Automatic Guidance for the Formal Verification
of High Integrity Ada

Andrew Ireland
Department of Computing Science and Electrical Engineering
Heriot-Watt University
Edinburgh

CASE FOR SUPPORT

1 Previous research track record

1.1 The applicant

Dr Andrew Ireland is a Lecturer in Computer Science. He has substantial research
experience in the area of automated reasoning and in particular proof planning on
which he has published widely [6, 4, 25, 27, 28, 31, 43, 44, 29]. Currently he is a
co-investigator on two EPSRC funded grants: GR/L42889 (1997/00) “Parallelising
compilation of Standard ML through prototype instrumentation and transforma-
tion” and GR/M45030 (rolling funding) “Computational Modelling of Mathematical
Reasoning”. The second of these grants is held at University of Edinburgh within
the Mathematical Reasoning Group (MRG) where the technique known as proof
planning was initially developed. His strong links with the MRG will greatly as-
sist the dissemination of the results from the proposed programme of research. He
has organized one national workshop on automated reasoning and two international
workshops on the automation of proof by mathematical induction.

1.2 Research environment

The applicant works in the Department of Computing and Electrical Engineering
at Heriot-Watt University. The Department received a 4B in the 1996 Research
Assessment Exercise in the Computer Science unit of assessment. It is housed in a
modern building, with excellent computer and infrastructural facilities.

The applicant is a founder member of the recently formed Dependable Sys-
tems Group, whose research focus is to improve the reliability and predictability
of computer systems through the development and application of rigorous design,
implementation and verification techniques. The current Group research areas in-
clude:

e Theorem proving, formal verification and synthesis.
e Design and implementation of parallel and distributed functional languages.
e Performance modelling and simulation of parallel and distributed systems.

Since its inception in 1997, the Group has grown to 1 Professor, 2 Senior Lecturers,
3 Lecturers, 1 Research Fellow, 4 Research Assistants and 5 PhD students. Group
members currently hold 4 EPSRC research grants and have hosted a number of
international workshops in the last year.

Automatic Guidance for the Formal Verification of High Integrity Ada 2

2 Description of proposed research and its context
2.1 Introduction

A key challenge identified by Foresight is the need for “readier access to formal
methods for developers of safety critical systems”. Automation will play a crucial
role in meeting this challenge. The aim of this project is to investigate techniques
for automating the formal verification of software for critical systems. In particular
we will focus upon SPARK [1], a subset of the Ada programming language developed
by Praxis Critical Systems!. SPARK has a proven track record in the production
of software for critical systems within the finance, aerospace, rail and telecommu-
nications markets. The value of formal verification is recognized by Praxis as being
crucial to the production of critical systems. This is reflected within the SPARK
toolkit that supports formal verification through the SPADE Proof Checker. The
SPADE Proof Checker, however, is interactive and requires highly skilled users with
development times typically measured in person-months. The need for greater ef-
ficiency within the formal verification process is recognized by Praxis. The CIAM
Proof Planner [5] has a proven track record in increasing the level of automation
provided by proof checkers. This project aims to increase the level of automation
within the formal verification of software written in SPARK by investigating the
coupling of the CIAM Proof Planner with the SPADE Proof Checker.

2.2 Scientific/Technological Relevance

The seminal work of Floyd [13] and Hoare [22] provided the theoretical foundation
for many of the early software verification systems [36, 11, 17, 37]. Such systems
were batch oriented, requiring the user to annotate their program code with as-
sertions that specified the desired behaviour of the system. From the annotated
program code a set of mathematical conjectures, known as verification conditions,
were generated. Finally, a theorem prover was used to discharge the verification
conditions. Although experience of these early systems led to the development of
richer specification languages [16, 40], it is generally accepted that the batch ap-
proach to verification did not scale up. The onus on the user to supply intermediate
lemmas and assertions, in particular loop invariants, is a key contributing factor to
the lack of scalability. More generally, the batch approach gave rise to unmanage-
able verification conditions that provided little guidance when proof attempts failed
as to whether the failure was due to bugs in the code or the specification.

