
Automatic Guidance for
Refinement based Formal Methods

Maria Teresa Llano1

Andrew Ireland1 Gudmund Grov2

1School of Mathematical and Computer Sciences
Heriot-Watt University

2School of Informatics
University of Edinburgh

AFM’10, July, 2010

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 1 / 21

Motivation

The rigour of formal methods brings a lot of benefits to the
development of systems.

However, it is still not widely used outside specific domains.

A major problem is the need for expertise in:

Formal modelling.
Theorem proving.
Understanding the close relationship between proof and modelling.

Goal: To abstract away from the complexities of proof obligations,
providing high-level modelling guidance.

Here, with a focus on refinement.

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 2 / 21

Proof planning

Proof planning uses proof patterns to automate the search for proofs.

Automatic proof failure analysis and patching.

Reusability of proof strategies.

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 3 / 21

Reasoned Modelling

An approach that provides high-level modelling guidance by combining
proof and modelling patterns.

Currently the ideas of reasoned modelling are being developed in
Event-B.

We are working in Refinement Plans, a type of reasoned modelling
method that focus on refinement.

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 4 / 21

Event-B

A formalism that supports modelling and reasoning of discrete event
systems.

Uses a posit-and-prove style of modelling.

Promotes the evolution of models through refinement.

Uses mathematical proof to verify the consistency between refinement
levels.

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 5 / 21

Event-B Example: A logging system

Records whether a resource is allocated or unallocated.

Context
Sets RESOURCES

Machine
Variables: resources, allocated , unallocated

Invariants: resources ∈ P(RESOURCES)
allocated ⊆ resources
unallocated ⊆ resources
allocated ∩ unallocated = ∅
allocated ∪ unallocated = resources

Events ...
Event unallocate b=

any r
where r ∈ allocated
then allocated = allocated \ {r}

unallocated = unallocated ∪ {r}
end

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 6 / 21

Refinement in Event-B

Handle the complexity of large systems through the use of abstraction.

Refinement in Event-B:

Existing events can be split, merged or modified.

New events can be added.

Variables can be added and/or removed.

Gluing invariants: relate the state of the abstract model with the state of
the concrete model.

All refinement steps are verified through proof obligations.

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 7 / 21

Refinement Plans

Classify common patterns of refinement at the level of models.

Combine modelling and proof knowledge.

Detect partial matches of known patterns of refinement in a
development.

Provide user guidance in terms of modelling decisions.

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 8 / 21

Roles of refinement plans

Correcting refinements: modifications to flawed refinements.

Layering refinements: introduction of intermediate layers of
abstraction in complex refinements.

Abstracting refinements: reduction of the initial complexity of a
development.

Suggesting refinements: suggesting alternative refinement steps.

Increasing proof automation: associated proof patterns.

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 9 / 21

Structure of refinement plans

refinement plan = refinement method
+ proof methods
+ critics

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 10 / 21

Refinement method

Describes a common pattern of refinement (abstract model, concrete
model and gluing invariant).

Represented with declarative preconditions.

These preconditions identify partial or complete instances of the
pattern within a user’s refinement.

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 11 / 21

Refinement method example: sets-to-function

An instance of this pattern requires the:

abstract model to contain a partition of sets (many variables),

concrete model to replace the partition with a function (one variable)

Abstract model Concrete model

state1 ⊆ Elements Status = {STATE1, STATE2}
state2 ⊆ Elements fStatus ∈ Elements → Status
state1 ∩ state2 = ∅ state1 = fStatus−1[{STATE1}]
state1 ∪ state2 = Elements state2 = fStatus−1[{STATE2}]

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 12 / 21

Proof methods1

Reasoning patterns associated to a refinement method.

Proof methods are used when a user’s refinement fully matches with
a pattern but it has a set of unproven POs.

The use of proof methods and the analysis of partial success at the
level of proof planning represents future work.

1Taken from Computational Logic [Bundy, 1991]
Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 13 / 21

Critics

Exception handling mechanism.

If a partial instance of a refinement method is found, critics are
applied.

Represented with declarative preconditions.

All preconditions must succeed for a critic to be applicable.

Modelling guidance to overcome the failure is automatic generated
(e.g. change guard/action/(gluing) invariants).

The decision of applying/choosing guidance is left to the user.

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 14 / 21

Example: Logging system applied to the sets-to-function
refinement method

Precondition: There must exists a set of gluing invariants with the pattern:
stateVariable = concreteFunction−1[{stateConstant}]

Abstract model Concrete model
allocated ⊆ Resources Status = {ALLOCATED, UNALLOCATED}
unallocated ⊆ Resources rStatus ∈ Resources→ Status
unallocated ∩ unallocated = ∅
unallocated ∪ unallocated = Resources Missing gluing invariants

There exists a partial instance of the refinement method!

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 15 / 21

Gluing Invariant Speculation critic – Key ideas

1 There exists a failed guard strengthening PO in the concrete model
with the form:

∃failed po ∈ {〈 , , , PO〉 ∈ POs | failed proof(PO)}.
failed po = 〈M, E , /GRD, (∆, stateFunction(x) = Y| {z } ` x ∈ {z}| {z })〉

concrete guard abstract guard

2 That by adding the gluing invariant pattern to the set of hypotheses
the failed PO is provable:

provable (∆, stateFunction(x) = Y , {z} = stateFunction−1[{Y }] ` x ∈ {z})

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 16 / 21

Instantiation of the critic: logging example

1 Failed POs with the form “∆, stateFunction(x) = Y ` x ∈ {z}”: 4

..., rStatus(r) = ALLOCATED ` r ∈ {allocated}

..., rStatus(r) = UNALLOCATED ` r ∈ {unallocated}

2 The addition of the gluing invariant discharges the POs: 4

provable (..., rStatus(r) = ALLOCATED,
{allocated} = rStatus−1[{ALLOCATED}] ` r ∈ {allocated})

(A similar instantiation is given for state unallocated)

All preconditions succeed, then the guidance is the addition of the gluing
invariants in the concrete model.

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 17 / 21

The REMO2 tool

2The REMO acronym follows from REasoned MOdelling
Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 18 / 21

Ongoing and future work

Development of more refinement plans and their evaluation through
case studies.

Explore the role of refinement plans for:

Guiding users in their initial choice of refinement.
Suggesting intermediate refinement steps.

Tool implementation: REMO.

Development of the proof planning mechanism to exploit proof
methods.

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 19 / 21

Conclusions

Refinement plans aim at providing modelling guidance by
automatically analysing specifications that lie just outside a known
pattern of refinement.

While the analysis of failure and generation of guidance is automatic,
the decision as to whether or not to take the guidance on offer will be
left to the user.

We believe that this approach will enable us to turn low-level
proof-failures into high-level modelling guidance.

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 20 / 21

Refinement plan and critic schemas

PLAN(Name)
INPUTS:

PO SET {POs}
MODELS {AM, CM}

REFINEMENT METHOD:
1. Precondition
....
I. Precondition

PROOF METHODS:
1. Proof Method
....
J. Proof Method

CRITICS:
1. Critic Name
....
K. Critic Name

CRITIC(Name)
INPUTS:

PO SET {POs}
MODELS {AM, CM}
R INSTANCES {Instances}
P INSTANCES {Instances}

PRECONDITIONS:
1. Precondition
....
L. Precondition

OUTPUTS:
PATCH patch description
GUIDE guidance description

Llano, Ireland, Grov (HWU and EU) Refinement based formal methods AFM’10, July, 2010 21 / 21

	Motivation
	Event-B Background
	Refinement Plans
	Concluding remarks, current and future work
	Refinement plans
	Critic example

