
Parallel Programming in Erlang
using Skel

Chris Brown
University of St Andrews

cmb21@st-andrews.ac.uk

Outline

Basic course in Parallel Programming using Skeletons in
Erlang

1. Introduction to “Skel”
2. Building patterns in Skel

1. Seq
2. Pipeline
3. Farm
4. Combining

3. Introducing granularity

By the end, you will be able to write parallel programs!

The Skel Library for Erlang

• Skeletons implement specific parallel patterns
• Pluggable templates

• Skel is a new (AND ONLY!) Skeleton library in Erlang
• map, farm, reduce, pipeline, feedback
• instantiated using skel:do

• Fully Nestable

• A DSL for parallelism

OutputItems = skel:do(Skeleton, InputItems).

Skel.weebly.com

https://github.com/ParaPhrase/skel

www.skel.weebly.com

Skel Overview

• Structured parallel programming framework
• “palette” of skeletons/parallel patterns available �

(almost) arbitrary composition supported
• very hard to implement arbitrary parallel schema

• Streaming parallel programming framework
• primitive support to process streams of tasks

Skel. Who? Where?

• Main developers at St Andrews
• Me J, Adam Barwell, Sam Elliott, Vladimir Janjic, Kevin

Hammond, …

• Used on EU projects, ParaPhrase (FP7; ended 2015)
• Contributions from Open-source community
• Poland, Sheffield, Hungary, …

• Used for all sorts of problems:
• EMAS, image processing, GPU programming,

• Code available on git:
https://github.com/ParaPhrase/skel

Skeletons supported

• Stream parallel
• Pipeline (computations in stages)
• Farm (Embarassingly parallel…)
• Feedback loop (route back output tasks satisfying condition)

• Data parallel
• Map (applying function over all items in stream)
• Reduce (“summing” up items in a stream)

• Non primitive
• Divide and conquer
• Stencil
• …

The Concept of Parallelism

• Input queue
• Feeds tasks from an input stream
• Connected to the ‘parallel activity’

• Parallel activity body
• Processes each item appearing onto the input stream
• Delivers a result to the output stream
• Maybe sequential or parallel

• Output queue
• Receives output results from parallel body
• Possibly connected to the input of another parallel activity
• May not preserve order

9

FastFlow (1.0) Fastflow 2.0 Configuration

FastFlow basics

Concurrent activity concept

I input queue
I feeds input tasks from an input stream
I possibily connected to the output of another concurrent

activity
I concurrent activity body

I processes each item appearing onto the input stream
I delivering a result on the output stream (see below)
I may be sequential or parallel

I output queue
I receives output results from concurrent activity
I possibily connected to the input of another concurrent activity

Danelutto http://www.di.unipi.it

Structured parallel programming in FastFlow

Loading skel

$ cd skel
$ make examples
$ make console

Wrapping things up: the Seq skeleton

• Used to wrap up a function

skel:do([{seq, fun(X) -> X+1 end}],
[1,2,3,4,5,6,7,8,9,10]).

% -> [2,3,4,5,6,7,8,9,10,11]

Seq

{seq, Fun}

Fun

Tn · · · T1 T �
n · · · T �

1

skel:run({seq , fun (X) -> X+1 end},

[1,2,3,4,5,6]).

% -> [2,3,4,5,6,7]

Parallel Pipeline Skeleton

• Each stage of the pipeline can be executed in parallel
• The input and output are streams

skel:do([{pipe,[Skel1, Skel2,…,SkelN]}], Inputs).

Pipe

Tn · · · T1 T �
n · · · T �

1

{pipe, [Skel1, Skel2, · · · , Skeln]}

Skel1 Skel2 Skeln
· · ·

Inc = {seq , fun (X) -> X+1 end},

Double = {seq , fun (X) -> X*2 end},

skel:run({pipe , [Inc , Double]},

[1,2,3,4,5,6]).

