
Introduction to Parallel
Programming

Chris Brown
University of St Andrews

cmb21@st-andrews.ac.uk

Lecture Structure

• Course on Parallel Programming using Erlang
• Two 90 minute lectures
• Lecture 1 will cover

• Introduction to parallel programming
• parallel patterns
• Erlang

• Lecture 2 will cover
• The Erlang “skel” library
• Writing parallel programs in Erlang

• 2 lab sessions
• Take notes…
• Ask me questions…
• Chat in the breaks…

Trends in Parallel
Computing

The Internet of Everything?

Single core processors

• CPU only contains ONE
core to process operations
• This was commonplace
in computers from the
1970s up to about 2006.
• It is still used in many
devices, such as some
cheaper types of
smartphones

How do we make things go faster?

Energy vs. Performance

• Power is roughly cubic
to clock frequency

• This means that we
can’t just increase the
processor’s speed…

Power-aware Register Renaming in High-Performance Processors

using Compiler Support∗

José L. Ayala, Marisa López-Vallejo Alexander Veidenbaum

Dept. de Ingenieŕıa Electrónica Center for Embedded Computer Systems
Universidad Politécnica de Madrid University of California, Irvine

Spain USA
{jayala,marisa}@die.upm.es alexv@ics.uci.edu

Abstract
This work presents an efficient multi-banked archi-

tecture of the register file, and a low-power compiler
support which reduces energy consumption in this de-
vice by more than a 78%. The key idea of this work is
based on a quasi-deterministic interpretation of the reg-
ister assignment task, and the use of the voltage scaling
techniques.

1 Introduction
Recently, energy consumption in embedded systems

has become more and more important, mainly due to
the fact that many systems are now being designed as
mobile devices, i.e., they have to operate on battery
power instead of using abundant power from wall sock-
ets. One important aspect of such devices is their run-
ning time. Also, in high-performance systems, the to-
tal power dissipation of recently introduced micropro-
cessors has been rapidly increasing, pushing desktop
system cooling technology close to its limits.

Steadily increasing power consumption with each
successive generation of processors has started to af-
fect the system size and costs so adversely that this
power/performance tradeoff has become increasingly
difficult to justify in a competitive market. A look at a
trend line borrowed from Intel (Figure 1) indicates the
future power density of microprocessors exceeding the
power density on the surface of the sun.

In pursuit of higher performance through higher
clock rates and greater instruction level parallelism
(ILP), modern microarchitectures are buffering an ever
greater number of instructions in the pipeline. The
larger window of in-flight instructions offers the mi-
croarchitecture hardware more opportunities to dis-
cover independent instructions to issue simultaneously.
However, maintaining more instructions requires a cor-

∗This work was supported by the Spanish Ministry of Science
and Technology under contract TIC2003-07036

Figure 1: Power consumption trends in microprocessors

responding increase in the buffering structures; in par-
ticular, a larger physical register file where generated
results can be hold.

Multiported register files and bypass networks lie at
the heart of a superscalar microprocessor core, pro-
viding buffered communication of register values be-
tween producer and consumer instructions. As issue
widths increase, both the number of ports and the num-
ber of required registers increase, causing the area of
a conventional multiported register file to grow more
than quadratically with issue width [22]. The trend to-
wards simultaneous multithreading also increases regis-
ter count as separate architectural registers are needed
for each thread. For example, the proposed eight-issue
Alpha 21464 design had a register file that occupied
over five times the area of the 64KB primary data
cache. [6]

Many techniques have been proposed to reduce the
area, energy, and delay of multiported register files.
Some approaches split the microarchitecture into dis-

Even my laptop is multicore

8

How Many Cores does my laptop
have?

• 2 x86 CPU cores
• or maybe 4

• 12 GPU Execution Units (Intel HD 3000)

• 2 HD video encoders/decoders

• 1 Bluetooth controller

• 1 Disk controller

• 1 Power Management Unit

• …

9

• 2018

• “Kilo-Core”

• 1000 independent
programmable processors

• Designed by a team at the
University of California, Davis

• 1.78 trillion instructions per
second and contains 621 million
transistors

• Each processor is independently
clocked, it can shut itself down to
further save energy

• 1,000 processors execute 115
billion instructions per second
using 0.7 Watts

• Powered by a single AA battery

The world’s first 1000 core
processor

The Fastest Computer in the
World

Sunway TaihuLight, National Supercomputer Centre, Wuxi
93 petaflops/s (June 17, 2016)
40,960 Nodes; each with 256 custom Sunway cores
10,649,600 cores in total!!!

