
Introduction to Session Types

Ornela Dardha

School of Computing Science
University of Glasgow, UK

1st Scottish Programming Languages and Verification (SPLV)
Summer School

Glasgow, August 5–9, 2019

Session Types in One Slide

I In complex distributed systems communicating participants
agree on a protocol to follow, specifying type and direction of
data exchanged.

I Session types are a type formalism used to model structured
communication-based programming.

I Guarantee privacy, communication safety and session fidelity.

I Designed for
I π- calculus
I functional languages
I object-oriented languages
I binary or multiparty communication
I ...

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

Session Types

I Session types were born more than 25 years ago.

I The π- calculus is the original and most used framework.

I Seminal work:

I Honda, “Types for Dyadic Interaction”, CONCUR 1993.

I Takeuchi, Honda & Kubo, “An Interaction-Based Language
and its Typing System”, PARLE 1994.

I Honda, Vasconcelos & Kubo, “Language Primitives and Type
Discipline for Structured Communication-Based
Programming”, ESOP 1998.
Awarded the ETAPS Test-of-Time Award at ETAPS 2019.

Session Types

I Since their appearance, session types have developed into a
significant theme in programming languages.

I Computing has moved from the era of data processing to the
era of communication.

I Data types codify the structure of data and make it available
to programming tools.

I Session types codify the structure of communication and
make it available to programming tools.

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

The Maths Server and Client: Types / Protocols

I The session type of the server’s channel endpoint:

S , &{ add : ?Int.?Int.!Int.S ,
neg : ?Int.!Int.S
quit : end }

I The session type of the client’s channel endpoint:

C , ⊕{ add : !Int.!Int.?Int.C ,
neg : !Int.?Int.C
quit : end }

Duality: S = C

The Maths Server and Client: Types / Protocols

I The session type of the server’s channel endpoint:

S , &{ add : ?Int.?Int.!Int.S ,
neg : ?Int.!Int.S
quit : end }

I The session type of the client’s channel endpoint:

C , ⊕{ add : !Int.!Int.?Int.C ,
neg : !Int.?Int.C
quit : end }

Duality: S = C

The Maths Server and Client: Types / Protocols

I The session type of the server’s channel endpoint:

S , &{ add : ?Int.?Int.!Int.S ,
neg : ?Int.!Int.S
quit : end }

I The session type of the client’s channel endpoint:

C , ⊕{ add : !Int.!Int.?Int.C ,
neg : !Int.?Int.C
quit : end }

Duality: S = C

The Maths Server and Client: Types / Protocols

Legend

I &: branch/offer/external choice;

I ⊕: select/internal choice;

I ?Int.T : input Int, continue as T ;

I !Int.T : output Int, continue as T ;

I “·” indicates sequencing;

I add, neg, quit: choice labels, all different;

I end marks the end of the protocol.

The Maths Server: Program and Type

A server srv, parametrised in its channel endpoint x of type S :

srv(x : S) = x . {add : x?(a : Int).x?(b : Int).x!〈a + b〉.srv(x),
neg : x?(a : Int).x!〈−a〉.srv(x)
quit : 0 }

S = & { add : ?Int.?Int.!Int.S ,
neg : ?Int.!Int.S
quit : end }

The Maths Client: Program and Type

A client clt, parametrised in its channel endpoint x of type C ,
assuming P(a) does not use x :

clt(x : C) = x /neg .x!〈2〉.x?(a : Int).x / quit.P(a)

C = ⊕{ add : !Int.!Int.?Int.C ,
neg : !Int.?Int.C
quit : end }

Client/Server Interaction
(π- calculus OS)

(νc : S)(srv(c+) | clt(c−))

↓
(νc : ?Int.!Int.S)(c+?(a : Int).c+!〈−a〉.srv(c+) | c−!〈2〉.c−?(a : Int).c− / quit.P(a))

↓
(νc : !Int.S)(c+!〈−2〉.srv(c+) | c−?(a : Int).c− / quit.P(a))

↓
(νc : S)(srv(c+) | c− / quit.P(−2))

↓
(νc : end)(0 | P(−2))

≡
P(−2)

Client/Server Interaction
(π- calculus OS)

(νc : S)(srv(c+) | clt(c−))
↓

(νc : ?Int.!Int.S)(c+?(a : Int).c+!〈−a〉.srv(c+) | c−!〈2〉.c−?(a : Int).c− / quit.P(a))

↓
(νc : !Int.S)(c+!〈−2〉.srv(c+) | c−?(a : Int).c− / quit.P(a))

↓
(νc : S)(srv(c+) | c− / quit.P(−2))

↓
(νc : end)(0 | P(−2))

≡
P(−2)

Client/Server Interaction
(π- calculus OS)

(νc : S)(srv(c+) | clt(c−))
↓

(νc : ?Int.!Int.S)(c+?(a : Int).c+!〈−a〉.srv(c+) | c−!〈2〉.c−?(a : Int).c− / quit.P(a))
↓

(νc : !Int.S)(c+!〈−2〉.srv(c+) | c−?(a : Int).c− / quit.P(a))

↓
(νc : S)(srv(c+) | c− / quit.P(−2))

↓
(νc : end)(0 | P(−2))

