1. Programme Code(s) (recruitment & exit awards)
F1A1-MAT: F1A1-ZZZ

2. Programme Titles for all awards (unabbreviated)
Mathematics with Statistics

3. Main Award(s) (to be recruited to)
BSc Honours

4. Exit Awards (graduation only)
BSc Honours, BSc Ordinary

5. Date of Production
03 March 2016

6. MANDATORY COURSES

<table>
<thead>
<tr>
<th>Edinburgh/Orkney/SBC</th>
<th>HWUM</th>
<th>Dubai</th>
<th>ALP</th>
<th>IDL</th>
<th>Collaborative Partner</th>
<th>Stage</th>
<th>Semester</th>
<th>Phase (Part-time only)</th>
<th>Courses: (Please highlight any new courses and include the course descriptors)</th>
<th>Credit Value</th>
<th>SCQF</th>
<th>MQA</th>
<th>SCQF Level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>STAGE 1</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>F17CA</td>
<td>Calculus A</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>F17CC</td>
<td>Introduction to University Mathematics</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>F77SA</td>
<td>Introduction to Statistical Science A</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>F17CB</td>
<td>Calculus B</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>F77SB</td>
<td>Introduction to Statistical Science B</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAGE 2</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>F18CD</td>
<td>Multivariable Calculus and Real Analysis A</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>F18CF</td>
<td>Linear Algebra</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>F78PA</td>
<td>Probability and Statistics A</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>F18CE</td>
<td>Multivariable Calculus and Real Analysis B</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>F18NA</td>
<td>Numerical Analysis A</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>F18PA</td>
<td>Pure Mathematics A</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>F78PB</td>
<td>Probability and Statistics B</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAGE 3</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>F19PL</td>
<td>Abstract Algebra</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>F79MA</td>
<td>Statistical Models A</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>F19MC</td>
<td>Complex Analysis</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>F19MO</td>
<td>Ordinary Differential Equations</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>F79MB</td>
<td>Statistical Models B</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAGE 4</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>F79PS</td>
<td>Statistics for Social Science</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>F70TS</td>
<td>Time Series</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. OPTIONAL COURSES

Edinburgh/Orkney/SBC	HWUM	Dubai	ALP	IDL	Collaborative Partner	Stage	Semester	Phase (Part-time only)	Courses: (Please highlight any new courses and include the course descriptors)	Credit Value	SCQF	MQA	SCQF Level	Notes
----------------------	------	-------	-----	-----	------------------------	-------	----------	----------------------	---					
STAGE 1														
√	1	1				F17GC	Mathematics in Context	15	7					
√	1	2				F17SC	Discrete Mathematics	15	7					
STAGE 2														
√	2	1				F17LP	Logic & Proof	15	7					
√	2	1				F18AA	Applied Mathematics A	15	8					
√	2	1				F18GD	Mathematics for Direct Entrants	15	8					
STAGE 3														
√	3	1				F19MV	Vector Analysis	15	9					
√	3	1				F19PB	Pure Mathematics B	15	9					
√	3	2				F19NB	Numerical Analysis B	15	9					
√	3	2				F19AB	Applied Mathematics B	15	9					
Form P6 Heriot-Watt University – Undergraduate Programme Structure & Notes Template

1. Programme Code(s) (recruitment & exit awards)
F1A1-MAT: F1A1-ZZZ

2. Programme Titles for all awards (unabbreviated)
Mathematics with Statistics

3. Main Award(s) (to be recruited to)
BSc Honours

4. Exit Awards (graduation only)
BSc Honours, BSc Ordinary

5. Date of Production
03 March 2016

<table>
<thead>
<tr>
<th>STAGE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>√ 4 1 F10AC Applied Mathematics C 15 10</td>
</tr>
<tr>
<td>√ 4 1 F10AM Mathematical Biology A 15 10</td>
</tr>
<tr>
<td>√ 4 1 F10MF Functional Analysis 15 10</td>
</tr>
<tr>
<td>√ 4 1 F10MM Optimisation 15 10</td>
</tr>
<tr>
<td>√ 4 1 F10NC Numerical Analysis C 15 10</td>
</tr>
<tr>
<td>√ 4 1 F10PC Pure Mathematics C 15 10</td>
</tr>
<tr>
<td>√ 4 2 F10AN Mathematical Biology B 15 10</td>
</tr>
<tr>
<td>√ 4 2 F10MP PDEs 15 10</td>
</tr>
<tr>
<td>√ 4 2 F10ND Numerical Analysis D 15 10</td>
</tr>
<tr>
<td>√ 4 2 F10PD Pure Mathematics D 15 10</td>
</tr>
<tr>
<td>√ 4 2 F10PG Geometry 15 10</td>
</tr>
</tbody>
</table>

8. ELECTIVES (please provide a detailed description and course lists where possible)

Stage 1: Any SCQF Level 7 course from approved list
Stage 2:
Stage 3: Any SCQF Level 7,8 or 9 course from approved list