% -> [4,6,8,10,12,14]

Pipeline – 1st example

[1,2,3,4,5] fun(X) -> X+1 [2,3,4,5,6]

> cd skel
> make console
erl> skel:do(
[{pipe,
[{seq, fun(X) -> X+1 end}]}], [1,2,3,4,5]).

Pipeline – 2nd example

> cd skel
> make console
erl> skel:do(

[{pipe,
[{seq, fun(X) -> X+1 end},
{seq, fun(Y) -> Y+1 end}]}],

[1,2,3,4,5]).

[1,2,3,4,5] fun(X) -> X+1 [3,4,5,6,7]fun(X) -> X+1

Constructing Pipeline Workers

> Stage1 = {seq, fun(X) ->
{fib:fib(X), X} end}.

> Stage2 = {seq, fun({X,Y}) ->
fib:fib(Y) end}.

Using a pipeline

> InputsP = lists:duplicate(8, 27).

> {T2P, V2P} = timer:tc(fun() ->
skel:do([{pipe,

[Stage1,Stage2]}],
InputsP) end).

Creating a sequential pipeline

> Stage1S = fun(X) -> {fib:fib(X), X}
end.

> Stage2S = fun({X,Y}) -> fib:fib(Y)
end.

> {T1P, V1P} = timer:tc(fun() ->
[Stage2S(Stage1S(X)) || X <- InputsP

] end).

> T1P / T2P.

Farm Skeleton

• Each worker is executed in parallel
• A bit like a 1-stage pipeline

skel:do([{farm, Skel, M}], Inputs).

Farm

Tn · · · T1 T �
n · · · T �

1

...

Skel2

Skel1

{farm, Skel, M}

SkelM

Inc = {seq , fun(X)-> X+1 end},

skel:run({farm , Inc , 3},

[1,2,3,4,5,6]).

% -> [2,5,3,6,4,7]

Farm – 1st Example

> cd skel
> make console
erl> skel:do([{farm, [fun(X) -> X+1 end], 2}], [1,2,3,4,5]).

[1,2,3,4,5]

fun(X) -> x+1 end

fun(X) -> x+1 end

fun(X) -> x+1 end

[2,3,4,5,6]

Using a Farm

> Payload = {seq, fun(X) ->
fib:fib(X) end}.

> Inputs = lists:duplicate(8, 27).

> NumberWorkers = 4.

> skel:do([{farm, [Payload],
NumberWorkers}], Inputs).

Timing the farm

> {T1, V1} = timer:tc(fun() ->
skel:do([{farm, [Payload],
1}], Inputs).

> {T2, V2} = timer:tc(fun() ->
skel:do([{farm, [Payload],
NumberWorkers}], Inputs).

> T1 / T2.

Matrix Multiplication

https://en.wikipedia.org/wiki/Matrix_multiplication#/media/File:Matrix_multiplication_diagram_2.svg

Sequential Implementation
main(Nrows, S) ->
MatrixA = randmat(Nrows, Nrows, S),
MatrixB = randmat(Nrows, Nrows, S),
productMat(MatrixA, MatrixB).

productMat(MatrixA, MatrixB) ->
mult(rows(MatrixA), cols(MatrixB)).

mult([],_) -> [];
mult([R|Rows], Cols) ->

[lists:map(fun(X) ->
multSum(R, X) end, Cols)

| mult(Rows, Cols)].

multSum(R, C) ->
lists:sum([A*B || {A,B} <- lists:zip(R,C)]) .

Naïve parallelisation

mult_par_2([],_) -> [];
mult_par_2([R|Rows], Cols) ->

[skel:do([{farm, [{seq, fun(C) ->

multSum(R,C) end}],10}], Cols) |
mult(Rows, Cols)].