≡
P(−2)

Client/Server Interaction
(π- calculus OS)

(νc : S)(srv(c+) | clt(c−))
↓

(νc : ?Int.!Int.S)(c+?(a : Int).c+!〈−a〉.srv(c+) | c−!〈2〉.c−?(a : Int).c− / quit.P(a))
↓

(νc : !Int.S)(c+!〈−2〉.srv(c+) | c−?(a : Int).c− / quit.P(a))
↓

(νc : S)(srv(c+) | c− / quit.P(−2))

↓
(νc : end)(0 | P(−2))

≡
P(−2)

Client/Server Interaction
(π- calculus OS)

(νc : S)(srv(c+) | clt(c−))
↓

(νc : ?Int.!Int.S)(c+?(a : Int).c+!〈−a〉.srv(c+) | c−!〈2〉.c−?(a : Int).c− / quit.P(a))
↓

(νc : !Int.S)(c+!〈−2〉.srv(c+) | c−?(a : Int).c− / quit.P(a))
↓

(νc : S)(srv(c+) | c− / quit.P(−2))
↓

(νc : end)(0 | P(−2))

≡
P(−2)

Client/Server Interaction
(π- calculus OS)

(νc : S)(srv(c+) | clt(c−))
↓

(νc : ?Int.!Int.S)(c+?(a : Int).c+!〈−a〉.srv(c+) | c−!〈2〉.c−?(a : Int).c− / quit.P(a))
↓

(νc : !Int.S)(c+!〈−2〉.srv(c+) | c−?(a : Int).c− / quit.P(a))
↓

(νc : S)(srv(c+) | c− / quit.P(−2))
↓

(νc : end)(0 | P(−2))
≡

P(−2)

Establishing a Connection

I The server listens on a standard channel a of type]S , and
receives a session channel for srv to use.

server(a) = a?(x : S).srv(x)

I The global declaration a :]S advertises the server and its
protocol.

I The client creates a session channel and sends it to the server.

client(a) = (νc : S)(a!〈c+〉.clt(c−))

I After one step, execution proceeds as before.

Establishing a Connection

I The server listens on a standard channel a of type]S , and
receives a session channel for srv to use.

server(a) = a?(x : S).srv(x)

I The global declaration a :]S advertises the server and its
protocol.

I The client creates a session channel and sends it to the server.

client(a) = (νc : S)(a!〈c+〉.clt(c−))

I After one step, execution proceeds as before.

Establishing a Connection

I The server listens on a standard channel a of type]S , and
receives a session channel for srv to use.

server(a) = a?(x : S).srv(x)

I The global declaration a :]S advertises the server and its
protocol.

I The client creates a session channel and sends it to the server.

client(a) = (νc : S)(a!〈c+〉.clt(c−))

I After one step, execution proceeds as before.

Establishing a Connection

I The server listens on a standard channel a of type]S , and
receives a session channel for srv to use.

server(a) = a?(x : S).srv(x)

I The global declaration a :]S advertises the server and its
protocol.

I The client creates a session channel and sends it to the server.

client(a) = (νc : S)(a!〈c+〉.clt(c−))

I After one step, execution proceeds as before.

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

Session Types: Key Features

I Duality: the relationship between the types of opposite
endpoints of a session channel.

I Linearity: each channel endpoint occurs exactly once in a
collection of parallel processes.

I The structure of session types matches the structure of
communication.

I Session types change as communication occurs.

I Connection is established among participants.

Session Types: Key Features

I Duality: the relationship between the types of opposite
endpoints of a session channel.

I Linearity: each channel endpoint occurs exactly once in a
collection of parallel processes.

I The structure of session types matches the structure of
communication.

I Session types change as communication occurs.

I Connection is established among participants.

Session Types: Key Features

I Duality: the relationship between the types of opposite
endpoints of a session channel.

I Linearity: each channel endpoint occurs exactly once in a
collection of parallel processes.

I The structure of session types matches the structure of
communication.

I Session types change as communication occurs.

I Connection is established among participants.

Session Types: Key Features

I Duality: the relationship between the types of opposite
endpoints of a session channel.

I Linearity: each channel endpoint occurs exactly once in a
collection of parallel processes.

I The structure of session types matches the structure of
communication.

I Session types change as communication occurs.

I Connection is established among participants.

Session Types: Key Features

I Duality: the relationship between the types of opposite
endpoints of a session channel.

I Linearity: each channel endpoint occurs exactly once in a
collection of parallel processes.

I The structure of session types matches the structure of
communication.

I Session types change as communication occurs.

I Connection is established among participants.

Properties of Session Types

I Communication Safety: the exchanged data has the expected
type.

I Session Fidelity: the session channel has the expected
structure.

I Privacy: the session channel is owned only by the
communicating parties.

Main Theorem: at runtime, communication follows the protocol.

Properties of Session Types

I Communication Safety: the exchanged data has the expected
type.

I Session Fidelity: the session channel has the expected
structure.

I Privacy: the session channel is owned only by the
communicating parties.

Main Theorem: at runtime, communication follows the protocol.

Properties of Session Types

I Communication Safety: the exchanged data has the expected
type.

I Session Fidelity: the session channel has the expected
structure.

