
Towards Increased Verification Automation for
High Integrity Software Engineering

EPSRC Research Assistant Industrial Secondment

Final Report

Collaborative Training Account GR/T11289

Andrew Ireland

November 21, 2005

1 Introduction

We report here on the SPADEase project, a 6-month Research Assistant Indus-
trial Secondment (RAIS) funded by the EPSRC Collaborative Training Account
(GR/T11289). SPADEase followed on from NuSPADE, a 3-year project funded
under the EPSRC Critical Systems Programme (GR/R24081) in collaboration
with Praxis High Integrity Systems Ltd1.

2 Background

Praxis High Integrity Systems Ltd (henceforth, Praxis) are an internationally
leading developer of high integrity software systems, based in Bath, England.
They advocate the SPARK Approach to software development, building upon
the traditional Floyd-Hoare style of program reasoning [4, 5]. The SPARK Ap-
proach has recently been recognised by the National Cyber Security Partnership
(NCSP) as one of only three techniques that can improve security critical soft-
ware [8].

Central to the SPARK Approach is the SPARK programming language [1].
The SPARK programming language is defined as a subset of Ada which is ex-
pressive enough for industrial applications, but restrictive enough to support rig-
orous analysis throughout the development process. In particular, the SPARK
language includes program annotations, allowing the programmer to specify the
intended behaviour of their programs. The SPARK tool-set supports formal
verification, i.e. proving that a program satisfies its specification.

1Previously, Praxis Critical Systems Ltd.

1



Key to making the SPARK Approach more attractive to industry is min-
imising the amount of user interaction required in performing formal verifi-
cation. Praxis have had significant success in automating exception freedom
proofs (absence of run-time errors) using the SPADE Simplifier, a special pur-
pose automated reasoning tool. Unfortunately, two key verification problems
remain. Firstly, although the SPADE Simplifier is very successful, it still fails
to prove certain classes of problems. Secondly, it is often necessary to strengthen
a program specification in order to complete proofs. The SPARK tools offer no
support in automating the strengthening of program specifications.

The NuSPADE project aimed to build upon the success of the SPARK Ap-
proach by increasing the level of automated program reasoning. Our starting
point was proof planning [2], an Artificial Intelligence technique for automated
proof discovery. Proof planning uses high-level proof outlines, known as proof
plans, to guide the search for proofs. A proof plan is structured in terms of proof
methods, where each method is associated with a general purpose tactic. A key
strength of proof planning is the proof critics mechanism [6, 7] that supports
the automatic analysis and patching of failed proof attempts. As noted above,
the discovery of program specifications, i.e. program properties, is also required
for proof automation. Although program analysis supports the automated dis-
covery of program properties, it does not identify which properties are necessary
in order for a proof attempt to succeed. To overcome this, we used proof plan-
ning to constrain the program analysis. This was achieved via the proof critics
mechanism, i.e. proof-failure analysis was used to generate constraints for use
during program analysis. This integration of proof planning and program anal-
ysis provided a strong platform for developing automated program reasoning
techniques. By exploiting this platform, the NuSPADE project successfully in-
creased proof automation within the SPARK Approach. More generally, NuS-
PADE demonstrated the value of proof planning paradigm. Firstly, in terms of
promoting the portability of automated reasoning strategies. Secondly, in terms
of developing strongly integrated reasoning components, e.g. the productive use
of proof-failure analysis within program analysis.

3 Project Overview

In general, the RAIS proposal aimed to transfer the results of the NuSPADE
project into an industrial environment. This would involve communicating the
core ideas within NuSPADE to an industrial audience and demonstrating that
these ideas were industrially viable. In practise, we planned to meet these goals
by developing an industrial version of NuSPADE, called SPADEase2.

3.1 Report on Project Objectives

The proposal identified core tasks as well opportunistic tasks. Below we report
on our results with respect to these tasks.

2The name signifies the importance of ease-of-use in industrial systems.

2



3.1.1 Core Tasks

The first core task was consolidation. NuSPADE was developed as a research
system, focusing on hard automation problems. Consequently, NuSPADE lacks
the robustness and accessibility expected of industrial tools. A significant
amount of refactoring was required to transform the academic NuSPADE into
the industrial SPADEase. Given the short project time, emphasis was placed on
consolidating the proof planning aspect of NuSPADE. Key changes anticipated
and subsequently implemented include:

• Initialisation - Launching NuSPADE on a problem requires manual ini-
tialisation. This setup includes deciding what rules to make available and
what top level strategy to invoke. In SPADEase the initialisation process
was fully automated, significantly simplifying the tool’s interface.

