Introduction to Parallel
Programming

Chris Brown
University of St Andrews

cmb2l@st-andrews.ac.uk

Lecture Structure

Course on Parallel Programming using Erlang
Two 90 minute lectures

Lecture 1 will cover
* Introduction to parallel programming
* parallel patterns
* Erlang

Lecture 2 will cover
e The Erlang “skel” library
e Writing parallel programs in Erlang

2 lab sessions

Take notes...

Ask me questions...
Chat in the breaks...

Trends in Parallel
Computing

The Internet of Everything?

Single core processors

* CPU only contains ONE
core to process operations

i AMD S ron™
* This was commonplace idpdtdaid i
in computers from the NALLC BE 1L SGRRY

1970s up to about 2006.

* Itis still used in many

devices, such as some @

cheaper types of
smartphones

DIFFUSED IN GERMANY
MADE IN MALAYSIA

How do we make things go faster?

Intel Processor Clock Speed (MHz)

10000
Pentumad Prescon
Core 2 Extreme
1000
Pentum I
Celeron Mulore Criss
BMere!
100
80385
10
30285
8e)
1
19%3 1973 1§7% 1584 1960 19¢% 1001 2006

01

Energy vs. Performance

Sun's
Surface
Walts/em”

1000 g /ﬁ/
C L Rocket

Nuclear / Nozzle

»
Reactor_ ~

100 3

:
:
B

150 1.0n 0.7 0.5n 0351 0.251 0.18n 0.131 0.10u 0.07p

1966 1991 1993 1995 1998 1999 2000 2002 2004 2005

Power is roughly cubic
to clock frequency

This means that we
can’t just increase the
processor’s speed...

Even my laptop is multicore

How Many Cores does my laptop
have?

e 2 x86 CPU cores

* or maybe 4

e 12 GPU Execution Units (Intel HD 3000)
e 2 HD video encoders/decoders

* 1 Bluetooth controller

* 1 Disk controller

* 1 Power Management Unit

ne world’s first 1000 core

"OCeSSsSOor

2018
“Kilo-Core”

1000 independent
programmable processors

Designed by a team at the
University of California, Davis

1.78 trillion instructions per
second and contains 621 million
transistors

Each processor is independently
clocked, it can shut itself down to
further save energy

1,000 processors execute 115
billion instructions per second
using 0.7 Watts

Powered by a single AA battery

The Fastest Computer in the

1

Sunway TaihulLight, National Supercomputer Centre, Wuxi
93 petaflops/s (June 17, 2016)

40,960 Nodes; each with 256 custom Sunway cores
10,649,600 cores in total!!!

It’s not just about large systems

* Even mobile phones are
multicore

= Samsung Exynos 5 Octa has 8 cores, 4 of
which are “dark”

* Performance/energy tradeoffs
mean systems will be
increasingly parallel

* |f we don’t solve the multicore AL Futre e il
challenge, then no other be Parallel!
advances will matter!

Everyone in this room is
already an expert in parallel
programming.

/A

E) alamy stock photo o

You really need multiple checkouts and
gueues....

L= gl s
' - e 3' &

- - - \
B .
-
. -
.
. .
. . '0 .
' ~ i -, e
‘e .
A :
: - A ‘ .
:
. -

.

Coffee, anyone?

How to build a wall

(with apologies to lan Watson, Univ. Manchester)

How to build a wall faster

How NOT to build a wall

Current Programming Models

oThreads/OpenMP

* Designed for Shared- #include <pthread.h>
memory systems void *fn(void *arg):
communication via shared variables mai n() {
pt hread_t mai nt hr ead;
ptr_t arg = ...;
* Explicit thread creation void *result;

pt hr ead_cr eat e(&ai nt hr ead, NULL
fn,(void*) arg);

* Synchronisation requires pt hr ead_j oi n(mai nt hr ead,
explicit locks (void*) &result);
mutexes }

* VERY easy to deadlock

23

Cilk/Cilk Plus

* spawn/sync constructs

* uses global shared
memory

* avoids explicit locking
* but explicit synchronisation

01 cilk int fib (int n)

02 {

03 if(n<2)returnn;

04 else

05 {

06 intx,y;

07

08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10

11 sync;

12

13 return (x+y);
14 '}

15}

PVM/MP]

* Designed for shared-nothing I
systems
* but some implementations work (well) int main (int argc, char *argv[])
on shared-memory systems {

. MPI_Init (&argc, &argv);
One process per node MPI_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &nprocs);

« Communication via explicit MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
message-passing