I Privacy: the session channel is owned only by the
communicating parties.

Main Theorem: at runtime, communication follows the protocol.

Properties of Session Types

I Communication Safety: the exchanged data has the expected
type.

I Session Fidelity: the session channel has the expected
structure.

I Privacy: the session channel is owned only by the
communicating parties.

Main Theorem: at runtime, communication follows the protocol.

The Calculus and Typing Rules

The Calculus: Types

S ::= end termination
!T .S send
?T .S receive
⊕{li : Si}i∈I select
&{li : Si}i∈I branch

T ::= S session type
Bool boolean type
]T standard channel type
. . . other type constructs

The Calculus: Terms

P,Q ::= 0 inaction
P | Q composition
(νx)P restriction
xp!〈vq〉.P output
xp?(y).P input
xp / lj .P selection
xp . {li : Pi}i∈I branching

v ::= x , y channel
true | false boolean values
. . . other values

p, q ∈ {+,−, ε} are optional polarities for channels.

Typing Rules

(T-Par)

Γ1 ` P Γ2 ` Q

Γ1 + Γ2 ` P | Q

(T-Res)

Γ, xp : S , xp : S ` P p, q ∈ {+,−}
Γ ` (νx)P

(T-In)

Γ, xp : S , y : T ` P

Γ, xp : ?T .S ` xp?(y).P

(T-Out)

Γ1, x
p : S ` P Γ2 ` vq : T

(Γ1, x
p : !T .S) + Γ2 ` xp!〈vq〉.P

(T-Brch)

Γ, xp : Si ` Pi ∀i ∈ I

Γ, xp : &{li : Si}i∈I ` xp . {li : Pi}i∈I

(T-Sel)

Γ, xp : Sj ` P j ∈ I

Γ, xp : ⊕{li : Si}i∈I ` xp / lj .P

Gay & Hole, “Subtyping for Session Types in the Pi Calculus”.
ESOP 1999, Acta Informatica 2005.

Combination of Typing Contexts

Γ + x+ : S = Γ, x+ : S if x , x+ /∈ dom(Γ)

Γ + x− : S = Γ, x− : S if x , x− /∈ dom(Γ)

Γ + x : T = Γ, x : T if x , x+, x− /∈ dom(Γ)

(Γ, x : T) + x : T = Γ, x : T if T is not a session type

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0)

3

(νx)(x+!〈t〉.0 | x−!〈true〉.0) 7

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) 7

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) 7

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) 3

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) 3

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) 3

(νx)(x+!〈t〉.0 | x−!〈true〉.0) 7

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) 7

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) 7

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) 3

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) 3

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) 3

(νx)(x+!〈t〉.0 | x−!〈true〉.0)

7

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) 7

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) 7

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) 3

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) 3

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) 3

(νx)(x+!〈t〉.0 | x−!〈true〉.0) 7

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) 7

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) 7

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) 3

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) 3

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) 3

(νx)(x+!〈t〉.0 | x−!〈true〉.0) 7

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0)

7

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) 7

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) 3

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) 3

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) 3

(νx)(x+!〈t〉.0 | x−!〈true〉.0) 7

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) 7

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) 7

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) 3

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) 3

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) 3

(νx)(x+!〈t〉.0 | x−!〈true〉.0) 7

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) 7

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0)

7

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) 3

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) 3

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) 3

(νx)(x+!〈t〉.0 | x−!〈true〉.0) 7

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) 7

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) 7

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) 3

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) 3

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) 3

(νx)(x+!〈t〉.0 | x−!〈true〉.0) 7

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) 7

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) 7

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0)

3

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) 3

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) 3

(νx)(x+!〈t〉.0 | x−!〈true〉.0) 7

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) 7

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) 7

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) 3

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) 3

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) 3

(νx)(x+!〈t〉.0 | x−!〈true〉.0) 7

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) 7

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) 7

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) 3

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0)

3

Exercise: Is it well typed?

(νx)(x+?(t : Bool).0 | x−!〈true〉.0) 3

(νx)(x+!〈t〉.0 | x−!〈true〉.0) 7

(νx)(x−!〈false〉.0 | x+?(t : Bool).0 | x+?(w : Bool).0) 7

(νx)(x− / k.0 | x+ . {li : Pi}i∈I .0) 7

(νx)(νy)(x+?(z : Int).y−!〈42〉.0 | x−!〈11〉.y+?(w : Int).0) 3

(νx)(νy)(y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0) 3

Progress, Deadlock Freedom and Lock Freedom

Comparing Liveness Properties of Communication

I Deadlock Freedom: communications will eventually succeed,
unless the whole process diverges. (Standard π)

I Lock Freedom: communications will eventually succeed, even
if the whole process diverges. (Standard π)

I Progress: In-session communications will eventually succeed,
provided that a suitable context can be found. (Session π)

Note: the type system by Gay & Hole does not satisfy the liveness
properties, i.e., does not guarantee progress, deadlock freedom or
lock freedom.