It’s not just about large systems

• Even mobile phones are
multicore

§ Samsung Exynos 5 Octa has 8 cores, 4 of
which are “dark”

• Performance/energy tradeoffs
mean systems will be
increasingly parallel

• If we don’t solve the multicore
challenge, then no other
advances will matter!

ALL Future Programming will
be Parallel!

Everyone in this room is
already an expert in parallel

programming.

You really need multiple checkouts and
queues….

Coffee, anyone?

How to build a wall

(with apologies to Ian Watson, Univ. Manchester)

How to build a wall faster

How NOT to build a wall

Current Programming Models

22

pThreads/OpenMP

• Designed for Shared-
memory systems
• communication via shared variables

• Explicit thread creation

• Synchronisation requires
explicit locks
• mutexes

• VERY easy to deadlock

23

#include <pthread.h>

void *fn(void *arg);
main(){

pthread_t mainthread;
ptr_t arg = ...;
void *result;

pthread_create(&mainthread,NULL
fn,(void*) arg);

pthread_join(mainthread,
(void*) &result);

...
}

Cilk/Cilk Plus

• spawn/sync constructs

• uses global shared
memory

• avoids explicit locking
• but explicit synchronisation

01 cilk int fib (int n)
02 {
03 if (n < 2) return n;
04 else
05 {
06 int x, y;
07
08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10
11 sync;
12
13 return (x+y);
14 }
15 }

PVM/MPI

• Designed for shared-nothing

systems
• but some implementations work (well)

on shared-memory systems

• One process per node

• Communication via explicit
message-passing

• synchronous or asynchronous

• possibly broadcast/multicast

• No structure to messages, easy
to break protocols

25

#include <mpi.h>

int main (int argc, char *argv[])

{

…

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &nprocs);
....

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Recv(&rq, 1, MPI_INT, MPI_ANY_SOURCE, REQUEST,

world, &status);

…

MPI_Send(res, CHUNKSIZE, MPI_INT,

status.MPI_SOURCE, REPLY, world);

…

MPI_Finalize();
return 0;

}

http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Bcast.html%23MPI_Bcast
http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Recv.html%23MPI_Recv
http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Send.html%23MPI_Send

C++1X

• Thread support
• std::thread class

• Atomic locking
• faster than mutex
• but still a lock protocol

• futures and promises
• std::future class

• Still a shared-memory
model

#include <iostream>
#include <future>
#include <thread>

int main()
{

// future from a packaged_task
std::packaged_task<int()> task([](){ return 42; });
std::future<int> fut = task.get_future();
std::thread(std::move(task)).detach();
fut.wait();

std::cout << "Done!\nResult is: "
<< fut.get() << '\n';

}

http://en.cppreference.com/w/cpp/thread/packaged_task
http://en.cppreference.com/w/cpp/thread/thread
http://en.cppreference.com/w/cpp/utility/move
http://en.cppreference.com/w/cpp/io/basic_ostream

“Lock-Free” Programming

• Rather than protecting a critical
region with a mutex, use a single
hardware instruction
• e.g double compare-and-swap

• A single “commit” releases all
changes (barrier)

• Only for shared-memory

• VERY easy to get wrong;
VERY hard to debug

27

cas oldr,r,newr

newr.x=1

newr.y=2

oldr = r

…

How does parallelism usually work?

• Most programs are heavily procedural by nature
• Do this, do that, …

• Parallelism always a bolted-on afterthought
§ Lots of threads
§ Message passing
§ Mutexes
§ Shared memory

• Almost impossible to correctly implement…
• Deadlocks
• Race conditions
• Synchronization
• Non-determinism
• Etc.
• Etc.

What about functional programming?

• In theory, perfect model
• Purity is perfect parallelism model

• No side effects!

