
Experiences with Online Programming

Examinations

Monica Farrow and Peter King
School of Mathematical and Computer Sciences,

Heriot-Watt University, Edinburgh EH14 4AS

Abstract

An online programming examination was used to assess under-

graduates who had learnt Java for two terms. The advantages are

that the students are assessed on what they have to do in practice,

rather than on their theoretical knowledge, and that the marking load

on the examiner is drastically reduced. The style of question used and

the results of the examination are analysed.

1 Introduction

In the last ten years, since the release of Java on the unsuspecting world,
object oriented programming has become the paradigm of choice for many
initial programming courses. The question of how to best introduce objects
leads to (at least) two approaches. The traditional approach was to intro-
duce programming with a procedural paradigm and gradually introduce the
idea of objects as data structures with associated operations packaged with
them. The second approach is often known as objects-first and uses a spe-
cialised environment to introduce objects independently of one another, with
no obvious programming support, gradually increasing the amount of pro-
gramming students do to both use and construct their own objects. After
a few years using the traditional approach, Heriot-Watt has moved to the
objects-first approach, using the BlueJ environment.

Assessing programming skills is notoriously difficult under examination
conditions. Few programmers write code that is correct first time, and to ex-
pect them to produce such code under time pressure even for small examples
is unrealistic. In normal programming practice, a programmer will design an
algorithm, code it, and then iterate through a compile and test cycle. Typi-
cally the compiler will be used to catch simple syntax errors such as missing

1

semicolons, mismatched parentheses, etc. When marking a conventionally
written examination, the examiner is having to guess whether the syntax
that the student has written is wrong because of a simple slip, or because
the student doesn’t understand the language. In addition, the examiner has
to decide whether or not the student’s code meets the specification asked for.
This is not always obvious.

An online examination would allow the student to use the mode of work-
ing that is familiar when developing code. However, the time to design
and code any significant application would exceed the time available for a
reasonable length examination. It was decided to experiment with an on-
line programming examination in which students would be given significant
amounts of source code and asked to correct it if necessary and to complete
it to some specification.

2 BlueJ

BlueJ[4] is a programming environment developed by Deakin University, Mel-
bourne, Australia and the University of Kent, England. It supports object
oriented programming in Java, and is freely available as a download from the
Internet. An increasing number of textbooks either use it directly or refer
to it as a mechanism for executing programming exercises. In addition to
providing a text editor (specialised to Java to some extent), it also allows the
user to compile the resulting code and to instantiate objects, independently
of any particular program. Of course, the objects so instantiated are execut-
ing as part of the BlueJ environment, but to the user they appear to exist
independently.

In addition to these features, the environment allows extensions to be
provided using a plug in mechanism. These extensions provide support for
additional amounts of UML, aspects of coding style checking, logging user
behaviour, etc. Of particular interest to us is the Submitter extension, that
allows a student to send a project to another person, or to a program. This
can submit an arbitrary set of files from the BlueJ project to a marking
system and display the output from the marking system to the student.

3 JUnit

JUnit[2] is a tool developed by Kent Beck to support the Extreme Program-
ming methodology of continuous system integration with automated regres-
sion testing. Essentially it allows the user to write a Java class (or classes)

2

containing methods that test aspects of the system being constructed. A test

suite is a single Java class with an identifier that ends with Test, containing
a number of test methods. Conventionally, each test method within a suite
tests a single aspect of the system being constructed, and each test should
be as far as possible independent of other tests. JUnit is now packaged
with BlueJ, so that students can develop code in the extreme programming
style, although we have not been active in encouraging this style with our
elementary programming classes.

4 Examination Structure

With the availability of these tools, we decided to run an examination at
which the students would have to correct compilation errors and enhance
existing software. The examination would be marked entirely automatically,
by using scripts to compile the student’s code and to run JUnit tests on the
resulting classes. Marks would be awarded for correcting the compilation
errors, and also for each test that was successfully passed.