MPI Recv(&rg, 1, MPI_INT, MPI_ANY SOURCE, REQUEST,
e synchronous or asynchronous

world, &status);

* possibly broadcast/multicast

MPI Send(res, CHUNKSIZE, MP| INT,
status.MPI_SOURCE, REPLY, world);

* No structure to messages, easy

to break protocols MPI_Finalize();
return O;

}

25

http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Bcast.html%23MPI_Bcast
http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Recv.html%23MPI_Recv
http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Send.html%23MPI_Send

C++1X

* Thread support ttinclude <iostream>

e std::thread class #tinclude <future>
#include <thread>

.) int main()
e Atomic locking {
// future from a packaged_task
’ faSter than mutex std::packaged tapsk<in§()> task([1(){ return 42: });
e but still a lock prOtOCOl std::future<int> fut = task.get_future();
std::thread(std::move(task)).detach();
fut.wait();

std::cout << "Done!\nResult is: "
<< fut.get() << '\n’;

 futures and promises
e std::future class }

e Still a shared-memory
model

http://en.cppreference.com/w/cpp/thread/packaged_task
http://en.cppreference.com/w/cpp/thread/thread
http://en.cppreference.com/w/cpp/utility/move
http://en.cppreference.com/w/cpp/io/basic_ostream

“Lock-Free” Programming

* Rather than protecting a critical
region with a mutex, use a single
hardware instruction

* e.g double compare-and-swap

* Assingle “commit” releases all
changes (barrier)

* Only for shared-memory

* VERY easy to get wrong;
VERY hard to debug

oldr=r

newr.x=1

newr.y=2

cas oldr,r,newr

27

How does parallelism usually work?

 Most programs are heavily procedural by nature
Do this, do that, ...

e Parallelism always a bolted-on afterthought

= Lots of threads

= Message passing
= Mutexes

= Shared memory

 Almost impossible to correctly implement...

Deadlocks

Race conditions
Synchronization
Non-determinism
Etc.

Etc.

What about functional programming?

* Intheory, perfect model
e Purity is perfect parallelism model

No side effects!
* Implicit parallelism models
* Small programmer overhead
* Minimal language effort

E.g. Haskell only has two parallel primitives

* No locks, deadlocks or race conditions

| said “in theory”

 Haskell is beautiful, but ...

* Lazy semantics are the opposite of what you need for
parallelism

 Spend more time understanding laziness....

Lazy Evaluation

Lazy evaluation (or call-by-name) is an evaluation
strategy which delays the evaluation of an expression
until its value is needed

| know what to do.
Wake me up when
you really need it

Parallelism in Haskell

In Haskell, there are only two operators you need to do
parallelism.

par :: a ->Db ->0D
a par b

This creates a spark for a and returns b

A Spark?

A kind of “promise”

a par b

X par f x where f x =

“I will try my best to evaluate a in parallel to b, unless you go
ahead and evaluate a before | get around to doing that.

... in which case | won’t bother.”

The Spark Pool

=

Spark Pool

The Spark Pool

i N ﬂ

Spark Pool

d
42
fib 42

76+x+8-y

Divide and Conquer Evaluation

pfib 15

pfibn| n <=1 1
| otherw se n2 par (nl par nl+n2)
where nl = pfib (n-1)
n2 = pfib (n-2)

Divide and Conquer Evaluation

1

pfib n| n<=1
| ot herw se n2 "par (nl “par nl+n2)

where nl = pfib (n-1)

n2 = pfib (n-2)

Divide and Conquer Evaluation

pfib1s
/\
pfib14 Cpfib13

AN AN
Cpfb13 pfbl2 pfibi2 pfibll
/N /N SN

pfib n| n<=1 =1
| otherwise = n2 "par (nl par nl+n2)
where nl = pfib (n-1)
n2 = pfib (n-2)

Divide and Conquer Evaluation

pfibls
/\
pfib14 Cpfib13
AN AN
73 s ass 287

pfib n| n<=1 =1
| otherwise = n2 "par (nl par nl+n2)
where nl = pfib (n-1)
n2 = pfib (n-2)

Divide and Conquer Evaluation

1

pfib n| n<=1
| ot herw se n2 "par (nl “par nl+n2)

where nl = pfib (n-1)

n2 = pfib (n-2)

Divide and Conquer Evaluation

1973

pfibn| n <=1 1
| otherw se n2 par (nl par nl+n2)
where nl = pfib (n-1)
n2 = pfib (n-2)

Seq

Seq is the most basic method of introducing strictness to Haskell

seq :: a->b->0D

| "seq b =
a seq b =Db

Seq doesn’t sequence and doesn’t evaluate anything!
Only puts a dependency on both its arguments