Comparing Liveness Properties of Communication

I Deadlock Freedom: communications will eventually succeed,
unless the whole process diverges. (Standard π)

I Lock Freedom: communications will eventually succeed, even
if the whole process diverges. (Standard π)

I Progress: In-session communications will eventually succeed,
provided that a suitable context can be found. (Session π)

Note: the type system by Gay & Hole does not satisfy the liveness
properties, i.e., does not guarantee progress, deadlock freedom or
lock freedom.

Deadlock Freedom vs. Lock Freedom

I Consider again the process from the exercise slide:

P = (νx)(νy)
(
y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0

)
It is deadlocked and hence locked!

I Consider the process:

Q = (νx)(x+?(z) | Ω)

It is deadlock-free but locked!

Deadlock Freedom vs. Lock Freedom

I Consider again the process from the exercise slide:

P = (νx)(νy)
(
y−!〈42〉.x+?(z : Int).0 | x−!〈11〉.y+?(w : Int).0

)
It is deadlocked and hence locked!

I Consider the process:

Q = (νx)(x+?(z) | Ω)

It is deadlock-free but locked!

Research Question

What is the relationship among deadlock freedom, lock freedom
and progress?

I Lock freedom is a stronger property than deadlock freedom.

I Progress is a compositional form of lock freedom.

Carbone et al. (COORDINATION 2014)

Research Question

What is the relationship among deadlock freedom, lock freedom
and progress?

I Lock freedom is a stronger property than deadlock freedom.

I Progress is a compositional form of lock freedom.

Carbone et al. (COORDINATION 2014)

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

Research Timeline

Milner, Parrow, Walker 1989/1992

Honda 1993

Takeuchi, Honda, Kubo 1994

Honda, Vasconcelos, Kubo 1998

To be continued...

Milner 1993

Pierce, Sangiorgi 1993

Kobayashi, Pierce, Turner 1996

Sangiorgi 1998

On standard types for π- calculus

I]T : channel used in input/output to transmit data of type T .

I iT/oT : channel used only in input/output to transmit data of
type T . [Pierce,Sangiorgi’93]

I `iT/`oT : channel used only in input/output and exactly once
to transmit data of type T . [Kobayashi,Pierce,Turner’96]

I 〈li : Ti 〉i∈I : labelled disjoint union of types. [Sangiorgi’98]

On standard types for π- calculus

I]T : channel used in input/output to transmit data of type T .

I iT/oT : channel used only in input/output to transmit data of
type T . [Pierce,Sangiorgi’93]

I `iT/`oT : channel used only in input/output and exactly once
to transmit data of type T . [Kobayashi,Pierce,Turner’96]

I 〈li : Ti 〉i∈I : labelled disjoint union of types. [Sangiorgi’98]

On standard types for π- calculus

I]T : channel used in input/output to transmit data of type T .

I iT/oT : channel used only in input/output to transmit data of
type T . [Pierce,Sangiorgi’93]

I `iT/`oT : channel used only in input/output and exactly once
to transmit data of type T . [Kobayashi,Pierce,Turner’96]

I 〈li : Ti 〉i∈I : labelled disjoint union of types. [Sangiorgi’98]

On standard types for π- calculus

I]T : channel used in input/output to transmit data of type T .

I iT/oT : channel used only in input/output to transmit data of
type T . [Pierce,Sangiorgi’93]

I `iT/`oT : channel used only in input/output and exactly once
to transmit data of type T . [Kobayashi,Pierce,Turner’96]

I 〈li : Ti 〉i∈I : labelled disjoint union of types. [Sangiorgi’98]

Key words for standard π- types

For session-typed π- calculus:

1. Structure

2. Duality

3. Restriction

4. Branch/Select

1. Linearity forces a π channel to be used exactly once.

2. Capability of input/output of the same π channel split
between two partners.

3. Restriction construct permits the creation of fresh private π
channels.

4. Variant type permits choice.

Key words for standard π- types

For session-typed π- calculus:

1. Structure

2. Duality

3. Restriction

4. Branch/Select

1. Linearity forces a π channel to be used exactly once.

2. Capability of input/output of the same π channel split
between two partners.

3. Restriction construct permits the creation of fresh private π
channels.

4. Variant type permits choice.

Bridging the two worlds

To which extent session constructs are more complex and more
expressive than the standard π- calculus constructs?

Research Timeline

Milner, Parrow, Walker 1989/1992

Kobayashi 2007

Gay, Gesbert, Ravara 2008

Demangeon, Honda 2011

Dardha, Giachino, Sangiorgi 2012

Dardha 2014

Honda 1993

Takeuchi, Honda, Kubo 1994

Honda, Vasconcelos, Kubo 1998

To be continued...

Milner 1993

Pierce, Sangiorgi 1993

Kobayashi, Pierce, Turner 1996

Sangiorgi 1998

Research Timeline

Milner, Parrow, Walker 1989/1992

Kobayashi 2007

Dardha, Giachino, Sangiorgi 2012

Dardha 2014

Honda 1993

Takeuchi, Honda, Kubo 1994

Honda, Vasconcelos, Kubo 1998

To be continued...