• Architecture - The NuSPADE architecture was entirely reconstructed as
four interacting systems. This greatly improved the clarity of the system
and facilitated integration with the SPARK tool-set.

• Integration - The behaviour of NuSPADE, and some SPARK tools, was
refined to achieve a seamless integration within the SPARK Approach.

Although the consolidation phase was originally scheduled for 4-months, in prac-
tise it took 5-months. A small portion of the delay can be attributed to taking
advantage of unforeseen training opportunities. However, primarily, the addi-
tional time was required to resolve unexpected technical obstacles. In particular:

• Performance - During development, some obvious extensions became
apparent that would bolster the performance of SPADEase. The general
proof strategy was slightly altered to accommodate a new collection of
efficiency boosting methods. Further, NuSPADE’s simplistic waterfall ex-
ecution model was replaced with an explicit strategy mechanism. This
supports increased control of the search space, allowing expensive but un-
interesting search paths to be automatically curtailed.

• Middle-Out Reasoning - A powerful feature of proof planning is middle-
out reasoning (MOR) [3], i.e. the use of meta-variables in delaying choice
during the search for proofs. The NuSPADE implementation of MOR was
not robust, so required re-implementation within SPADEase.

• Simplification - An unexpected side effect of automated initialisation in
SPADEase was the effective failure of the NuSPADE simplification tech-
niques3. This problem was addressed via the development of a new, more
constrained, goal based simplification method.

The second core task was the evaluation of SPADEase. This was originally
scheduled for 2-months, but had to be completed in 1-month as a result of
delays in building SPADEase. Nevertheless, SPADEase was tested on a range

3They became extremely time consuming.

3



of examples. In addition, a more extensive evaluation against a large industrial
example was also undertaken.

3.1.2 Opportunistic Tasks

Given the time constraints, it was unrealistic to consider the full industrialisation
of NuSPADE. Thus, the scope of the project was restricted to the core tasks
considered above. However, it was speculated that there might be opportunities
to make progress on two additional tasks outside the core remit.

The first opportunistic task was the exploration of more advanced proof
methods. In practise, however, industrial problems tend to require robust, con-
trolled, reasoning rather than sophisticated reasoning. The introduction of new
efficiency boosting methods and the necessary development of a new simplifica-
tion method reflects this shift in emphasis.

Nevertheless, following the evaluation of SPADEase, proof patterns were dis-
covered which suggested new proof methods for dealing with case splitting and
goals involving enumeration types. While time prevented an implementation
and deeper analysis of these proof methods, it was encouraging to note that
SPADEase assisted in the identification of new candidate methods.

The second opportunistic task was to investigate incorporating program
analysis features into SPADEase. The SPADEase architecture was developed
to actively support the capacity for program analysis. In addition, progress
was made on explicitly identifying the key changes required to extract indus-
trial program analysis from NuSPADE. However, on identifying these tasks, it
became clear that there was not sufficient time to complete on this.

3.2 Key Outcomes

SPADEase can be invoked on a SPARK problem with a single command. This
reflects the behaviour of a genuine industrial tool, and is a significant improve-
ment over NuSPADE. Proof search, especially on non-trivial problems, will al-
ways be time consuming. While SPADEase is no exception to this rule, it makes
positive steps toward addressing this concern through various efficiency saving
techniques. By building on the proof planning paradigm, SPADEase presents
a high level view of proof automation. This style of automation is particularly
attractive to industry as it is logically sound while remaining both transpar-
ent and immediately extensible. Furthermore, as proof planning captures the
key intuitions behind proofs, its failure can be especially revealing, highlighting
areas where reasoning might be strengthened.

As SPADEase lacks a program analysis component it is unable to auto-
matically strengthen specifications. This shortcoming was evident during the
evaluation, leading to a scattering of problems that NuSPADE could automat-
ically discharge yet SPADEase could not. Nevertheless, this weakness serves to
underline the additional automation leverage that can be gained from program
analysis.

4



4 Training and Related Activities

The RA, Mr Bill Ellis, was also the RA on the NuSPADE project. As well as
developing SPADEase, Bill also took part in a number of training and related
activities:

• Attended a “SPARK Black Belt” course – an advanced course for SPARK
software engineers.