The approach taken involved providing partial source code, which the
student could then alter or extend. This approach has several benefits:

1. The supplied code can be used to provide examples of Java syntax,
rather than compelling the student to remember this exactly. In addi-
tion to reducing the time spent typing in straightforward program code,
this also introduces an element of code-reading into the examination.

2. It continues the approach used in the weekly laboratory exercises, which
were taken from the textbook ’Objects First with Java’[1]

3. JUnit testing is more likely to succeed because the correct class names
or method signatures have been provided.

It was not practicable to alter the lab to prevent the students using the
Internet, email or their previous work. Even if had been practicable to isolate
the lab from the Internet, the departmental intranet was still required for the
JUnit testing. The questions were therefore written so that students would
not need to look up documentation or previous exercises. Some useful exam-
ples of code were provided within the supplied methods, and some documen-
tation on relevant Java library methods were given within the instructions.
Access to the standard online documentation for Java was available in any
case. The students were trusted not to email each other, and the invigilators
did not see any such activity.

3

The students were supplied with four BlueJ projects. Within each project,
the source code for one or more classes were provided, containing errors or
omissions within the methods. An accompanying document gave an intro-
duction and a list of the required tasks for each project.

4.1 Marking Mechanism

At any stage, the students could submit a project for assessment. The project
is then run against one or more JUnit test suites. The student can view the
result of these tests to discover how many tests were successful, and to obtain
details of compilation and test errors. There is no limit to the number of
times that a project can be submitted.

The marks obtained for each project are determined by multiplying the
number of successful tests by an integer scale factor which is associated with
the corresponding test suite. Additionally, marks can be obtained for suc-
cessful compilation. The student’s overall mark is calculated by summing
the maximum mark obtained for each test suite. The student can view their
marks at any stage.

Submissions are stored in the lecturer’s workspace. There is a folder
for each student, and within that, folders for each submission. A log file
lists whether project compilation was successful or not, and the number
of successful tests for each test suite. Each submission folder contains the
source code and a text file containing a report on compilation and testing.
This allows the student’s whole submission history to be reconstructed for
examination audit or appeal processes.

After the exam is over, the lecturer runs a Perl script to extract the
marks for each student. The Perl script outputs a text file containing a line
for each student in a format suitable for further processing. This line contains
the final mark, the overall time taken, and, for each project, the number of
attempts made, the success of the compilation, and the marks obtained from
testing.

5 Questions

Suitable questions for this style of examination are different from those in
more conventional examinations. The marking mechanism means that no
account can be taken of coding style or documentation. The only factor that
can influence the mark is the success or otherwise of an objective test.

It is essential that the questions are phrased in an unambiguous manner
such that correctly answering the question will successfully pass all the JUnit

4

tests associated with that question. One question used in a previous year’s
examination asked students to complete the implementation of a toString

method. This turned out to be a poor question, because it is difficult to test
such a method without providing such a precise format to the student that
the question is almost trivial.

Each question consists of a list of tasks to be completed. The associated
BlueJ project contains incomplete source code for one or more classes. The
projects provided were

1. A very simple class holding details of the name and year of a student,
with a constructor and a toString() method. This class contained a
few compilation errors such as incorrect spelling or missing keywords,
and a couple of logic errors in the instance variable assignment and
String concatenation.

The code was tested by constructing an object and checking the output
of the toString method.

2. A class representing a number of silver coins. Some methods were pro-
vided and other methods had skeleton implementations for the student
to complete. This tested the use of simple expressions and the use of
conditional statements.

The code was tested by constructing several objects with different prop-
erties, and checking the String or numeric output of the methods.

3. Two classes modelling different employee grades. They extend the same
abstract class which holds the common attributes of an employee. Stu-
dents were required to implement an abstract method for both sub-
classes.

The code was tested by constructing objects of each class, and check-
ing the numerical output of a method. With this question, it would
have been possible for the student to alter the supplied classes so that
inheritance was not used. However, if they had done this, it would
demonstrate at least that they understood which components to re-
move!