Milner 1993

Pierce, Sangiorgi 1993

Sangiorgi 1998

Kobayashi, Pierce, Turner 1996

Milner, Parrow and Walker 1989/1992
A calculus of mobile processes

Kobayashi 2007
Type systems for concurrent programs

Gay, Gesbert and Ravara 2008
Session types as generic process types

Demangeon and Honda 2011
Full abstraction in a subtyped pi-calculus

with linear types

Dardha, Giachino and Sangiorgi 2012
Session types revisited

Dardha 2014
Recursive session types revisited

Honda 1993
Types for dyadic interaction

Takeuchi, Honda and Kubo 1994
An interaction based language and its typing system

Honda, Vasconcelos and Kubo 1998
Language primitives and type discipline for

structured communication-based programming

To be continued...

Milner 1993
The polyadic pi-calculus: a tutorial

Pierce and Sangiorgi 1993
Typing and subtyping for mobile processes

Sangiorgi 1998
An interpretation of typed objects

into typed pi-calculus

Kobayashi, Pierce and Turner 1996
Linearity and the pi-calculus

Key idea of the encoding

Encoding is based on:

1. Linearity of π- calculus channel types;

2. Input/Output channel capabilities;

3. Continuation-Passing principle.

4. Variant types for the π- calculus.

Intuition of the encoding

I Session types are encoded as linear channel types.

I ? and ! are encoded as `i and `o .

I &{li : Si}i∈I and ⊕{li : Si}i∈I are encoded using variant
types.

I Continuation of a session type becomes carried type.

I Dual operations in continuation become equal when carried.

Why is this interesting?

Benefits of the encoding:

1. Large reusability of standard typed π- calculus theory.

2. Derivation of properties for session π- calculus from the
standard typed π- calculus. (e.g. SR, TS)

3. Elimination of redundancy in the syntax of types and terms
and in the theory.

4. Encoding is robust (subtyping, polymorphism, higher-order).

5. Expressivity result for session types.

6. Most importantly, implementation of session types in
mainstream programming languages (cf. lchannels for Scala,
FuSe for Ocaml, later on...)

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = !Int.!Int.?Bool.end

Then
JSK = `o [Int, `i [Int, `o [Bool, ∅[]]]]

Remark

The encoding of dual types is as follows:

JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

and
JSK = `o [Int, `i [Int, `o [Bool, ∅[]]]]

Remark
duality on session types boils down to opposite capabilities (i/o) of
channel types, only in the outermost level!

Remark

The encoding of dual types is as follows:

JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

and
JSK = `o [Int, `i [Int, `o [Bool, ∅[]]]]

Remark
duality on session types boils down to opposite capabilities (i/o) of
channel types, only in the outermost level!

Encoding of Session Types: Formally

JendK , ∅[]
J!T .SK , `o [JT K, JSK]

J?T .SK , `i [JT K, JSK]

J⊕{li : Si}i∈I K , `o [〈li : JSiK〉i∈I]
J&{li : Si}i∈I K , `i [〈li : JSiK〉i∈I]

Properties of the Encoding

Theorem
Encoding preserves typability of programs.

Theorem
Encoding preserves evaluation of programs.

Lemma
Encoding of dual session types gives dual linear π- types.

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

Curry-Howard Correspondences

propositions as types
proofs as programs

proof normalisation as program evaluation

Intuitionistic Natural Deduction ↔ Simply-Typed Lambda Calculus
Quantification over propositions ↔ Polymorphism

Modal Logical ↔ Monads (state, exceptions)

Curry-Howard Correspondences

propositions as types
proofs as programs

proof normalisation as program evaluation

Intuitionistic Natural Deduction ↔ Simply-Typed Lambda Calculus
Quantification over propositions ↔ Polymorphism

Modal Logical ↔ Monads (state, exceptions)

??? ↔ Process Calculus

What is the Curry-Howard correspondence for
concurrency?

I Since the beginning of linear logic (Girard 1987), there were
suggestions that it should be relevant to concurrency.

“The new connectives of linear logic have obvious meanings in
terms of parallel computation. [. . .] Linear logic is the first attempt
to solve the problem of parallelism at the logical level, i.e., by
making the success of the communication process only dependent
of the fact that the programs can be viewed as proofs of
something, and are therefore sound.”

— Girard 1987

What is the Curry-Howard correspondence for
concurrency?

I Since the beginning of linear logic (Girard 1987), there were
suggestions that it should be relevant to concurrency.

“The new connectives of linear logic have obvious meanings in
terms of parallel computation. [. . .] Linear logic is the first attempt
to solve the problem of parallelism at the logical level, i.e., by
making the success of the communication process only dependent
of the fact that the programs can be viewed as proofs of
something, and are therefore sound.”

— Girard 1987

π- Calculus and Linear Logic

I Abramsky (1994); Bellin & Scott (1994) established a
correspondence between linear logic and standard π- calculus.

I Caires & Pfenning (2010) established a correspondence
between dual intuitionistic linear logic (DILL) and session
typed π- calculus.

I Later on, Wadler (2012) established a correspondence between
classical linear logic (CLL) and session typed π- calculus.

I The logical approach to session types has been extended:
dependent types, failures, sharing and races...

Session Types and Linear Logic Correspondence

propositions as session types
proofs as π- processes

proof normalisation / cut elimination as communication

Session Types and Classical Linear Logic (1)

I A O B is interpreted as “input A then behave like B” (?A.B)

I A⊗ B is interpreted as “output A then behave like B” (!A.B)

I & and ⊕ are interpreted as branch and select.