• Praxis has a strong research oriented culture, so Bill presented two semi-
nars during his secondment as well as attending other technical/research
talks.

• The NuSPADE project involved significant work with SICStus Prolog.
Bill’s presence at Praxis coincided with their adoption of SICStus as the
main Prolog for the SPADE proof tools. Thus Bill was able to assist in
the resulting porting process.

• Bill also learned about many of the low-level support tasks associated with
commercial software development, e.g. version control, regression testing,
bug tracking, etc.

Bill’s industrial secondment inevitably slowed down the writing-up of his PhD.
However, the work which he undertook on the secondment will enrich his final
thesis. Bill he is now writing-up full-time and is expecting to submit in the
early part of 2006.

5 Research Output

A major output from the project was the SPADEase tool. A conference paper
describing both the NuSPADE and SPADEase tools is in preparation. This
paper will have a technology transfer component. In addition, the results of
the SPADEase project are being integrated into a journal length paper for sub-
mission to the International Journal of Automated Reasoning, special issue on
“Empirically Successful Automated Reasoning” – submission deadline, Dec 5th

2005.

6 Dissemination Activities

As well as the papers highlighted above, web pages for the SPADEase project
have been produced, i.e.

http://www.macs.hw.ac.uk/spadease/

In terms of advertising the success of SPADEase, Praxis provided the following
endorsement:

5



“SPADEase represents a very significant advance in the practical ap-
plication of proof planning. It increases the proportion of SPARK-
generated verification conditions that can be proved automatically
without introducing any new opaque, black-box processes. The sep-
aration of proof planning from proof checking also acts as a talent
multiplier by allowing proof experts to spend their time creating new
and reusable methods and approaches rather than working on indi-
vidual proofs.”

Peter Amey, Chief Technical Officer,
Praxis High Integrity Systems Ltd.

7 Project Management

Given the nature of the secondment, project management was relatively light
touch. Supervision was essentially by email, and the School of Mathematical and
Computer Sciences (Heriot-Watt) funded one mid-term review meeting which
was held at Praxis in Bath. Within Praxis, Bill’s day-to-day supervision was
undertaken by Dr Rod Chapman.

8 Follow-on Support

We see SPADEase as a first step towards technology transfer. We are actively
looking to deploy and further enhance the tool within a live development project.
Linked with this is a collaborative proposal that is currently being evaluated by
ITI Techmedia. The proposal focuses on Automated Security Engineering and is
in collaboration with the School of Informatics (University of Edinburgh). One
of the aims of this collaboration is to extend SPADEase so that it provides a
“bridgehead” for our on going automated reasoning within the formal methods
market. In addition, the Defence Science and Technology Laboratory (Dstl)
have shown interest in supporting SPADEase in terms of technology transfer.
To this end, Dstl and Praxis are currently looking to identify a MOD programme
which would benefit from the use of SPADEase. If successful, such a project
would start in Spring 2006.

References

[1] J. Barnes. High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley, 2003.

[2] A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk
and R. Overbeek, editors, 9th International Conference on Automated De-
duction, pages 111–120. Springer-Verlag, 1988. Longer version available from
Edinburgh as DAI Research Paper No. 349.

6



[3] A. Bundy, A. Smaill, and J. Hesketh. Turning eureka steps into calculations
in automatic program synthesis. In S. L.H. Clarke, editor, Proceedings of
UK IT 90, pages 221–6. IEE, 1990. Also available from Edinburgh as DAI
Research Paper 448.

[4] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Mathematical Aspects of Computer Science, Proceedings of Symposia in Ap-
plied Mathematics 19, pages 19–32. American Mathematical Society, 1967.

[5] C.A.R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12:576–583, 1969.

[6] A. Ireland. The Use of Planning Critics in Mechanizing Inductive Proofs. In
A. Voronkov, editor, International Conference on Logic Programming and
Automated Reasoning (LPAR’92), St. Petersburg, Lecture Notes in Artificial
Intelligence No. 624, pages 178–189. Springer-Verlag, 1992. Also available
from Edinburgh as DAI Research Paper 592.

[7] A. Ireland and A. Bundy. Productive use of failure in inductive proof. Jour-
nal of Automated Reasoning, 16(1–2):79–111, 1996. Also available as DAI
Research Paper No 716, Dept. of Artificial Intelligence, Edinburgh.

[8] National Cyber Security Partnership (NCSP). Improving security across the
software development lifecycle. 2004. http://www.cyberpartnership.org.

7