• Implicit parallelism models
• Small programmer overhead
• Minimal language effort

• E.g. Haskell only has two parallel primitives

• No locks, deadlocks or race conditions

I said “in theory”

• Haskell is beautiful, but …
• Lazy semantics are the opposite of what you need for

parallelism
• Spend more time understanding laziness….

Parallelism in Haskell

In Haskell, there are only two operators you need to do
parallelism.

par :: a -> b -> b

a `par` b

This creates a spark for a and returns b

A Spark?

A kind of “promise”

a `par` b

x `par` f x where f x = …

“I will try my best to evaluate a in parallel to b, unless you go
ahead and evaluate a before I get around to doing that.

… in which case I won’t bother.”

The Spark Pool

PE1 PE2 Spark Pool

…
a 42

fib 42 76+x+8-y

The Spark Pool

PE1 PE2 Spark Pool

a

42

fib 42

76+x+8-y

…

MAIN

a

76+x+8-y

Divide and Conquer Evaluation

pfib 15

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `par` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Divide and Conquer Evaluation

pfib 15

pfib 14 pfib 13

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `par` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Divide and Conquer Evaluation

pfib 15

pfib 14

pfib 12pfib 13

pfib 13

pfib 11pfib 12

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `par` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Divide and Conquer Evaluation

pfib 15

pfib 14

485753

pfib 13

287485

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `par` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Divide and Conquer Evaluation

pfib 15

1219 753

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `par` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Divide and Conquer Evaluation

1973

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `par` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Seq

Seq is the most basic method of introducing strictness to Haskell

seq :: a -> b -> b

| `seq` b = _|_

a `seq` b = b

Seq doesn’t sequence and doesn’t evaluate anything!

Only puts a dependency on both its arguments

When b is demanded, a must (sort of) be evaluated, too

The pseq Construct

a `pseq` b

evaluate a and return the value of b

For example
x `pseq` f x where x = …

first evaluates x, and then returns f x

Evaluate-and-Die

pfib 15

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `pseq` n1+n2+1)

where n1 = pfib (n-1)
n2 = pfib (n-2)

PE1

PE2

pfib 15

pfib 14 pfib 13

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `pseq` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Evaluate-and-Die

PE1

PE2

Spark

pfib 15

pfib 14 pfib 13

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `pseq` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Evaluate-and-Die

PE1

PE2

Spark

pfib 15

pfib 14

pfib 12pfib 13

pfib 13

pfib 11pfib 12

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `pseq` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Evaluate-and-Die

PE1

PE2

Spark

pfib 15

pfib 14

pfib 12pfib 13

pfib 13

pfib 11pfib 12

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `pseq` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Evaluate-and-Die

PE1

PE2

Spark

pfib 15

pfib 14

pfib 12753

pfib 13

pfib 11485

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `pseq` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Evaluate-and-Die

PE1

PE2

Spark

pfib 15

pfib 14

pfib 12753

pfib 13

pfib 11485

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `pseq` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Evaluate-and-Die

PE1

PE2

Spark

pfib 15

pfib 14

485753

pfib 13

287485

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `pseq` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Evaluate-and-Die

PE1

PE2

Spark

pfib 15

1219 753

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `pseq` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Evaluate-and-Die

PE1

PE2

Spark

1973

pfib n | n <= 1 = 1
| otherwise = n2 `par` (n1 `pseq` n1+n2)

where n1 = pfib (n-1)
n2 = pfib (n-2)

Evaluate-and-Die

PE1

PE2

Spark

What about Erlang?

• Functional language
• No Laziness
• Built in concurrency
• Process model
• Message passing
• “lightweight” threads
• In Erlang, you can just spawn everything, right??

Fib, in Erlang

fib0(0) -> 0;
fib0(1) -> 1;
fib0(N) -> fib0(N-1) + fib0(N-2).

http://trigonakis.com/blog/2011/02/27/parallelizing-simple-algorithms-
fibonacci/

Fib, in Erlang
fib1(0) -> 0;
fib1(1) -> 1;
fib1(N) -> Self = self(),

spawn(fun() ->
Self ! fib1(N-1)

end),
spawn(fun() ->

Self ! fib1(N-2)
end),

receive
F1 ->

receive
F2 ->

F1 + F2
end

end.

http://trigonakis.com/blog/2011/02/27/parallelizing-simple-algorithms-
fibonacci/

Does it actually go faster?