PROGRAMME NOTES

9. COMPOSITION & STAGE NOTES e.g. xx taught Courses (xx mandatory & xx optional)

Stage 1: Students must study 6 mandatory courses plus 2 optional or elective courses.
Stage 2: Students must study 7 mandatory courses plus 1 optional course.
Stage 3: Honours degree students must study 5 mandatory courses, together with 3 optional courses and no electives. Ordinary degree students must study 5 mandatory courses, together with up to 3 optional courses and up to 2 approved elective courses. The choice of electives will be published in the student handbook
Stage 4:
Stage 5:

10. NOMINAL PASS MARK/GRADE (Highlight any changes)
11. SUMMARY OF ASSESSMENT METHODS (Expressed as a percentage)

| Mark |
| Grade |

Integrated Masters 50% C
Honours 40% D
Ordinary 40% D
Diploma 40% D
Certificate 40% D

Variations in assessment methods across campuses/modes of study are as follows:

12. PROGRESSION REQUIREMENTS

Part A. Minimum number of credits required to progress through each stage are as follows

Stage 1 to 2:	120 credits (8 courses)
Stage 2 to 3:	240 credits (16 courses)
Stage 3 to 4:	360 credits (24 courses)
Stage 4 to 5:	N/A

Part B. Minimum grade D required in the following courses: (progression requirements exceeding a grade D must be qualified)

Stage 1:
Progression through the programme for an Honours degree normally requires:
A minimum of Grade D in at least 6 courses including F17CA Calculus A, F17CB Calculus B, F17CC Algebra A, F17GA Problem Solving, F77SA Introduction to Statistical Science A and F77SB Introduction to Statistical Science B
Progression through the course for an Ordinary degree normally requires:
A minimum of Grade D in at least 5 courses including F17CA Calculus A, F17CB Calculus B, F17CC Algebra A, F77SA Introduction to Statistical Science A and F77SB Introduction to Statistical Science B

Stage 2:
Progression through the programme for an Honours degree normally requires:
A minimum of Grade D in at least 6 courses including F18CD Multivariable Calculus and Real Analysis A, F18CE Multivariable Calculus and Real Analysis B, F18CF Linear Algebra, F78PA Probability and Statistics A and F78PB Probability and Statistics B
Progression through the course for an Ordinary degree normally requires:
A minimum of Grade D in at least 5 courses including F18CD Multivariable Calculus and Real Analysis A, F18CE Multivariable Calculus and Real Analysis B, F18CF Linear Algebra, F78PA Probability and Statistics A and F78PB Probability and Statistics B.

Stage 3:
Progression through the programme for an Honours degree normally requires:
An average mark of at least 40% on all the courses in this stage.

The Progression Board may permit a student to be re-assessed in any qualifying module not taken in the final stage in order to gain credits for the module, provided that the mark or grade obtained in the first assessment of any such module is used in determining the classification of the degree to be awarded.

Stage 4:
N/A

13. RE-ASSESSMENT OPPORTUNITIES
The re-assessment policy for this programme is in line with University Regulations as set out below (please tick) Yes √ No
If you have selected "No" please amend the statement below and highlight changes.
1. A student who has been awarded a Grade E or a Grade F in a course may be re-assessed in that course.
2. A student shall be permitted only one re-assessment opportunity to be taken at the Resit diet of examinations following the first assessment of the course.
3. A student shall not be re-assessed in any qualifying course taken in the final stage of a course of study.
4. The Progression Board may permit a student to be re-assessed in any qualifying course not taken in the final stage in order to gain credits for the course, provided that the mark or grade obtained in the first assessment of any such course is used in determining the classification of the degree to be awarded.

14. AWARDS, CREDITS & LEVEL
The awards, credits and level for this programme is in line with University Regulations as set out below (please tick) Yes √ No
If you have selected "No" please amend the statement below and highlight changes.

Part A. Credit Requirements
Integrated Masters 600 SCQF credits including a minimum of 120 credits at Level 11
Honours Degree (inc MA) 480 SCQF credits including a minimum of 180 credits at Level 9 and 10 of which at least 90 credits at Level 10
Ordinary or General Degree 360 SCQF credits including a minimum of 60 credits at Level 9
Diploma of Higher Education 240 SCQF credits including a minimum of 90 credits at Level 8
Certificate of Higher Education 120 SCQF credits including a minimum of 90 credits at Level 7

Part B. Mark/Grade Requirements
Integrated Masters Weighted Average >=50% over all qualifying courses at grades A-D
Honours Degree (inc MA) 1st: Weighted Average >=70% over all qualifying courses at grades A-D
2.1: Weighted Average >=60% over all qualifying courses at grades A-D
2.2: Weighted Average >=50% over all qualifying courses at grades A-D
3rd: Weighted Average >=40% over all qualifying courses at grades A-D
Ordinary or General Degree Minimum of grade D in all pre-requisite courses
Diploma of Higher Education Minimum of grade D in all pre-requisite courses
Certificate of Higher Education Minimum of grade D in all pre-requisite courses

Part C. Additional Award Requirements
Honours degree classification is determined by performance in
• Stage 3, averaged over all qualifying courses (40%)
• Stage 4, averaged over all qualifying courses (60%)
The qualifying courses are all courses in these years rated SCQF level 9 or 10.

