
Reasoned Modelling Critics:
Turning Failed Proofs into Modelling Guidance

Andrew Ireland
School of Mathematical & Computer Sciences

Heriot-Watt University

Gudmund Grov
School of Informatics

University of Edinburgh

Michael Butler
School of Electronics & Computer Science

University of Southampton

Motivations & Sponsors

I While the rigour of building formal models brings significant
benefits, formal reasoning remains a major barrier to the wider
acceptance of formalism within design.

I We aim to abstract away from the complexities of low-level
proof obligations, providing high-level modelling guidance –
we call this reasoned modelling.

I Accessibility and productivity – allow smart designers to make
better use of their time.

I Generic vision, using Event-B as our starting point.
I EPSRC Funding: “A Cognitively Based Model of Theory

Formulation and Reformulation”
I University of Edinburgh (EP/F035594)
I Heriot-Watt (EP/F037058):

I Maria Teresa Llano (Research Student)
I www.macs.hw.ac.uk/sear

I Imperial College (EP/F036647)

www.macs.hw.ac.uk/sear

Overview

I Reasoning patterns via proof plans

I Proof automation

I Proof-failure analysis: proof patching & modelling guidance

I Combining proof & modelling heuristics

I Ongoing & future work

Proof Planning Architecture

I A technique that uses high-level proof outlines, i.e. proof
plans, to automate the search for proofs.

I Automatic proof failure analysis & proof patching.

I Promotes reuse and flexibility of proof strategies.

An Inductive Conjecture

I Conjecture:

∀t : list(τ). rotate(len(t), t) = t

I Rewrite rules (definitions & lemmas):

len(nil) ⇒ 0

len(X :: Y) ⇒ s(len(Y))

nil <> Z ⇒ Z

(X :: Y) <> Z ⇒ X :: (Y <> Z)

rotate(0,Z) = Z

rotate(s(X), nil) = nil

rotate(s(X),Y :: Z) = rotate(X , (Z <> (Y :: nil)))

(X <> Y) <> Z = X <> (Y <> Z)

X <> (Y :: Z) = (X <> Y :: nil) <> Z

Step-case Proof

Generalized conjecture:

∀t, l : list(τ). rotate(len(t), t <> l) = l <> t

Given:

∀l ′ ∈ list(τ). rotate(len(t), t <> l ′) = l ′ <> t

Proof:

rotate(len(h :: t), h :: t <> l) = l <> h :: t

rotate(s(len(t)), h :: t <> l) = l <> h :: t

rotate(s(len(t)), h :: t <> l) = l <> h :: t

rotate(len(t), (t <> l) <> h :: nil) = l <> h :: t

rotate(len(t), t <> (l <> h :: nil)) = (l <> h :: nil) <> t

Rippling: A Common Pattern of Reasoning

Given:

∀l ′ ∈ list(τ). rotate(len(t), t <> l ′) = l ′ <> t

Proof:

rotate(len(h :: t
↑
), h :: t

↑
<> blc) = blc <> h :: t

↑

rotate(s(len(t))
↑
, h :: t

↑
<> blc) = blc <> h :: t

↑

rotate(s(len(t))
↑
, h :: t <> blc

↑
) = blc <> h :: t

↑

rotate(len(t), (t <> blc) <> h :: nil
↓
) = blc <> h :: t

↑

rotate(len(t), t <>

⌊
(l <> h :: nil)

↓
⌋
) =

⌊
(l <> h :: nil)

↓
⌋

<> t

Rippling: Reasoning about Refinement

Givens: am(t) = a ∧ from(t) = p

abal(p) = cbal(p) + sum((pending � from)−1[{p}])

Proof:

abal(p) = cbal(p) − a
↑
+ sum((pending ∪ {t}

↑
� from)−1[{p}])

abal(p) = cbal(p) − a
↑
+ sum(((pending � from ∪ ({t}� from))

↑
)−1[{p}])

abal(p) = cbal(p) − a
↑
+ sum(((pending � from)−1 ∪ ({t}� from)−1)

↑
[{p}])

abal(p) = cbal(p) − a
↑
+ sum(((pending � from)−1[{p}] ∪ ({t}� from)−1)[{p}]

↑
)

abal(p) = cbal(p) − a
↑
+ sum((pending � from)−1[{p}]) + sum(({t}� from)−1[{p}])

↑

. . .

abal(p) = cbal(p) − a
↑
+ sum((pending � from)−1[{p}]) + a

↑

abal(p) = cbal(p) + sum((pending � from)−1[{p}]) + a
↑
− a

↓

abal = cbal(p) + sum((pending � from)−1[{p}])

Proof Planning

rotate(s(len(t))
↑
, h :: t

↑
<> blc) = . . .

rotate(len(t), (t <> blc) <> h :: nil
↓
) = . . .