4. A class which displays a GUI containing textfields and buttons. Stu-
dents were required to fill in the body of the actionPerformed method,
setting the contents of a textfield depending on the contents of two other
textfields.

The code was tested by initialising the input textfields and generating
the Event object corresponding to clicking the button. This will trigger

5

a call on the actionPerformed method and the test can then inspect
the result textfield.

The execution of a test like this requires a little cunning on the part
of the system. If the web server on which all the tests were run was to
execute the tests naively, potentially thousands of windows would be
opened and manipulated by its X display manager during the running
of the exam, potentially overloading the server. In addition, the main
screen associated with the server would have many windows appearing
and disappearing! To avoid this, a dummy display was used, by running
the X virtual frame buffer server[5]. The testing script then opened any
windows specified by programs under test on the virtual frame buffer,
effectively ignoring the visual output.

6 Analysis of Results

53 students sat the exam. The maximum mark was 30, and this mark was
obtained by 15 students. Most of the students taking this module are in
their first year studying for a degree in (or with) computer science or in their
second year studying for a degree in information technology. The information
technology degree is designed to be suitable for students who are less able
mathematically. The frequency of the different scores in the exam is shown
in Figure 1. The most obvious feature of this histogram is the two-humped
appearance, suggesting two distinct groups of student ability, as observed by
other authors[3].

21 out of 38 computer science students (55%) achieved a score of over
70%. A significant number of computer science students and almost all the
information technology students have scores of less than 40%. It does raise
the question as to whether this module is suitable for the information tech-
nology students, and highlights the divide between students who are coping
with programming and those who are not.

6.1 Sample Exam

To give students a chance to familiarise themselves with the submission sys-
tem and the style of questions, a sample exam of similar questions was made
available one month before the final exam. A laboratory class was dedicated
to helping students use the submission system. When the class was over, the
questions and marking system remained available for further practice.

37 students, from the class of 53, attended the lab class. Of these, eight
continued to use the system during the following week. In the week immedi-

6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35

S
tu

de
nt

s

Marks

Figure 1: Frequency of Final Scores

ately before the exam, six students used the system for a significant amount
of time. Four other students made single submissions.

Figure 2 shows the students’ percentage in the sample examination com-
pared to their percentage in the actual examination. In the sample exam,
only four students got full marks. This is possibly due to minor problems
with one of the questions, or possibly because the system was new to them.
In general, it can be seen that students improved their performance in the
final exam over that in the sample exam.

6.2 Overall time taken

Figure 3 shows the total number of marks achieved against the time taken.
The time taken was measured between first and last submissions and so

is slightly shorter than the actual time taken by each student. However, the
first question was very straightforward, and it is likely that most students
either corrected it within a few minutes, or submitted it almost immediately
to see the result. Ideally the student should work on the project and test
it within BlueJ, but observations within the lab show that many students
do try a submission fairly quickly, in order to see what errors the test suite
shows up.

7

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Fi
na

l E
xa

m
 %

Sample Exam %

Figure 2: Final Exam % against Sample exam %

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160

S
co

re

Time

Figure 3: Total marks against Time Taken

8

For all the marks obtained, there is quite a spread of time taken for that
mark to be achieved. It can be seen that there is no general relationship
between time taken and marks obtained. Some students spent over 2 and
a half hours at the exam and still obtained fewer than 10 marks. Students
who obtained full marks took between 40 minutes and 2 hours to do so. The
second author of this paper, an experienced Java programmer, took about
30 minutes to do the exam when he tackled it as an unseen exercise, so 40
minutes is approaching the lower limit of time to be expected among novice
programmers.

The number of attempts is for the project as a whole, rather than for the
individual alterations required, or the individual tests. Figures for attempts
at individual tests would not have been relevant, since it is likely that a
student would submit to check one particular alteration, and in this case
they would inevitably get errors in tests for other alterations which they had
not yet considered.