I The correspondence has led to a re-examination of all aspects
of session types, from a logical viewpoint.

Session Types and Classical Linear Logic (1)

I A O B is interpreted as “input A then behave like B” (?A.B)

I A⊗ B is interpreted as “output A then behave like B” (!A.B)

I & and ⊕ are interpreted as branch and select.

I The correspondence has led to a re-examination of all aspects
of session types, from a logical viewpoint.

Session Types and Classical Linear Logic (1)

I A O B is interpreted as “input A then behave like B” (?A.B)

I A⊗ B is interpreted as “output A then behave like B” (!A.B)

I & and ⊕ are interpreted as branch and select.

I The correspondence has led to a re-examination of all aspects
of session types, from a logical viewpoint.

Session Types and Classical Linear Logic (1)

I A O B is interpreted as “input A then behave like B” (?A.B)

I A⊗ B is interpreted as “output A then behave like B” (!A.B)

I & and ⊕ are interpreted as branch and select.

I The correspondence has led to a re-examination of all aspects
of session types, from a logical viewpoint.

Session Types and Classical Linear Logic (2)

(T-O)

P ` ∆, y :A, x :B

x?(y).P ` ∆, x :A O B

(T-⊗)
P ` ∆, y :A Q ` ∆′, x :B

x!(y).(P | Q) ` ∆,∆′, x :A⊗ B

(T-cut)

P ` ∆, x :A Q ` ∆′, x :A

(νx)(P | Q) ` ∆,∆′

(T-&)

Pi ` ∆, x :Ai ∀i ∈ I

x . {li : Pi}i∈I ` ∆, x :&{li : Ai}i∈I

(T-⊕)
P ` ∆, x :Aj j ∈ I

x / lj .P ` ∆, x :⊕{li : Ai}i∈I

Wadler 2012; Caires 2014 (@Luca Cardelli Fest)

Session Types and Classical Linear Logic (3)

The session type system based on (Classical) Linear Logic
propositions guarantees:

I Type Preservation (or Subject Reduction): Well-typed
processes reduce to well-typed processes.

I Deadlock-Freedom (by design): If process P is well typed and
it is a cut, then there is some Q, such that P reduces to Q
and Q is not a cut.

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

Session Types in Programming Languages: A Collection of
Implementations1

1http://groups.inf.ed.ac.uk/abcd/session-implementations.html

Programming Languages with Primitive Binary Session
Types: Static Typechecking

Sill:

I Functional programming language that supports session-typed
message passing concurrency.

I Based on the Curry-Howard correspondence of session types
and intuitionistic linear logic (Caires & Pfenning 2010).

I Type preservation; deadlock and race freedom; support of
subtyping, polymorphism and recursive types.

Resources:

I From Linear Logic to Session-Typed Concurrent
Programming, F.Pfenning.

I Polarised Substructural Session Types, F.Pfenning and
D.Griffith. FoSSaCS 2015.

Programming Languages with Primitive Binary Session
Types: Static Typechecking

SePi:

I Concurrent, message-passing programming language based on
the π- calculus.

I Features synchronous, bidirectional channel-based
communication.

I Primitives for send/receive as well as offer/select choices.

Resources:

I A Concurrent Programming Language with Refined Session
Types, J.Franco and V.T.Vasconcelos. BEAT 2013.

I Linearly Refined Session Types, P.Baltazar, D.Mostrous, and
V.T.Vasconcelos. LINEARITY 2012.

I Fundamentals of Session Types, V.T.Vasconcelos. Information
and Computation, 2012.

Programming Languages with Primitive Binary Session
Types: Static Typechecking

Links:

I Programming language for web applications.

I Binary session types added as language primitives and fully
statically typechecked, using an extension of the type system
to support linear types.

Resources:

I Lightweight Functional Session Types, S.Lindley and
J.G.Morris. In Behavioural Types: from Theory to Tools.

Mainstream Programming Languages with Binary Session
Types

Haskell:

I effect-sessions: implementation of session types in
Concurrent Haskell, through the observation that session
types can be encoded using an effect system (and vice versa).
Orchard & Yoshida (POPL 2016)

I simple-sessions: a library implementation of Haskell session
types, using parameterised monads and a channel stack
Pucella & Tov (Haskell 2008)

I sessions: an alternative embedding of session types in
Haskell. Sackman & Eisenbach (TR 2008)

I GVinHS: embedding session types in Haskell with first-class
channels; builds on Polakow’s embedding of a linear
λ-calculus in Haskell. Lindley & Morris (Haskell 2016);
Polakow (Haskell 2015).

Mainstream Programming Languages with Binary Session
Types

Java:

I CO2 Middleware: for Java applications, based on timed
session types; dynamic monitoring for conformance of timing
constraints.
Bartoletti et al. (FACS 2015, FORTE 2015)

I (Eventful) Session Java: a frontend and runtime library for
Java, supporting binary session types, statically; the tool also
supports event-driven programming.
Hu, Yoshida & Honda (ECOOP 2008);
Hu et al. (ECOOP 2010)

Mainstream Programming Languages with Binary Session
Types

Scala

I lchannels: based on the continuation-passing encoding of
session types into linear π- calculus types (Kobayashi 2007;
Dardha et al. 2012)

I Message ordering is checked statically.