Method preconditions (sideways ripple)
1. There exists a wave-occurrence, e.g.

rotate(s(len(t))
↑
, h :: t <> blc

↑
)

2. and a matching wave-rule, e.g.

rotate(s(X)
↑
, Y :: Z

↑
) :⇒ rotate(X , (Z <> (Y :: nil))

↓
)

3. and any condition attached to the rewrite is provable,
4. and progress being made towards a ∀-variable, e.g.

rotate(len(t), (t <> blc <> (h :: nil))
↓
) = . . .

Rippling: A Common Pattern of Reasoning

Given:

rotate(len(t), t) = t

Proof:

rotate(s(len(t))
↑
, h :: t

↑
)︸ ︷︷ ︸

blocked

= h :: t
↑

search space pruned
...

...

rotate(s(len(t))
↑
, h :: t

↑
) = h :: t

↑

rotate(len(t), (t) <> h :: nil
↓
) = h :: t

↑

Proof-failure Analysis & Patching

rotate(s(len(t))
↑
, h :: t

↑
)︸ ︷︷ ︸

blocked

= h :: t
↑

Critic preconditions (sink speculation):
• Preconditions (1), (2) and (3) of the wave method hold, e.g.

1. There exists a wave-occurrence, e.g.

rotate(s(len(t))
↑
, h :: t

↑
)

2. and a matching wave-rule, e.g.

rotate(s(X)
↑
, Y :: Z

↑
) :⇒ rotate(X , (Z <> (Y :: nil))

↓
)

3. and any condition attached to the rewrite is provable.
• Precondition (4) is false, i.e.

4. no ∀-variable.
Proof patch: speculate conjecture generalization, i.e.

∀t, l : list(τ). rotate(len(t),F1(t, l)) = G1(t, l)

More Proof Patching

I Conjecture generalization: The generalization critic has also
been applied to the problem of loop invariant discovery –
could potentially be used to suggest Event-B gluing invariants.

I Lemma discovery: The constraints of rippling have been
used to automate the discovery of missing lemmas –
potentially useful in building up a theory within the context of
an Event-B model.

I Induction revision: Heuristics for selecting induction rules
may fail – by analysing proof-failures, induction revision
patches such failures.

I Case analysis: Failure in applying conditional rewrite rules
can be used to suggest case splits within a proof.

I Fixing faulty conjecture: Abduction has been used to
suggest ways in which non-theorems can be “usefully”
transformed into theorems – abductive reasoning will play an
important role within reasoned modelling.

Proposed Reasoned Modelling Architecture

I Reasoned modelling aims to turn proof-failures into modelling
suggestions, while maintaining the benefits of proof planning.

I Crucially, the critics layer will combine proof-failure analysis
with modelling heuristics.

Cruise Control Example

MACHINE cruise ctrl
VARIABLES brake, cc
INVARIANTS inv1: cc = on ⇒ brake = off
EVENTS

INITIALISATION =̂
BEGIN

act1 : brake := off
act2 : cc := off

END

EVENT enable cc =̂
BEGIN

act1 : cc := on
END

EVENT pressbrake =̂
BEGIN

act1 : brake := on
END

...
END

Analysis of Failed Invariant Proof: pressbrake

EVENT pressbrake =̂
BEGIN

act1 : brake := on
END

Given:

(cc = on ⇒ brake = off)

Goal:
{brake 7→ on}(cc = on ⇒ brake = off)

(cc = on ⇒ on = off)

I Failure analysis: revise the model so that (cc = on) ⇒ false
I Modelling alternatives:

1. Add a guard of the form cc = off so as to restrict the
applicability of pressbrake.

2. Add an action of the form cc:=off so as to ensure that
braking is not prevented by the state of cc.

3. Add cc = off as an invariant of the system.

I Modelling heuristics required in order to rank alternative
modelling suggestions, i.e. increase the productivity of
designers.

A Priority Heuristic

I Where proof-failure analysis suggests that the value of a
variable should be changed within the context of a given
event, we adopt the following heuristics:

I If the priority of the candidate variable is lower than the
priorities of all the variables updated by the event, then it is
strongly suggestive that the change should be achieved via a
new action - action speculation

I If the priority of the candidate variable is higher than the
priorities of all the variables updated by the event, then it is
strongly suggestive that the change should be achieved via a
new guard - guard speculation

I A higher priority variable should not be restricted (guard) or
changed (action) in order to achieve a change with respect to
a lower priority variable.