• Fib0: Average 44.7 microseconds
• Fib1: average 2202.0 microseconds

• But I thought in Erlang you just spawn everything
and get amazing concurrency and parallelism for
free, right? I mean, “lightweight” threads!!

http://trigonakis.com/blog/2011/02/27/parallelizing-simple-algorithms-
fibonacci/

The Erlang Model

Thanks to Natalia Chechina, University of Bournemouth

Erlang, heavyweight concurrency

• Turns out these lightweight threads are not really
lightweight at all
• millisecond magnitude to set up
• Comparable to a pthread!
• Micro/milli second for message to pass between threads
• (depends on the message being sent)

• Fib 15 (sequential) = 44.7 microseconds
• Fib 15 (concurrent) = 2202 microseconds

• Aprox., 140 microseconds to spawn each process

Thinking Parallel

• Fundamentally, programmers must learn to “think parallel”
• this requires new high-level programming constructs

• perhaps dealing with hundreds of millions of threads

• You cannot program effectively while worrying about processes.
• Arguably, too heavy and low-level!

• You cannot program effectively while worrying about deadlocks etc.
• they must be eliminated from the design!

• You cannot program effectively while fiddling with communication etc.
• this needs to be packaged/abstracted!

• You cannot program effectively without performance information
• this needs to be included as part of the design!

59

Parallelism is not Concurrency

• Concurrency is a programming abstraction
• The illusion of independent threads of execution
• Scheduling

• Parallelism is a hardware artifact
• The reality of threads executing at the same time
• PERFORMANCE!

• Concurrency is about breaking a program down into
independent units of computation
• Parallelism is about making things happen at the same

time

Parallelism is not Concurrency (2)

• A concurrent thread may be broken down into many
parallel threads
• or none at all

• Parallelism can sometimes be modeled by concurrency
• but implicit parallelism cannot!

• Concurrency is about maintaining dependencies
• Parallelism is about breaking dependencies

• If we try to deal with parallelism using concurrency
models/primitives, we are using the wrong abstractions
• Too low-level, Too coarse-grained, Not scalable

How NOT to Program Multicore

62

§ Use concurrency techniques!
§ Transactional memory, spin-locks, monitors, mutexes

§ Program at a low abstraction level
§ Without first understanding the parallelism

§ Program with a fixed architecture in mind
§ Specific numbers of cores
§ Specific bus structure
§ Specific instruction set
§ Specific type of GPU

§ Think shared memory
§ Big arrays, shared variables….

Parallel Patterns

Parallel Patterns
• A pattern is a common way of introducing

parallelism
• helps with program design
• helps guide implementation

• Often a pattern may have several different
implementations
• e.g. a map may be implemented by a farm
• these implementations may have different

performance characteristics

Multi-core Software is Difficult!

Multi-Threaded Programming

Patterns are Everywhere…

…Including Parallel Software

Car manufacturing

Divide-and-Conquer
• If the problem is trivial
• solve it!

• Otherwise, divide the problem into two (or more) parts
• Solve each part independently
• Combine all the sub-results to give the result

7
1

Problem Divide Solve Combine

Divide-and-Conquer (wikipedia)

D&C Example

should be able to name and use those instruments, independently of how they will
actually be implemented in the sequel of the project.

3.1 Divide and conquer

Pattern description This parallel pattern models the well-known parallel, higher
order divide&conquer algorithm [23,33]. The computation proceeds in two phases:

• divide phase: the input collective data structure is split recursively into par-
allel substructures up to the point where a base condition holds true on the
substructures and a partial result may be computed from each of them. The
split, and base case solver functions and the Boolean function evaluating
whether or not a data item is a “base case” are all (function) parameters of
the pattern.

• conquer phase: the final result is computed by recursively building it up from
the collection of results obtained by computing the base cases. The function
used to “conquer” the partial results is also a (function) parameter of the
divide and conquer pattern.