I Linearity is checked dynamically.

I Scalas & Yoshida (ECOOP 2016)

Mainstream Programming Languages with Binary Session
Types

OCaml

I FuSe: lightweight implementation of BST in OCaml; based
on the continuation-passing encoding of session types into
linear π- calculus types (Kobayashi 2007; Dardha et al. 2012)

I Static check of message ordering and dynamic check of
linearity. (Padovani 2015)

Rust:

I Implementation of BST in Mozilla’s Rust; use of Rust’s affine
type system. Jespersen, Munksgaard & Larsen in WGP 2015.

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

Multiparty Session Types (1)

I Honda, Yoshida & Carbone (POPL 2008) developed a theory
of multiparty session types.
Awarded the ACM SIGPLAN Most Influential POPL Paper
Award at POPL 2018.

I A global (session) type specifies a multi-party protocol.

I A global type can be validated and projected to local (session)
types, which specify the communication behaviour of each
participant.

I Local session type checking guarantees privacy,
communication safety and session fidelity.

Multiparty Session Types (1)

I Honda, Yoshida & Carbone (POPL 2008) developed a theory
of multiparty session types.
Awarded the ACM SIGPLAN Most Influential POPL Paper
Award at POPL 2018.

I A global (session) type specifies a multi-party protocol.

I A global type can be validated and projected to local (session)
types, which specify the communication behaviour of each
participant.

I Local session type checking guarantees privacy,
communication safety and session fidelity.

Multiparty Session Types (1)

I Honda, Yoshida & Carbone (POPL 2008) developed a theory
of multiparty session types.
Awarded the ACM SIGPLAN Most Influential POPL Paper
Award at POPL 2018.

I A global (session) type specifies a multi-party protocol.

I A global type can be validated and projected to local (session)
types, which specify the communication behaviour of each
participant.

I Local session type checking guarantees privacy,
communication safety and session fidelity.

Multiparty Session Types (1)

I Honda, Yoshida & Carbone (POPL 2008) developed a theory
of multiparty session types.
Awarded the ACM SIGPLAN Most Influential POPL Paper
Award at POPL 2018.

I A global (session) type specifies a multi-party protocol.

I A global type can be validated and projected to local (session)
types, which specify the communication behaviour of each
participant.

I Local session type checking guarantees privacy,
communication safety and session fidelity.

Multiparty Session Types (2)

A buyer-seller example from Honda et al (POPL 2018):

Buyer1 Seller Buyer2

[Link] [Link]

title

quotequote

quote div 2

ok

quit

address

date }branch

Multiparty Session Types (3)

The global type describes the whole protocol:

1. B1→ S : title.

2. S → B1 : quote.

3. S → B2 : quote.

4. B1→ B2 : quote.

5. B2→ S :

ok : B2→ S : address.

S → B2 : date.end,
quit : end

Multiparty Session Types (4)

I Projection gives a local session type for each participant.
For B1:

S!title.S?quote.B2!quote

and for B2:

S?quote.B1?quote.S ⊕ {ok : S!address.S?date.end, quit : end}

I Local session type checking is similar to binary session type
checking.

I Consistency conditions on the global type guarantee that the
protocol can be realised by independent local participants.

Multiparty Session Types (4)

I Projection gives a local session type for each participant.
For B1:

S!title.S?quote.B2!quote

and for B2:

S?quote.B1?quote.S ⊕ {ok : S!address.S?date.end, quit : end}

I Local session type checking is similar to binary session type
checking.

I Consistency conditions on the global type guarantee that the
protocol can be realised by independent local participants.

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

www.scribble.org

Scribble

I Scribble is a protocol specification language used to describe
application-level protocols among communicating agents.

I It is based on multiparty session types theory @ POPL 2008.

I Allows:
I specification of a protocol in the form of global session type;
I validation of the protocol;
I projection into the communicating participants, i.e., roles.

I Contributors: K.Honda, Imperial College team.

Scribble by example: The Bookstore Global Protocol

global protocol Bookstore(role Buyer1 , role Buyer2 ,

role Seller) {

book(title) from Buyer1 to Seller;

book(quote) from Seller to Buyer1 , Buyer2;

contribution(quote) from Buyer1 to Buyer2;

choice at Buyer2 {

ok from Buyer2 to Seller;

deliver(address) from Buyer2 to Seller;

deliver(date) from Seller to Buyer2;

} or {

quit from Buyer2 to Seller;

}

}

The Bookstore Protocol: Buyer1

local protocol Bookstore_Buyer1(self Buyer1 , role

Buyer2 , role Seller) {

book(title) to Seller;

book(quote) from Seller;

contribution(quote) to Buyer2;

}

The Bookstore Protocol: Buyer2

local protocol Bookstore_Buyer2(role Seller , self

Buyer2 , role Buyer1) {

book(quote) from Seller;

contribution(quote) from Buyer1;

choice at Buyer2{

ok to Seller;

deliver(address) to Seller;

deliver(date) from Seller;

} or {

quit to Seller;

}

}

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

www.dcs.gla.ac.uk/research/mungo/

Mungo

I Mungo is a Java front-end tool that statically checks the
order of method calls of an object.