A second generation of verification systems emerged based upon an incremental
style of development, similar to that advocated? by Dijkstra [12] and Gries [20],
i.e. the program and its proof of correctness are developed hand-in-hand. The in-
cremental style ensures that verification conditions are kept relatively manageable,
proof failures are easier to understand and bugs are identified early. The SPARK
approach to programming advocates this style of development, so too does the
PENELOPE® system [21]. Both PENELOPE and SPARK support Ada subsets. How-
ever, while PENELOPE focuses solely on formal verification, SPARK takes a more
holistic approach, coupling formal verification with conventional program analysis
techniques. SPARK was first defined in the late 1980’s at Southampton University
[8]. Its technical origins, however, date back to the 1970’s at RSRE. Although tech-
nically a subset of Ada, SPARK is more than just a programming language. SPARK
represents an approach to the production of high integrity software. This is re-
flected in the SPARK analysis tools which include flow analysis techniques as well as
formal verification. The level of analysis selected is dictated by the criticality of the

lhttp://www.praxis—-cs.co.uk

2 Although both Dijkstra and Gries were motivated by programming as a more human oriented
activity.

3Qdyssey Research Associates.

Automatic Guidance for the Formal Verification of High Integrity Ada 3

application. Formal verification is applicable when dealing with the development of
critical systems.

The second generation verification systems do not address the problem of in-
termediate lemmas and loop invariants mentioned above. Although heuristic based
techniques for automating the discovery of loop invariants have been investigated
extensively [45, 33, 46, 15, 34, 7, 10, 39, 38|, they have had little impact on the
mainstream verification systems. The need for cohesion between the heuristic guid-
ance and theorem proving components was identified as a contributing factor early
on [45], yet was never investigated.

The novelty of our proposal is that we directly address this issue of cohesion.
We aim to do this through proof planning, a technique for guiding the search for
proofs that provides a single framework for representing high-level heuristics as well
as theorem proving knowledge. The proof planning technique that is implemented
in CIAM was first developed within the Department of Artificial Intelligence* at
Edinburgh University in the late 1980’s. Proof planning builds upon the LCF style
of theorem proving [19], where primitive proof steps are packaged-up into programs
known as tactics. Starting with a set of general purpose tactics, plan formation
techniques are used to construct a customized tactic for a given conjecture. The
search for a customized tactic is constrained by a set of methods, each of which
specifies the applicability of a general purpose tactic. Collectively a set of methods
is known as a proof plan. CIAM was initially used to drive the OYSTER interactive
proof checker [23], a Prolog re-implementation of the Cornell NUPRL proof develop-
ment environment [9]. Proof planning has been investigated extensively within the
context of proof by mathematical induction [4]. What distinguishes proof planning
from other approaches to theorem proving is the flexibility it offers by separat-
ing the issues of search (method level) and soundness (tactic level). This means
that the planning of a proof need not follow a strict backward or forward style of
construction. This flexibility gave rise to proof critics [25, 27], an extension that
supports the automatic analysis and patching of failed proof planning attempts.
The most striking proof planning successes have been achieved where proofs re-
quire the discovery of auxiliary inductive lemmas or generalizations [26, 27, 28].
Such proof discovery capabilities outperform the conventional inductive theorem
provers [3, 35, 2, 42, 41, 14, 32, 24]. Loop invariants are by their nature inductive
so the proof plans for induction easily transferred to the problem of reasoning about
imperative programs [31, 43, 44, 30]. The potential for using CIAM to guide proof
checkers, other than OYSTER, has already been demonstrated® by the successful
coupling of CIAM with the Cambridge HOL interactive theorem prover [18]. The dif-
ference between our proposal and the CIAM-HOL link is that we are aiming to exploit
and extend the proof patching capabilities of CIAM. In addition, a CIAM-SPADE link
will allow the proof planning techniques to be tested within the context of safety
critical applications.