Heuristics via Meta-data

MACHINE cruise ctrl
VARIABLES brake, cc
INVARIANTS inv1: cc = on ⇒ brake = off

META priority(cc) < priority(brake)

EVENTS
INITIALISATION =̂

BEGIN
act1 : brake := off
act2 : cc := off

END

EVENT enable cc =̂
BEGIN

act1 : cc := on
END

EVENT pressbrake =̂
BEGIN

act1 : brake := on
END

...
END

Reasoned Modelling Critics

critic (priority action speculation)
INPUTS:

PO SET POs
MODEL SET {M}

PRECONDITIONS:
1. ∃failed po ∈ {〈 , , ,PO〉 ∈ POs | failed proof(PO)}.

failed po = 〈M,E , /INV , (∆,X ⇒ Y ` σ(X ⇒ Y))〉
2. ∃τ ∈ sub. disjoint sub(τ, σ) ∧ provable(∆ ` (τ ∪ σ)X ⇒ false)
3. priority(τ,M) < priority(σ,M)

OUTPUTS:
GUIDE add action(sub2act(τ),E ,M)

1. there exists an unproven invariant PO (implication)

2. there exists a variable update that does not interfere with the
existing actions and which makes the PO provable

3. update does not violate priority heuristics

Reasoned Modelling Critics: User Guidance

MACHINE cruise ctrl
VARIABLES brake, cc
...
EVENT pressbrake =̂
BEGIN

act1 : brake := on
END

MACHINE cruise ctrl
VARIABLES brake, cc
...
EVENT pressbrake =̂
BEGIN

act1 : brake := on

act2 : cc := off
END

Note that the preconditions of the associated critic provides the
justification for the generated user guidance.

Ongoing & Future Work

I More than just local analysis of proof failures, e.g. a global
analysis of multiple failures may suggest invariant
strengthening rather than guard speculation – Abrial’s “Cars
on a Bridge” example, multiple failures.

I Explore alternative notions of priority, e.g. the temporal
nature of system priorities.

I Investigate how established notions of design assessment
could be used to inform guidance, e.g. reduce the risk of
premature commitment to design decision by ranking abstract
suggestions over more concrete suggestions.

I Prototype implementation underway.
I Investigations are case study driven:

I DEPLOY Project (EU ICT 214158), Michael Butler et al
I www.deploy-project.eu

www.deploy-project.eu

Ongoing & Future Work

I Refinement patterns:

I Currently developing refinement methods which combine
common patterns of refinement at the level of models, gluing
invariants and proof – Maria Teresa Llano (PhD).

I Where a refinement method partially applies, critics will be
used to suggest how the failure can be overcome via modelling
suggestions.

I Main focus is on posit-and-prove style refinement, but
potential for guiding abstraction, refinement, decomposition
and composition.

I Related EPSRC project:
I AI4FM: AI for automatic proof search in Formal Methods.
I Newcastle (EP/H024050), Edinburgh (EP/H024204),

Heriot-Watt (EP/H023852)
I www.ai4fm.org

www.ai4fm.org

Conclusion

I Proof planning has a successful track-record in terms of proof
automation and automatic proof-failure analysis & proof
patching.

I We aim to extend proof planning with a modelling layer, in
particular to combine proof-failure analysis with common
patterns of modelling in order to provide guidance.

The 3rd International Conference on
Verifi ed Software:
Theories, Tools and Experiments (VSTTE)
August 16th-19th, 2010
Heriot-Watt University, Edinburgh Campus
Scotland, UK

Key submission dates:

March 29th, 2010: Conference paper submission deadline

May 21st, 2010: Workshop paper submission deadline

Keynote speakers:

Tom Ball (Microsoft Research, Redmond)

Gerwin Klein (National ICT Australia)

Matthew Parkinson (University of Cambridge)

Web link:

http://www.macs.hw.ac.uk/vstte10

Email: vstte10@macs.hw.ac.uk

VSTTE 2010

Analysis of Failed Invariant Proof: enable cc

EVENT enable cc =̂
BEGIN

act1 : cc := on
END

Given:

(cc = on ⇒ brake = off)

Goal:
{cc 7→ on}(cc = on ⇒ brake = off)

on = on ⇒ brake = off

brake = off

I Failure analysis: revise the model so that (brake = off)
I Modelling alternatives:

1. Add a guard of the form brake = off so as to restrict the
applicability of enable cc.

2. Add an action of the form brake:=off so as to ensure that the
enabling of cc is not prevented by the state of brake.

3. Add brake = off as an invariant of the system.

Reasoned Modelling Critics: User Guidance

MACHINE cruise ctrl
VARIABLES brake, cc
...
EVENT enable cc =̂
BEGIN

act1 : cc := on
END

MACHINE cruise ctrl
VARIABLES brake, cc
...
EVENT enable cc =̂
WHERE

grd1 : brake = off

BEGIN
act1 : cc := on

END

