,v, acc,x, y) ->(v,(acc + ((v@&) @)).x, (y-1),)

wire v2dsum
(splitter.b,
v2dsum v',v2dsum acc' initially 0.0,v2dsum xdi m , v2dsum ydi m)

(v2dsum v, v2dsum acc, v2dsum xdi m v2dsum ydi m
conmput e_dx. s);

--the mul -coord m xmap

box v2dmm mul ¢
in (w_n::bigvf,
v1::bigvf,v2::bigvc,xdim:Int,ydim: Int,result::bigvf)
out (vl1'::bigvf,v2' ::bigve,xdim::Int,ydim::Int,result'::bigvf,

result_out::bigvc)
mat ch

(w,*, *, > > =) -> (w, theWn,x_size,y_size, w,
(*5*, *, (-1),(-1),*) > (*,*, (-1, (-1), *,
(*,_*,_*0, *, result) ->(*, *, (-1, (-1, *

el ements are pFocessed
(*,vl,v2, X, 0, result) -> (vi,v2, (x-1), (length (vi@)),result,
of a colum

(*,vl,v2, X, y, result) -> (vi,v2, X, (y-1), (update2d result x y (ml Coord ((V2&) @) ((Vi&X)@))), *

urg.

wire v2dmm nmul ¢
(splitter.c,
v2dmm mul c. v1', v2dmm mul c. v2' , v2dmm rul c. xdi mi , v2dmm mul c. ydimi , v2dmm nul c.resul t')

(v2dmm_ nul c. v1, v2dmm rul c. v2, v2dmm nul ¢. xdi m v2dmm nmul c. ydi m , v2dmm nul c. resul t,
cv2dsumv_in);

--the box to sumthe 2d vector of co-ords
box cv2dsum
in (v_in::bigvec,
v::bigvc,acc::coord, xdim:Int, ydim: Int)

out (v'::bigvc,acc'::coord,xdim::Int, ydim:: Int,
acc_out:: coord)

mat ch

(v,*, *, _* _*) ->(v,<<0,0>>, X_si ze,y_si ze, *)|
(0 (DL (-D) - (*, (-1, (-1,)
(*,_*, acc,0, _*) -> (%%, (-1, (-1, acc) |
(*,v, acc,x, 0) -> (v,acc, (x-1), (length (v@)),*) |
(*,v, acc,Xx, y) -> (v, (addCoord acc ((V&)@)), x, (y-1), *),

W re cvadsum
(v2dmm nul c. resul t _out,
cv2dsum v', cv2dsum acc' , cv2dsum xdi m , cv2dsum ydi m)

(cv2dsum v, cv2dsum acc, cv2dsum xdi m cv2dsum ydi m
conmput e_dx. c) ;

--conpute the dx value - nothing to do but a division

box conput e_dx

in (c::coord,s::Float)
out (dx::coord)

mat ch

(c,s) -> (divCoord ¢ s);

Wi re conpute_dx
(cv2dsum acc_out,
v2dsum acc_out)

(1 oopbox. dx_i n);

--detect when all

);--hmm uses update -

--reached the bottom

57

58