The time is now ripe to test the proof discovery capabilities of proof planning
on “industrial strength” problems. SPARK is the ideal vehicle given its commercial
success within the production of critical systems. We believe that proof planning
techniques can make a significant impact on the SPARK approach to producing high
integrity software. We also believe that working on “industrial strength” problems
will be beneficial to our basic research agenda. In the longer term we hope to build
upon the investment made within this project. In particular, the insights gained
from the work described within this “project definition” proposal will enable us to
further improve the efficiency of the proof management component of the SPARK
tools.

4The Department of Artificial Intelligence has been absorbed within the Division of Informatics.
5A collaborative research project between the Division of Informatics in Edinburgh and the
Computer Laboratory in Cambridge funded by EPSRC grants GR/L/14381 and GR/L/03071.

Automatic Guidance for the Formal Verification of High Integrity Ada 4

2.3 Programme and methodology
2.3.1 Aims and Objectives

We wish to investigate the coupling of CIAM to the SPADE Proof Checker. Our
research hypothesis is:

The coupling of CIAM with the SPADE Proof Checker will significantly
reduce the amount and sophistication of user interaction that is required
in order to complete the formal verification of software written in SPARK.

In particular, we will provide automatic guidance in the following key areas:

Assertion discovery: missing assertions, in particular loop invariants, are
a major bottle-neck within the formal verification of software. Our aim is
to build upon our previous success in automating the discovery of inductive
generalizations/ invariants. Our contribution will be to reduce the number of
intermediate assertions that a user of the SPADE Proof Checker will typically
be required to provide.

Lemma discovery: anticipating all the lemmas that are required before
starting the formal verification is unrealistic. Our aim is to build upon our
previous success in automating the discovery of inductive lemmas on-the-
fly during a proof attempt. Our contribution will be to reduce the number
of lemmas (rules) that a user of the SPADE Proof Checker will typically be
required to provide.

Praxis have demonstrated that the SPARK approach reduces the time-to-market for
high integrity software. The work being proposed would further reduce time-to-
market by increasing the overall productivity of a software engineer using SPARK.
Our research hypothesis will be tested through empirical analysis. While a corpus
of standard “text book” examples is envisaged for the initial development phase,
“industrial strength” problems provided by Praxis will be used during the evaluation
phase. We believe that our approach will work because of our previous success in
the area of proof discovery [26, 27, 28, 31, 43, 44, 30]. We anticipate, however,
that the investigation of the “industrial strength” problems will lead to natural
generalizations and extensions to the current set of proof plans. Finally, it is worth
noting that both CIAM and the SPADE Proof Checker are implemented in Prolog,
this should ease the low-level implementation details when coupling the systems.

2.3.2 The major tasks and timetable

The research programme has been broken down into five workpackages. A descrip-
tion of the aims of each workpackage is given below together with a breakdown of
the tasks and associated deliverables. A diagrammatic project plan that details the
workpackages and milestones is provided in the appendix.

WP1: Construction of Experimental System [Months 1 to 8]

The aim is to develop a prototype interface between CIAM and the SPADE Proof
Checker.
Tasks:

T1: Achieve compatibility between CIAM and the SPADE Proof Checker in terms
of the representation of definitions, rules, lemmas, conjectures etc. [2 person
months]

Automatic Guidance for the Formal Verification of High Integrity Ada 5

T2: Modify the CIAM library mechanism in order to support the needs of the
SPADE Proof Checker. [2 person months]

T3: Develop a “tactic” like mechanism that will enable CIAM to guide the ap-
plication of atomic proof steps within the SPADE Proof Checker. [2 person
months]

T4: Build a corpus of test conjectures to be used during the initial testing phase.
[2 person months]

Deliverables:
D1: Experimental system (prototype 1).
D2: Corpus of conjectures.