Better parallelisation

mult_par_1(Rows, Cols) ->
skel:do([{farm, [{seq, fun(R) ->

lists:map(fun(C) ->
multSum(R,C) end, Cols) end}], 10}],

Rows).

multSum_par_1(R,C) ->
lists:sum(skel:do([{farm, [{seq, fun({A,B}) -> A*B

end}],10}], lists:zip(R,C))).

multSum_par_2(R,C) ->
skel:do([{reduce, fun(A, B) -> A*B end, fun id/1}],

lists:zip(R,C)).

Image Processing Example
Read Image 1 Read Image 2

White
screening

Merge Images

Write Image

Basic Erlang Structure
[writeImage(convertMerge(readImage(X)))

|| X <- Images()]

readImage({In1, in2, out) ->
…
{ Image1, Image2, out}.

convertImage({Image1, Image2, out}) ->
Image1P = whiteScreen(Image1),
Image2P = mergeImages(Image1, Image2),
{Image2P, out}.

writeImage({Image, Out}) -> …

Map Skeleton
Map

Tn · · · T1 T �
n · · · T �

1

{map, Skel, Decomp, Recomp}

...

Skel2

Skelm

Skel1

Decomp Recomp

Inc = {seq , fun(X)-> X+1 end},

skel:run({map , Inc ,

fun erlang:tuple_to_list /1,

fun erlang:list_to_tuple /1},

[{1,2},{3,4}]).

% -> [{2,3},{4,5}]

skel:do([{map, Skel, Decomp,
Recomp}], Inputs).

Introduce Map

{seq, Expr}

{map, {seq, Expr’}, fun ?MODULE:split/1,
fun ?MODULE:recomp/1}

Expr’, split and recomp are arguments to the
refactoring

32

Cluster Skeleton

1 2 4 8 12 16 20 24

2
4
6
8
10
12
14
16
18
20
22
24

No. cores

S
p
ee
d
u
p

Speedups for Matrix Multiplication

Naive Parallel

Farm

Farm with Chunk 16

Using The Right Pattern Matters

Cost Models

3.3 Skeleton Cost Models

In this section we give a corresponding high-level cost model for each skele-
ton in Section 3.2, derived after those presented in [27,12]. These cost models
capture the service time of our skeletons and will be used to drive the refac-
toring process. In order to demonstrate the principles of our methodology,
the cost models that we consider here are intentionally high-level, abstracting
over many language- and architecture-specific details. If desired, more com-
plex models could be used to yield possibly more accurate predictions for a
specific architecture, without changing the general methodology. A suitable
cost model for the parallel pipeline with m stages is:

TCpipeline(L) = maxi=1..m(Tstagei(L)) + Tcopy(L) (1)

where L represents the maximum size of the input tasks, xi ,and Tcopy is the
time it takes to copy data between the pipeline stages. This defines the cost of
a steady-state pipeline as the maximum execution time for any of the stages
in the pipeline. The corresponding cost model for the map skeleton is:

TCmap(L) = Tdistrib(Nw, L) +
TFun(L)

Min(Np,Nw) + Tgather(Nw, L)

where NW = npartitions(L)
(2)

where Tdistrib and Tgather are the times to distribute the computations and
gather the results, respectively (see below), npartitions(L) is the number of
partitions in L created by the partition function, and TFun(L) is the time it
takes to compute the entire sequential map computation. Here we employ Np

as the number of processors available in the system. For our Erlang definition,
more accurate definitions of Tdistrib and Tgather are:

Tdistrib(Nw, L) = Nw · Tspawn +Nw · (Tsetup + Tcopy(
L
Nw

))
Tgather(Nw, L) = Nw · (Tsetup + Tcopy(

L
Nw

))

where, Tsetup is the time it takes to set up Nw Erlang processes, and Tcopy is
the time it takes to copy L items of data to Nw processes.