15. ADDITIONAL PROGRAMME INFORMATION
The choice of electives at different stages will be published in the student handbook.
An optional course may not run if there is insufficient demand for it; some choices of courses may not be available to students in some years because of timetabling constraints
Educational Aims of the Programme

The principal aims of the programme are to:

- provide high-quality undergraduate education in a wide range of subjects in modern mathematics and statistics
- enable students to develop detailed knowledge and critical understanding of both theoretical and applied elements of mathematics and statistics
- provide students with training and practical experience of modelling, analysing and interpreting mathematical and real-world problems
- enable students to communicate and work effectively with peers and academic staff, demonstrating appropriate levels of autonomy, initiative, and responsibility
- provide students at the undergraduate level with the opportunity to plan and write a dissertation requiring detailed and critical understanding in an area of statistics
- equip students with the grounding in mathematics and statistics necessary to go onto to further study or straight into graduate jobs

Subject Mastery

Understanding, Knowledge and Cognitive Skills

On completion of the programme students should be able to:

- demonstrate an understanding across a broad range of mathematics and statistics
- demonstrate a detailed knowledge and understanding in certain specific areas of both mathematics and statistics
- demonstrate an understanding of the power of abstraction and of the notions of proof and logical reasoning
- demonstrate an appreciation of the usefulness of mathematics and statistics over a wide range of applications

Scholarship, Enquiry and Research

On completion of the programme students should be able to:

- demonstrate a good level of skill in calculation and in mathematical manipulation
- demonstrate the ability to present rigorous arguments
- model real-life situations in mathematical terms and analyse the resulting models
- demonstrate computational skills involving the use of a range of software packages
Industrial, Commercial and Professional Practice

On completion of the programme, students will have the knowledge and skills for the development, application and consequent analysis of mathematics and statistics and mathematical and statistical models as currently required in modern industrial sectors, including IT, finance, engineering, and general science and technology. They will be able to identify, analyse and solve problems, and discuss issues at a professional level; they will also be able to critically review existing practices and will be in a strong position to move on to a professional environment, with sound knowledge, confidence and awareness of the nature of that environment and the demands it will make.

Autonomy, Accountability and Working with Others

On completion of the programme students will be able to:

- plan and organise their own learning through self management and time management
- demonstrate the ability to work with relatively little guidance or support, to undertake self-directed work and to meet deadlines
- communicate effectively at all levels and using a range of media
- interact effectively with professionals from a wide and diverse range of areas

Communication, Numeracy and ICT

- On completion of the programme, students will be numerate, able to make presentations on specialised topics and able to communicate well with peers and other colleagues. They will have extensive IT knowledge and skills and will be able to use them confidently. They will also have the necessary background to enable them to be ready, able to communicate on technical and general matters with peers and senior colleagues and solve problems by applying a range of concepts and principles in loosely defined contexts and showing effective judgement in the selection and application of tools and techniques.

12. Approaches to Teaching and Learning:

The following teaching methods are used: lectures, tutorials, computing laboratory work, coursework, projects. Teaching on the programme is student-focussed, with students encouraged to take responsibility for their own learning and development. In addition, students learn through structured group work in problems solving, collaborative student presentations, and independent study and technical project work. Resource-based and problem-based teaching styles are used to facilitate the motivational and assimilative phases of the learning process. The level and type of support available via VISION will vary between the courses as is appropriate for the subject matter.

Approaches to learning and teaching are continually reviewed and developed with the aim of matching them to the abilities and experiences of the students.
1. Course Code
F1A1-MWS

2. Course Title
Mathematics with Statistics

3. School
Mathematical & Computer Sciences

4. Type
BSc

5. Awards
BSc Honours, BSc Ordinary, DipHE, CertHE

6. Course Accredited by

7. UCAS Code
G100

8. QAA Subject Benchmarking Group(s)
Mathematics

9. Date of Production/Revision
June 2011

13. Assessment Policies:

The assessment policy for the programme incorporates a range of assessment types. Continuous assessment during some courses and summative assessment at the conclusion of courses both contribute to the overall assessment and are used to formally measure achievement in specified learning outcomes. Understanding, knowledge and subject-specific skills are assessed by coursework assignments and written examinations. Formative assessment is used to provide feedback and to inform student learning.

Approaches to assessment are continually reviewed. Specific details about methods of assessment are provided in the appropriate course descriptors.