[Total: 8 person months]

WP2: Adaption of the Key Proof Methods & Critics [Months 9 to 14]

The aim is to transfer and adapt as necessary the existing proof plans that are key
to this application, i.e. proof methods for mathematical induction, loop invariant
verification and some simple proof critics. This will enable initial testing to be

carried out.
Tasks:

T5: Adapt proof methods associated with mathematical induction and loop in-
variant verification. [2 person months]

T6: Construct the corresponding “tactics” for the SPADE Proof Checker. [2 person
months]

T7: Adapt a couple of related proof critics. [2 person months]
Deliverables:

D3: An initial set of proof methods and critics together with SPADE Proof Checker
level “tactics”.

[Total: 6 person months]

WP3: Initial Testing & Re-design [Months 15 to 18]

The aim of the initial testing phase is to gain feedback on the first prototype before
starting the more in-depth investigations. It is anticipated that this feedback will
lead to modifications of the prototype.

Tasks:

T8: Conduct initial testing using the examples corpus (see D2). [2 person months]

T9: Evaluate the results of the testing and implement modifications as required
to the system. [2 person months]

Deliverables:
D4: Experimental system (prototype 2).
D5: A research report describing the system and the results of the initial testing.

[Total: 4 person months]

Automatic Guidance for the Formal Verification of High Integrity Ada 6

WP4: Extending the Proof Patching Capabilities [Months 19 to 24]

The aim is to ramp up the proof patching capabilities of the experimental system
which will include significant extensions to the existing loop invariant discovery
techniques. This will involve an investigation into the kind of proof obligations that
arise in the large proof projects that Praxis have undertaken.

Tasks:

T10: Initial investigation of SPARK applications. [2 person months]

T11: Extend and develop new proof methods and critics based upon the needs of
SPARK applications. [4 person months]

Deliverables:

D6: Extensions to existing proof critics as well as new proof methods and critics
driven by the needs of the SPARK applications.

D7: A research report describing the initial investigation of the SPARK applica-
tions.

D8: A research report describing the new and improved proof methods and critics.

[Total: 6 person months]

WP5: Industrial Strength Evaluation [Months 25 to 36]

The aim is to consolidate and evaluate the system on “industrial strength” problems
provided by Praxis. It is anticipated that this process will lead to relatively minor
modifications to the system and proof plans. At the end of this phase we hope to
be able to demonstrate benefits of proof planning through significant reductions in
the level of user interaction required during proof efforts.

Tasks:

T12: Evaluation based upon “industrial strength” problems, including minor mod-
ifications to the proof plans as required.

Deliverables:
D9: Experimental system (prototype 3).
D10: A research report that documents the “industrial strength” evaluation phase.
D11: Final report.

[Total: 12 person months]

2.4 Relevance to beneficiaries

The immediate beneficiaries of the work will be SPARK users and researchers work-
ing in the area of proof planning. The SPARK users will have a tool that significantly
reduces the amount and sophistication of user interaction required in formally ver-
ifying critical systems implemented in SPARK.

More widely, we hope that the results will be of material use to other research
and development teams working in the area of critical systems development. In
addition, we would expect that aspects of the theorem proving work will be of
interest to the wider automated deduction and formal methods communities, in
particular the case studies and the new proof plans that are developed.

Automatic Guidance for the Formal Verification of High Integrity Ada 7

2.5 Dissemination and exploitation

We will seek to publish our results in high quality journals and at the relevant
major international conferences and workshops. We anticipate at least two journal
publications to come from this project. The system itself and associated deliverables
will be made available via the web.

2.6 Management & Resources

Andrew Ireland will have overall responsibility for project management and will
oversee the the development of the system. He will spend 10% of his time working
on the project.

As well as interaction with Praxis, the Heriot-Watt group will maintain their
strong links with the Mathematical Reasoning Group within the Division of Infor-
matics at the University of Edinburgh. These links will provide crucial feedback on
the project’s progress.

Staff: We request a Research Assistant, to be appointed on the RA 1A scale, for 36
months. The RA will have responsibility for constructing and developing the overall
system, as well as conducting the “industrial strength” case studies. A background
in theorem proving and programming logics will be essential. While the majority
of the system development work will be carried out by the RA, Andrew Ireland
will contribute in terms of the overall system architecture and the investigation into
new proof patching techniques. Funding is also requested to partially support a
Computing Officer.