For the farm skeleton, assuming that each worker task has a similar gran-
ularity and that all workers are fully occupied, the corresponding cost model
is similar to that for the map skeleton, except that NW is a fixed parameter:

TCfarm(Nw, L) = max{Temitter(Np,Nw , L),
TFun(L)

Min(Np, Nw)
, Tcollector(Nw, L)}

(3)

3.4 Erlang

Erlang is a strict, impure, functional programming language with support for
first-class concurrency. Although Erlang provides good concurrency support,
there has so far been little research into how this can be used at a higher

6

3.3 Skeleton Cost Models

In this section we give a corresponding high-level cost model for each skele-
ton in Section 3.2, derived after those presented in [27,12]. These cost models
capture the service time of our skeletons and will be used to drive the refac-
toring process. In order to demonstrate the principles of our methodology,
the cost models that we consider here are intentionally high-level, abstracting
over many language- and architecture-specific details. If desired, more com-
plex models could be used to yield possibly more accurate predictions for a
specific architecture, without changing the general methodology. A suitable
cost model for the parallel pipeline with m stages is:

TCpipeline(L) = maxi=1..m(Tstagei(L)) + Tcopy(L) (1)

where L represents the maximum size of the input tasks, xi ,and Tcopy is the
time it takes to copy data between the pipeline stages. This defines the cost of
a steady-state pipeline as the maximum execution time for any of the stages
in the pipeline. The corresponding cost model for the map skeleton is:

TCmap(L) = Tdistrib(Nw, L) +
TFun(L)

Min(Np,Nw) + Tgather(Nw, L)

where NW = npartitions(L)
(2)

where Tdistrib and Tgather are the times to distribute the computations and
gather the results, respectively (see below), npartitions(L) is the number of
partitions in L created by the partition function, and TFun(L) is the time it
takes to compute the entire sequential map computation. Here we employ Np

as the number of processors available in the system. For our Erlang definition,
more accurate definitions of Tdistrib and Tgather are:

Tdistrib(Nw, L) = Nw · Tspawn +Nw · (Tsetup + Tcopy(
L
Nw

))
Tgather(Nw, L) = Nw · (Tsetup + Tcopy(

L
Nw

))

where, Tsetup is the time it takes to set up Nw Erlang processes, and Tcopy is
the time it takes to copy L items of data to Nw processes.

For the farm skeleton, assuming that each worker task has a similar gran-
ularity and that all workers are fully occupied, the corresponding cost model
is similar to that for the map skeleton, except that NW is a fixed parameter:

TCfarm(Nw, L) = max{Temitter(Np,Nw , L),
TFun(L)

Min(Np, Nw)
, Tcollector(Nw, L)}

(3)

3.4 Erlang

Erlang is a strict, impure, functional programming language with support for
first-class concurrency. Although Erlang provides good concurrency support,
there has so far been little research into how this can be used at a higher

6

3.3 Skeleton Cost Models

In this section we give a corresponding high-level cost model for each skele-
ton in Section 3.2, derived after those presented in [27,12]. These cost models
capture the service time of our skeletons and will be used to drive the refac-
toring process. In order to demonstrate the principles of our methodology,
the cost models that we consider here are intentionally high-level, abstracting
over many language- and architecture-specific details. If desired, more com-
plex models could be used to yield possibly more accurate predictions for a
specific architecture, without changing the general methodology. A suitable
cost model for the parallel pipeline with m stages is:

TCpipeline(L) = maxi=1..m(Tstagei(L)) + Tcopy(L) (1)

where L represents the maximum size of the input tasks, xi ,and Tcopy is the
time it takes to copy data between the pipeline stages. This defines the cost of
a steady-state pipeline as the maximum execution time for any of the stages
in the pipeline. The corresponding cost model for the map skeleton is:

TCmap(L) = Tdistrib(Nw, L) +
TFun(L)

Min(Np,Nw) + Tgather(Nw, L)

where NW = npartitions(L)
(2)

where Tdistrib and Tgather are the times to distribute the computations and
gather the results, respectively (see below), npartitions(L) is the number of
partitions in L created by the partition function, and TFun(L) is the time it
takes to compute the entire sequential map computation. Here we employ Np

as the number of processors available in the system. For our Erlang definition,
more accurate definitions of Tdistrib and Tgather are:

Tdistrib(Nw, L) = Nw · Tspawn +Nw · (Tsetup + Tcopy(
L
Nw

))
Tgather(Nw, L) = Nw · (Tsetup + Tcopy(

L
Nw

))

where, Tsetup is the time it takes to set up Nw Erlang processes, and Tcopy is
the time it takes to copy L items of data to Nw processes.