I Based on the notions of session types and typestate, it
describes non-uniform objects, where available methods
change according to the state of the object.

I A Java class is annotated with a typestate, @Typestate.
Mungo checks method calls follow the declared typestate of
an object.

I Resources:
Kouzapas et al. (PPDP 2016, Sci. Comp. Journal 2018)
Based on Gay et al (POPL 2010).
Developer: D. Kouzapas.

The FileProtocol Example

typestate FileProtocol {

Init = {

Status open (): <OK: Open , ERROR: end >

}

Open = {

BooleanEnum hasNext (): <TRUE: Read , FALSE: Close >,

void close (): end

}

Read = {

void read (): Open

}

Close = {

void close (): end

}

}

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

StMungo

I StMungo (Scribble-to-Mungo) is a Java-based tool used to
translate Scribble local protocols into typestate specifications.

I After the translation, Mungo is used to statically typecheck
the typestate specification.

I Resources:
Kouzapas et al. (PPDP 2016, Sci. Comp. Journal 2018)
Developer: O. Dardha

The Buyer2 Local Protocol

local protocol Bookstore_Buyer2(role Seller , self

Buyer2 , role Buyer1) {

book(quote) from Seller;

contribution(quote) from Buyer1;

choice at Buyer2{

ok to Seller;

deliver(address) to Seller;

deliver(date) from Seller;

} or {

quit to Seller;

}

}

The Buyer2 Local Protocol as Typestate

typestate Buyer2Protocol {

State0 = {

quote receive_quoteFromSeller (): State1

}

State1 = {

quote receive_quoteFromBuyer1 (): State2

}

State2 = {

void send_OKToSeller (): State3 ,

void send_QUITToSeller (): State5

}

State3 = {

void send_addressToSeller(address): State4

}

State4 = {

date receive_dateFromSeller (): end

}

...

}

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

The SMTP Protocol: A Case Study

Mainstream Programming Languages with Multiparty
Session Types

Multiparty Session C

I Static typechecking of MST in C programming language.

I Session communication happens by using a runtime library;
type-checking is done via a plugin.

I Ng, Yoshida & Honda (TOOLS 2012); Ng et al. (HEART
2012)

Erlang

I A framework for monitoring Erlang applications by
dynamically verifying communication against multiparty
session types. Erlang actors can take part in multiple roles in
multiple instances of multiple protocols. Fowler (ICE 2016)

Mainstream Programming Languages with Multiparty
Session Types

Go (external tools)

I DinGo Hunter: a static analyser for Go programs, which can
statically detect deadlocks. The tool works by extracting
CFSMs from Go programs, and attempting to synthesise a
global graph. Should this fail, then there is a deadlock. Ng &
Yoshida (CC 2016)

I Gong: a static analyser for Go, building on a minimal core
calculus for Go, called MiGo. MiGo types can be extracted
from Go programs using another tool called GoInfer. Lange et
al. (POPL 2017)

Mainstream Programming Languages with Multiparty
Session Types

Python

I SPY: implementation of MST in Python using runtime
monitoring. Neykova (PLACES 2013); Neykova, Yoshida &
Hu (RV 2013); Hu et al (RV 2013)

I Session Actor: an implementation for combining session
types and the actor model. Each actor may be involved in
multiple roles, in multiple sessions. Communication is checked
dynamically via compilation of Scribble protocols into CFSMs.
Neykova & Yoshida (COORDINATION 2014)

Mainstream Programming Languages with Multiparty
Session Types

Scala

I Scribble-Scala: Building upon lchannels and encoding of
multiparty session types into linear types. Scalas et al.
(ECOOP 2017, DARTS 2017)

I Order of messages is checked statically; linearity is checked
dynamically as in lchannels

I Distributed multiparty session delegation is implemented here
for the first time!

Outline

Origin of Session Types

Session Types by Example

Session Types Formally

Foundations of Session Types
Session Types and Standard π-calculus Types
Session Types and Linear Logic

Session Types in Programming Languages (I)

Multiparty Session Types

Session Types in Programming Languages (II)
Scribble
Mungo
StMungo
Scribble + StMungo + Mungo for typechecking SMTP

Conclusions

Conclusions

I Session types are a very simple but powerful formalism to
model communication protocols in distributed systems.

I Developed for calculi as well as programming languages and
various paradigms.

I Many interesting features.

I Part of behavioural types, including also contracts, typestates
etc...

Acknowledgement

I am thankful to:

I Simon Gay

I Phil Wadler

for borrowing some of their slides.

Audience!〈ThankYou〉.
rec X{ & {

more : Audience?(y : Question).Audience!〈Answer〉.X ,
quit : end}

}

	Origin of Session Types
	Session Types by Example
	Session Types Formally
	Foundations of Session Types
	Session Types and Standard -calculus Types
	Session Types and Linear Logic

	Session Types in Programming Languages (I)
	Multiparty Session Types
	Session Types in Programming Languages (II)
	Scribble
	Mungo
	StMungo
	Scribble + StMungo + Mungo for typechecking SMTP

	Conclusions