Equipment: We request funding to purchase 2 high power Pentium PCs. These
will provide the necessary performance for developing and evaluating the the pro-
totype systems. A small sum to cover consumables during the project will also be
required. Although our Department will provide general networking support (see
below), we will require funds in order to interface with the network from within our
research lab.

Travel: Interaction with Praxis will play a critical role within the project. The
sensitive nature of certain aspects of the case study material will also require the RA
to spend time working at Praxis. In order to facilitate this interaction we request
funds to cover 12 weeks of visits to Praxis over the life-time of the project. We plan
for a 2 week visit during workpackage 1, a 4 week visit during workpackage 4, and
a 6 week visit during workpackage 5.

It is difficult to state specifically which conferences we will attend given con-
ference deadlines and our publication timing. However, we have identified the fol-
lowing conferences from the Automated Deduction and Formal Verification areas
as being appropriate: Formal Methods Europe (FME), Conference on Automated
Deduction (CADE), Computer Aided Verification (CAV), IEEE Conference on Au-
tomated Software Engineering (ASE). In all we request funds for presenting papers
at four conferences.

Industrial resources: Our partners, Praxis Critical Systems, will provide indirect
contributions to the project (see letter of support). These will take the form of the
SPARK toolkit together with access to a problem set based upon their experience
of developing software for critical systems. The value of their indirect contribution
will be in excess of £40,000.

Institutional resources: Our Department will provide laboratory and office space
for the RA. It will also provide the computer and networking infrastructure support,
telephone, photocopying, and the other usual facilities.

Automatic Guidance for the Formal Verification of High Integrity Ada

*(11@) 1r0daa 1euy ‘(oT(r) oseyd uonyenyess [iSusrls rerrsnpur, oY) Sunjuewrndop jrodar yoIessal ‘() wesAs adLjojoxd payy, QI
(@) son pue spoyjowr Joord posordul pue mou oY) 3uIqLIISOP 1I0dal YoIedsal
‘(L) Teuv)R ApNYs 9sed MUVAS 9y} Jo uolyeSiseaul [eryul oY) Suiqriosep jrodel yoressal ‘(9() suoreoijdde MuvdAS oY) JO SPodU o) AQ USGALIP Sonbriuyoa) 0} SUOISUIXH HIA
*(g@) Surysey [enyul oY) pue wra)sAs oy} SuiqrIosep jroder yoressor ‘() woyshs odAjojoid puoseg g
“(ed) (So130®1Y,, [9A0] I0%09YD Jooxd MUVAS YHM 107180} SO1ILID pue spoyjew Jooid Jo 198 Teryu] :ZIAI
*(za) seanyooluod jo sndiod pue (T(1) wayshs adLyojoxd 1s11,q TIA

SOUO0)SO[IIA
SIN YIN SN SN TIN
e | m m m sdm
: TR o1 ; ; rdm
: m : : : saSeyoeg
: m 6L 8L | : €dM AI0M
m m m TRt zdm
: m : : e]
; m ; ; pvL gL oL 1L | TAM

9¢ ¥&¢ ¢ 08¢ St 9 ¥ e 06 8T 9T ¥ gL 0T 8 9 4 ¢ 0
SYIOIN

ue[J 109loxg onyewrureader(q :xipuaddy

Automatic Guidance for the Formal Verification of High Integrity Ada 9

References

[1]

[2]

[3]

[4]

[5]

[6]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Barnes. High Integrity Ada: The Spark Approach. Addison-Wesley, 1997.

A. Bouhoula and M. Rusinowitch. Automatic case analysis in proof by in-
duction. In Proceedings of the 13th IJCAI International Joint Conference on
Artificial Intelligence, 1993.

R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic
Press, 1988. Perspectives in Computing, Vol 23.

A. Bundy, A. Stevens, F. van Harmelen, A. Treland, and A. Smaill. Rippling: A
heuristic for guiding inductive proofs. Artificial Intelligence, 62:185-253, 1993.
Also available from Edinburgh as DAI Research Paper No. 567.