When b is demanded, a must (sort of) be evaluated, too

The pseqg Construct

a pseq b

evaluate a and return the value of b

For example
X pseq f Xx where x = ...

first evaluates x, and then returns f X

Evaluate-and-Die

pfib 15
pfibn| n <=1 =1
| otherwi se = n2 "par’
where nl = pfib (n-1)
n2 = pfib (n-2)

(nl pseq

nl+n2+1)

PE1

Evaluate-and-Die

pfib 15

/\
pfib13

pfib 14

pfib n| n<=1 =1
| otherwi se = n2 "par’
where nl = pfib (n-1)
n2 = pfib (n-2)

(nl pseq

nl+n2)

PE1

Evaluate-and-Die

pfib 15

/\
Cpfib 13

pfib 14

pfib n| n<=1 =1
| otherwi se = n2 "par’
where nl = pfib (n-1)
n2 = pfib (n-2)

(nl pseq

nl+n2)

PE1

Evaluate-and-Die

pfib n| n<=1 =1
| otherwi se = n2 "par’
where nl = pfib (n-1)
n2 = pfib (n-2)

(nl pseq

nl+n2)

Evaluate-and-Die

ofib 13

/ \

pfib n| n<=1
| ot herw se n2 "par (nl pseq nl+n2)

where nl = pfib (n-1)

n2 = pfib (n-2)

Evaluate-and-Die

pfib 15

/

\
ofib 14 pfib13

N

753

pfib n| n<=1 =1
| otherwi se = n2 "par’
where nl = pfib (n-1)
n2 = pfib (n-2)

(nl pseq

AN
Cpfb12 485 pibll

nl+n2)

PE1

Evaluate-and-Die

pfib 15
pfib 14
753 pfib 12
pfib n| n<=1 =1
| otherwi se = n2 "par’
where nl = pfib (n-1)
n2 = pfib (n-2)

(nl pseq

nl+n2)

Evaluate-and-Die

pfib 15

\
ofib 14 pfib13

AN
s (assl) (25200

pfib n| n<=1 =1
| otherwi se = n2 "par’
where nl = pfib (n-1)
n2 = pfib (n-2)

(nl pseq

nl+n2)

PE1

Evaluate-and-Die

pfib 15

/\
7

1219

pfib n| n<=1 =1
| otherwi se = n2 "par’
where nl = pfib (n-1)
n2 = pfib (n-2)

(nl pseq

nl+n2)

PE1

Evaluate-and-Die

1973
pfib n| n<=1 =1
| otherwi se = n2 "par’
where nl = pfib (n-1)
n2 = pfib (n-2)

(nl pseq

nl+n2)

PE1

What about Erlang?

* Functional language
* No Laziness

* Built in concurrency
* Process model

* Message passing

* “lightweight” threads
* In Erlang, you can just spawn everything, right??

Fib, in Erlang

fibO(0) -> O;
fibO(1) -> 1;
fibO(N) -> fibO(N-1) + fibO(N-2).

http://trigonakis.com/blog/2011/02/27/parallelizing-simple-algorithms-
fibonacci/

Fib, in Erlang

fib1(0) -> 0;
fib1(1) -> 1;
fib1(N) -> = (),
(fun() ->
| fib1(N-1)
end),
(fun() ->
| fib1(N-2)
end),
receive
->
receive
->
+
end
end.

http://trigonakis.com/blog/2011/02/27/parallelizing-simple-algorithms-
fibonacci/

Does it actually go faster?

* FibO: Average 44.7 microseconds
* Fib1: average 2202.0 microseconds

e But | thought in Erlang you just spawn everything
and get amazing concurrency and parallelism for
free, right? | mean, “lightweight” threads!!

http://trigonakis.com/blog/2011/02/27/parallelizing-simple-algorithms-
fibonacci/

The Erlang Model

Thanks to Natalia Chechina, University of Bournemouth

Erlang, heavyweight concurrency

* Turns out these lightweight threads are not really
lightweight at all
* millisecond magnitude to set up
 Comparable to a pthread!
Micro/milli second for message to pass between threads
(depends on the message being sent)

Fib 15 (sequential) = 44.7 microseconds
Fib 15 (concurrent) = 2202 microseconds

* Aprox., 140 microseconds to spawn each process

Thinking Parallel

Fundamentally, programmers must learn to “think parallel”
* this requires new high-level programming constructs
* perhaps dealing with hundreds of millions of threads

You cannot program effectively while worrying about processes.
e Arguably, too heavy and low-level!

You cannot program effectively while worrying about deadlocks etc.
e they must be eliminated from the design!