Functional behaviour From a functional viewpoint, the D&C skeleton describes
a recursive function in which the base condition depends on the data and a Boolean
function cond to be checked before each split. If the condition is not met at a certain
level of recursion, the function invokes itself in parallel on a set of sub-partitions
(classically on two) of the current partition. In pseudo-code:

1 p r o c e d u r e D&C (x : i n p u t d a t a) i s
2 b e g i n
3 i f B a s e C o n d i t i o n (x) t h e n
4 r e t u r n b a s e S o l v e (x) ;
5 e l s e
6 S p l i t x i n t o sub�t a s k s ;
7 Use D&C t o s o l v e each sub�t a s k ;
8 Merge t h e s u b t a s k s r e s u l t s t h r o u g h t h e Conquer

(cont.) f u n c t i o n ;
9 end i f ;

10 end D&C ;

Skeleton parallel activity graph The D&C skeleton parallel activity graph ap-
pears as a n-ary graph in which each level, from the root to the leaves, represents
a level of the recursion process; each node tests if the base condition has been
reached and if that is not the case, the problem is split and D&C is recursively ap-
plied in parallel on each half. As soon as the base condition is reached, a sequential
(or parallel unstructured) algorithm solves it; then, on that path of the graph the
conquer phase starts to collect the partial results coming from sibling parallel com-
putations. This process eventually involves all the paths on the tree, until the final

27

Parallel Divide-and-Conquer in C

void *dc(void *valToFind){
…
pthread_t leftThread;
pthread_t rightThread;

if(finished(valToFind))
return (valToFind);

else{
long newValToFind1 = leftval (valToFind);
long newValToFind2 = rightval (valToFind);

Parallel Divide-and-Conquer in C
…

pthread_create(&leftThread,NULL,dc,(void*)
newValToFind1);
pthread_create(&rightThread,NULL,dc,(void*)

newValToFind2);

pthread_join(leftThread,(void*)&returnLeft);

pthread_join(rightThread,(void*)&returnRight)
;

return (combine(returnLeft, returnRight));
}

Parallel Pipeline

• Each stage of the pipeline is executed in parallel
• The computation at each stage can be as complex as you want!
• The input and output are streams

Pipe

Tn · · ·T1 T �
n · · ·T �

1

{pipe, [Skel1, Skel2, · · · , Skeln]}

Skel1 Skel2 Skeln
· · ·

Inc = {seq , fun (X) -> X+1 end},

Double = {seq , fun (X) -> X*2 end},

skel:run({pipe , [Inc , Double]},

[1,2,3,4,5,6]).

% -> [4,6,8,10,12,14]

Farm

• Each worker is executed in parallel
• A bit like a 1-stage pipeline

7
7

Farm

Tn · · ·T1 T �
n · · ·T �

1

...

Skel2

Skel1

{farm, Skel, M}

SkelM

Inc = {seq , fun(X)-> X+1 end},

skel:run({farm , Inc , 3},

[1,2,3,4,5,6]).

% -> [2,5,3,6,4,7]

Map

7
8Map

Tn · · ·T1 T �
n · · ·T �

1

{map, Skel, Decomp, Recomp}

...

Skel2

Skelm

Skel1

Decomp Recomp

Inc = {seq , fun(X)-> X+1 end},

skel:run({map , Inc ,

fun erlang:tuple_to_list /1,

fun erlang:list_to_tuple /1},

[{1,2},{3,4}]).

% -> [{2,3},{4,5}]

Workpool
[t1, …, tn]

[(i,ti), …] [(j,tj), …] [(k,tk), …]

w1 w2

merge

[(1,i,ri), …] [(2,j,rj), …] [(m,k,rk), …]

[r1, …, rn]

wm

[pid1, pid2, …]

…

…

…

distribute

mapReduce

mapF

… reduceF

input data

reduceF

…

partially-reduced
results

partitioned
input data

……

mapF

…

intermediate
data sets

resultsreduceF

local
reduce function

overall
reduce function

mapping
function

Next Lectures…

• Introduction to Erlang
• Introduction to Parallel Patterns
• Writing parallel programs in Erlang
• Performance

Thank you!
cmb21@st-andrews.ac.uk
@chrismarkbrown

mailto:cmb21@st-andrews.ac.uk