A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam sys-
tem. In M. E. Stickel, editor, 10th International Conference on Automated
Deduction, pages 647-648. Springer-Verlag, 1990. Lecture Notes in Artificial
Intelligence No. 449. Also available from Edinburgh as DAI Research Paper
507.

A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Extensions to the
rippling-out tactic for guiding inductive proofs. In M. E. Stickel, editor, 10th
International Conference on Automated Deduction, pages 132—146. Springer-
Verlag, 1990. Lecture Notes in Artificial Intelligence No. 449. Also available
from Edinburgh as DAT Research Paper 459.

M. Caplain. Finding invariant assertions for proving programs. In Proceedings
of the International Conference on Reliable Software, Los Angeles, CA, 1975.

B.A. Carre and T.J. Jennings. SPARK — The SPADE Ada Kernel. Dept. of
Electronics and Computer Science, University of Southampton, 1988.

R. L. Constable, S. F. Allen, H. M. Bromley, et al. Implementing Mathematics
with the Nuprl Proof Development System. Prentice Hall, 1986.

N. Dershowitz and Z. Manna. Inference rules for program annotation. IEEE
Trans. on Software Engineering, SE-7(2):207-222, 1981.

L.P. Deutsch. An Interative Program Verifier. PhD thesis, University of Cali-
fornia, Berkeley, 1973.

E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Mathematical Aspects of Computer Science, Proceedings of Symposia in Applied
Mathematics 19, pages 19-32. American Mathematical Society, 1967.

S. J. Garland and John. V. Guttag. A Guide to LP, The Larch Prover, Novem-
ber 1991.

S.M. German and B. Wegbreit. A synthesizer of inductive assertions. IEEE
Trans. on Software Engineering, SE-1(1):68-75, 1975.

D. I. Good. Mechanical proofs about computer programs. In C. A.R. Hoare and
J. C. Shepherdson, editors, Mathematical Logic and Programming Languages,
chapter 3, pages 55-75. Prentice-Hall, 1985.

D.I. Good, R.L. London, and W.W. Bledsoe. An interative program verification
system. IEEE Trans. on Software Engineering, SE-1(1):59-67, 1975.

Automatic Guidance for the Formal Verification of High Integrity Ada 10

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

M. J. Gordon. HOL: A proof generating system for higher-order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verifica-
tion and Synthesis. Kluwer, 1988.

M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF - A mech-
anised logic of computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

David Gries. The Science of Programming. Springer-Verlag, New York, 1981.

D. Guaspari, C. Marceau, and W. Polak. Formal verification of Ada programs.
IEEE Trans. on Software Engineering, 16(9):1058-1075, September 1990.

C.A.R. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12:576-583, 1969.

C. Horn and A. Smaill. Theorem proving and program synthesis with Oyster.
In Proceedings of the IMA Unified Computation Laboratory, Stirling, 1990.

D. Hutter and C. Sengler. INKA: The Next Generation. In M.A. McRobbie and
J.K. Slaney, editors, Proceedings of CADE-13. Springer Verlag, 1996. (LNAI
vol. 1104).

A. Ireland. The Use of Planning Critics in Mechanizing Inductive Proofs.
In A. Voronkov, editor, International Conference on Logic Programming and
Automated Reasoning — LPAR 92, St. Petersburg, Lecture Notes in Artificial
Intelligence No. 624, pages 178-189. Springer-Verlag, 1992. Also available from
Edinburgh as DAT Research Paper 592.

A. Treland and A. Bundy. Extensions to a Generalization Critic for Inductive
Proof. In M. A. McRobbie and J. K. Slaney, editors, 13th International Con-
ference on Automated Deduction, pages 47-61. Springer-Verlag, 1996. Springer
Lecture Notes in Artificial Intelligence No. 1104. Also available from Edinburgh
as DAT Research Paper 786.

A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal
of Automated Reasoning, 16(1-2):79-111, 1996. Also available as DAI Research
Paper No 716, Dept. of Artificial Intelligence, Edinburgh.