You cannot program effectively while fiddling with communication etc.
* this needs to be packaged/abstracted!

You cannot program effectively without performance information
* this needs to be included as part of the design!

59

Parallelism is not Concurrency

e Concurrency is a programming abstraction

* The illusion of independent threads of execution
e Scheduling

e Parallelism is a hardware artifact

* The reality of threads executing at the same time
* PERFORMANCE!

e Concurrency is about breaking a program down into
independent units of computation

 Parallelism is about making things happen at the same
time

Parallelism is not Concurrency (2)

* A concurrent thread may be broken down into many
parallel threads

* Or none at all

 Parallelism can sometimes be modeled by concurrency
* but implicit parallelism cannot!

* Concurrency is about maintaining dependencies
e Parallelism is about breaking dependencies

* If we try to deal with parallelism using concurrency
models/primitives, we are using the wrong abstractions

* Too low-level, Too coarse-grained, Not scalable

How NOT to Program Multicore

= Use concurrency techniques!
= Transactional memory, spin-locks, monitors, mutexes

= Program at a low abstraction level
= Without first understanding the parallelism

= Program with a fixed architecture in mind
= Specific numbers of cores
= Specific bus structure
= Specific instruction set
= Specific type of GPU

Think shared memory
= Big arrays, shared variables....

Parallel Patterns

Parallel Patterns

* A pattern is a common way of introducing
parallelism

* helps with program design
* helps guide implementation
e Often a pattern may have several different
implementations
*e.g.a map may be implemented by a farm

* these implementations may have different
performance characteristics

Multi-core Software is Difficult!

A 4

Multi-Threaded Programming

Patterns are Everywhere...

.Including Parallel Software

Farm Reduce
" - &
,’f ..\\ d ---~‘~
/ e . o f
,‘.. . \\\ . : :: ' >
i PN w (P 1l -
) ' v
Pipeline o |1
SiL->site o g Divide&Conquer
Map L
o S

il Je

Car manufacturing

Divide-and-Conquer
* If the problem is trivial

e solve it!

* Otherwise, divide the problem into two (or more) parts
* Solve each part independently
* Combine all the sub-results to give the result

Problem Divide Solve Combine

Divide-and-Conquer (wikipedia)

D&C Example

L 4 s A A

1
2
3
4
5
6
7
8

10

procedure D& C (x: input data) is
begin
if BaseCondition(x) then
return baseSolve(x);
else
Split x into sub—tasks;
Use D& C to solve each sub—task;
Merge the subtasks results through the Conquer
(cont.)function ;
end 1f;
end D&C;

Parallel Divide-and-Conquer in C

void *dc(void *val ToFi nd) {

pthread t |eftThread:;
pthread_t right Thread;

| f(finished(val ToFi nd))
return (val ToFi nd);

el se{

| ong newVal ToFi ndl
| ong newVal ToFi nd2

val (val ToFi nd);
tval (val ToFi nd);

Parallel Divide-and-Conquer in C

pt hread create(& eftThread, NULL, dc, (vol d*)
newval ToFi ndl) ;

pt hread create(&r i ght Thread, NULL, dc, (voi d*)
newval ToFi nd2) ;

pthread_join(leftThread, (voi d*) & eturnLeft);

pthread join(rightThread, (vol d*) & et urnRi ght)

return (conbine(returnLeft, returnRi ght));

}

Parallel Pipeline

* Each stage of the pipeline is executed in parallel
* The computation at each stage can be as complex as you wan
* The input and output are streams

{pipe, [Skel;, Skely, - - -, Skel,]}

Farm

* Each worker is executed in parallel
* A bit like a 1-stage pipeline

|
|
|
|
Skeh :
|
|
|
|

Skel2

{map, Skel, Decomp, Recomp}

Skeh

Skﬁ@lg

Decomp

Workpool

[t1, ..., tn]

distribute

<

//\

[G,t), .|..]

[G.1), -]

wl

w2

|
[(L,i.r), ...]

(25, -]

merge

[(k.tk), ...]

wm

[(m,k,rk), ...]

[pid1, pid2, ...]

[r1, ...,]

mapReduce

partitioned intermediate partially-reduced
input data data sets results

input data

reduceF |5 results

- . . |reduceF >

overall
reduce function

mapping
function reduce function

Next Lectures...

* Introduction to Erlang

* Introduction to Parallel Patterns

* Writing parallel programs in Erlang
* Performance

Thank you!

cmb21@st-andrews.ac.uk

@chrismarkbrown

mailto:cmb21@st-andrews.ac.uk