6.3 Attempts made

The number of attempts made by each student was also recorded. It is
interesting to see the relationship between the total number of attempts
made on a question and the number of marks achieved in that question.
This relationship may indicate the difficulty of the question, or be related to
the number of separate tasks involved in that questions.

Almost everyone completed question one successfully after very few at-
tempts.

6.3.1 Silver coins - question 2

Figure 4 shows the number of students who made that number of attempts
on question 2, and the number of marks they obtained for that question. For
example, there were 5 students who made 3 attempts on the question and
obtained full marks. Similarly, 5 students made 4 attempts in total, but only
obtained partial marks. A single student made 4 attempts but received no
marks for the question. This question contained a number of distinct tasks
which may account for the long tail in the number of submissions.

6.3.2 Employees - question 3

Figure 5 shows the number of students who made that number of attempts on
question 3, and the number of marks they obtained for that question. For this

9

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25

S
tu

de
nt

s

Attempts

Full marks
Part marks
Zero marks

Figure 4: Silver coins - Marks against Attempts

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20

S
tu

de
nt

s

Attempts

Full marks
Part marks
Zero marks

Figure 5: Employees - Marks against Attempts

10

question, it made no sense to submit an answer until both the constructors
and the implementations of the abstract method had been completed.

Here the vast majority of students achieved full marks after only a single
attempt although there is a significant tail of students who took multiple
attempts. Perhaps surprisingly, there is also a significant number of students
who received no marks at all and only made a single attempt on the question.

6.3.3 GUI - question 4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20

S
tu

de
nt

s

Attempts

Full marks
Part marks
Zero marks

Figure 6: GUI - Marks against Attempts

Figure 6 shows the number of students who made that number of attempts
on question 4, and the number of marks they obtained for that question.

For this question the number of students receiving no marks at all was
higher. Most of these students gave up after one or two attempts. For those
students who were successful, the number of attempts ranged between 1 and
19.

7 Conclusions

The use of online examinations for programming can be considered a suc-
cessful experiment. In addition to the benefits for the student of having a

11

familiar environment and the usual support tools for programming at hand,
there is a large benefit for the examiner since the marking is all carried out
automatically and the results are available as soon as the examination is
over. The student can also obtain his or her mark at any time during the
examination. Since every submission is recorded, it is possible to perform
later analyses of the detailed responses to individual questions.

The intention of this online examination was to provide an environment
closer to real-life programming than a purely written examination. It tests
the ability of the student to eventually achieve correct code. An informal
comparison of the students’ results in the online exam compared with their
performance in the other conventional exams in the same diet showed a
correlation between their conventional exam mark and the online mark of
around 0.8, indicating that the online exam is testing something different,
but it is not discriminating unfairly against good students.

It was hoped that the removal of the time limit would result in a more
relaxed atmosphere during the examination. It was noted by the invigilators
that no-one asked to leave the room for a comfort break during the entire
period. This is very unusual, and can be interpreted as proof that the on-
line examination was a less stressful and more engaging experience than a
traditional examination.

Although our initial examination took some weeks to prepare, most of the
effort was involved in modification of scripts and design of how to store the
submitted code. The actual preparation of the questions was not significantly
more difficult than preparing good questions for a conventional written exam.

The authors are greatly encouraged by the success of the experiment
and look forward to developing more demanding question types for advanced
classes.

References

[1] D.J. Barnes and M. Kölling. Objects First with Java. Prentice Hall, 3rd
edition, 2006.

[2] Kent Beck and Erich Gamma. Junit. Website: http://www.junit.org.
Last visited 21 August 2006.

[3] Saeed Dehnadi and Richard Bornat. The camel has two humps. Working
paper, School of Computing, University of Middlesex, February 2006.

12

[4] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg.
The BlueJ system and its pedagogy. Computer Science Education,
13(4):249 – 268, December 2003.

[5] XFree86. Xvfb virtual framebuffer X server for X Version 11. Unix
manual page.

13