A. Treland and A. Bundy. Automatic Verification of Functions with Accu-
mulating Parameters. Journal of Functional Programming: Special Issue on
Theorem Proving & Functional Programming, 9(2):225-245, March 1999. A
longer version is available from Dept. of Computing and Electrical Engineer-
ing, Heriot-Watt University, Research Memo RM/97/11.

A. Treland, M. Jackson, and G. Reid. Interactive Proof Critics. Formal Aspects
of Computing: The International Journal of Formal Methods, 11(3):302-325,
1999. A longer version is available from Dept. of Computing and Electrical
Engineering, Heriot-Watt University, Research Memo RM/98/15.

A. Treland and J. Spark. Proof planning for strategy development. Research
Memo RM/00/3, Dept. of Computing and Electrical Engineering, Heriot-Watt
University, 2000. To appear in a Special Issue of the Annals of Mathematics
and Artificial Intelligence on Strategies in Automated Deduction.

A. Treland and J. Stark. On the Automatic Discovery of Loop Invariants. In
Proceedings of the Fourth NASA Langley Formal Methods Workshop — NASA
Conference Publication 3356, 1997. Also available from Dept. of Computing
and Electrical Engineering, Heriot-Watt University, Research Memo RM/97/1.

Automatic Guidance for the Formal Verification of High Integrity Ada 11

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

D. Kapur and H Zhang. An Overview of Rewrite Rule Laboratory (RRL).
Journal of Computer and Mathematics with Applications, 29(2):91-114, 1995.

S.M. Katz and Z. Manna. A heuristic approach to program verification. In Pro-
ceedings of IJCAI-73. International Joint Conference on Artificial Intelligence,
1973.

S.M. Katz and Z. Manna. Logical analysis of programs. Communications of
the ACM, 19(4):188-206, 1976.

M. Kaufmann and J. Moore. An Industrial Strength Theorem Prover for a
Logic Based on Common Lisp. IEEE Transactions on Software Engineering,
23(4):203-213, 1997.

J. King. A Program Verifier. PhD thesis, Carnegie-Mellon University, 1969.

D. C. Luckham, S.M. German, F.W. v.Henke, R.A. Karp, P.W. Milne, D.C.
Oppen, W. Polak, and W.L. Scherlis. Stanford pascal verifier user manual.
Research Report CS-TR-79-731, Stanford University, Department of Computer
Science, 1979.

A. Mili, J. Desharhais, and J. Gagne. Strongest invariant functions: Their use
in the systematic analysis of while statements. Acta Informatica, 22:47-66,
1985.

A. Mili, J. Desharhais, and F. Mili. Computer Program Construction. Oxford
University Press, 1994.

D.R. Musser. Abstract data type specification in the AFFIRM system. IEEE
Trans. on Software Engineering, SE-6(1):24-32, January 1980.

ORA. Introduction to EVES: Eercises and Notes. In Odyssey Research Asso-
ciates, Ottawa Ontario, Canada, 1996.

S. Owre, J. M. Rushby, and N. Shankar. PVS : An integrated approach to
specification and verification. Tech report, SRI International, 1992.

J. Stark and A. Ireland. Invariant discovery via failed proof attempts. In
P. Flener, editor, Logic-Based Program Synthesis and Transformation, number
1559 in LNCS, pages 271-288. Springer-Verlag, 1998. An earlier version is
available from the Dept. of Computing and Electrical Engineering, Heriot-Watt
University, Research Memo RM/98/2.

J. Stark and A. Ireland. Towards automatic imperative program synthesis
through proof planning. In The 14" IEEE International Conference on Auto-
mated Software Engineering, pages 44-51. IEEE Computer Society, 1999.

B. Wegbreit. Heuristic methods for mechanically deriving inductive assertions.
In Proceedings of IJCAI-73. International Joint Conference on Artificial Intel-
ligence, 1973.

B. Wegbreit. The synthesis of loop predicates. Comm. ACM, 17(2):102-122,
1974.