For the farm skeleton, assuming that each worker task has a similar gran-
ularity and that all workers are fully occupied, the corresponding cost model
is similar to that for the map skeleton, except that NW is a fixed parameter:

TCfarm(Nw, L) = max{Temitter(Np,Nw , L),
TFun(L)

Min(Np, Nw)
, Tcollector(Nw, L)}

(3)

3.4 Erlang

Erlang is a strict, impure, functional programming language with support for
first-class concurrency. Although Erlang provides good concurrency support,
there has so far been little research into how this can be used at a higher

6

Case Study: De-Noising
36

Two-phase denoising + Demo

46

10% impulsive noise 50% impulsive noise 90% impulsive noiseOriginal
Baboon standard

test image
1024x1024

Restored

PNSR 43.29dB MAE 0.35 PNSR 23.4 MAE 11.21PNSR 32.75dB MAE 2.67

Stage 1: Introduce Pipeline
37

to each image as it is received to consolidate geo-referencing information. These
images are then passed to a second stage, filter, where they are denoised.
For the purposes of our experiment, we abstract over the algorithm, providing
a synthetic reproduction of the sequential denoiser code in Erlang. Figure 4
shows an example of a satellite image with 70% noise on the left hand side, and
on the right hand side after the denoising. The bottom portion of the figure
shows the original image. The programmer uses information about the costs of
each computation stage, plus basic metrics for Tgather and Tdistrib (obtained
using profiling) to instantiate the cost models and the choice of refactoring.

Stage 1: Introduce a Pipeline The basic structure of the denoiser is:

denoise(Ims) -> [filter (geoRef (Im)) || Im <- Ims].

Here a simple function composition is applied to a list of images. Our timings
show that the GeoRef stage takes 171 milliseconds to compute one image,
and the Filter stage takes 466 milliseconds for one image. The cost of the
composition is simply the sum of the costs of the stages:

TCcomp = (Tstage1 + Tstage2)

Thus to denoise 1024 images takes (171 + 466) ⇤ 1024 milliseconds. Based on
these calculations, the programmer applies the Introduce Pipeline Refactor-
ing (Rule PipeComp) to transform the function composition into a parallel
pipeline, in order to reduce the overall runtime by the first stage:

denoise(Ims) -> skel:run ([{pipe , [{seq , fun ?MODULE:geoRef /1},

{seq , fun ?MODULE:f filter /1}]}] , Ims).

Using the parallel pipeline cost model, we can determine the total completion
time for the pipeline to be 477 seconds for 1024 images (Max(171, 466)⇤1024),
plus some small overhead to fill the pipeline and to send messages.

Stage 2: Introduce a Parallel Map Using the cost models given in Section 3.3
it can be determined that the next stage of the refactoring process is to exploit
data parallelism in either, or both, of the pipeline stages. The first stage of the
pipeline, geoRef, does not have a corresponding partition function to trans-
form into a map skeleton. The partitioner and combiner for the second filter

stage, however, can be easily derived from the implementation of filter. The
programmer therefore first introduces a new definition, filter’, plus associ-
ated partition and combine functions. This new filter’ function works over
smaller portions of the image, with partition breaking down the image into
16 smaller partitions (where each partition goes to a single worker operating
in a thread). Based on these new functions, we can calculate the new costs
for filter’ (TFun) = 52 milliseconds. Profiling the costs for the distribu-
tion, combine, gathering and copying stages of the parmap appear to be have
an approximate uniform value of 0.001 milliseconds. Using the new costs of
filter, Tgather and Tdistrib, the programmer applies the Introduce Parallel
Map Refactoring (Rule ParMapIntroSeq) to produce:

14

to each image as it is received to consolidate geo-referencing information. These
images are then passed to a second stage, filter, where they are denoised.
For the purposes of our experiment, we abstract over the algorithm, providing
a synthetic reproduction of the sequential denoiser code in Erlang. Figure 4
shows an example of a satellite image with 70% noise on the left hand side, and
on the right hand side after the denoising. The bottom portion of the figure
shows the original image. The programmer uses information about the costs of
each computation stage, plus basic metrics for Tgather and Tdistrib (obtained
using profiling) to instantiate the cost models and the choice of refactoring.

Stage 1: Introduce a Pipeline The basic structure of the denoiser is:

denoise(Ims) -> [filter (geoRef (Im)) || Im <- Ims].

Here a simple function composition is applied to a list of images. Our timings
show that the GeoRef stage takes 171 milliseconds to compute one image,
and the Filter stage takes 466 milliseconds for one image. The cost of the
composition is simply the sum of the costs of the stages:

TCcomp = (Tstage1 + Tstage2)

Thus to denoise 1024 images takes (171 + 466) ⇤ 1024 milliseconds. Based on
these calculations, the programmer applies the Introduce Pipeline Refactor-
ing (Rule PipeComp) to transform the function composition into a parallel
pipeline, in order to reduce the overall runtime by the first stage:

denoise(Ims) -> skel:run ([{pipe , [{seq , fun ?MODULE:geoRef /1},

{seq , fun ?MODULE:f filter /1}]}] , Ims).

Using the parallel pipeline cost model, we can determine the total completion
time for the pipeline to be 477 seconds for 1024 images (Max(171, 466)⇤1024),
plus some small overhead to fill the pipeline and to send messages.

Stage 2: Introduce a Parallel Map Using the cost models given in Section 3.3
it can be determined that the next stage of the refactoring process is to exploit
data parallelism in either, or both, of the pipeline stages. The first stage of the
pipeline, geoRef, does not have a corresponding partition function to trans-
form into a map skeleton. The partitioner and combiner for the second filter

stage, however, can be easily derived from the implementation of filter. The
programmer therefore first introduces a new definition, filter’, plus associ-
ated partition and combine functions. This new filter’ function works over
smaller portions of the image, with partition breaking down the image into
16 smaller partitions (where each partition goes to a single worker operating
in a thread). Based on these new functions, we can calculate the new costs
for filter’ (TFun) = 52 milliseconds. Profiling the costs for the distribu-
tion, combine, gathering and copying stages of the parmap appear to be have
an approximate uniform value of 0.001 milliseconds. Using the new costs of
filter, Tgather and Tdistrib, the programmer applies the Introduce Parallel
Map Refactoring (Rule ParMapIntroSeq) to produce:

14

to each image as it is received to consolidate geo-referencing information. These
images are then passed to a second stage, filter, where they are denoised.
For the purposes of our experiment, we abstract over the algorithm, providing
a synthetic reproduction of the sequential denoiser code in Erlang. Figure 4
shows an example of a satellite image with 70% noise on the left hand side, and
on the right hand side after the denoising. The bottom portion of the figure
shows the original image. The programmer uses information about the costs of
each computation stage, plus basic metrics for Tgather and Tdistrib (obtained
using profiling) to instantiate the cost models and the choice of refactoring.

Stage 1: Introduce a Pipeline The basic structure of the denoiser is:

denoise(Ims) -> [filter (geoRef (Im)) || Im <- Ims].

Here a simple function composition is applied to a list of images. Our timings
show that the GeoRef stage takes 171 milliseconds to compute one image,
and the Filter stage takes 466 milliseconds for one image. The cost of the
composition is simply the sum of the costs of the stages:

TCcomp = (Tstage1 + Tstage2)

Thus to denoise 1024 images takes (171 + 466) ⇤ 1024 milliseconds. Based on
these calculations, the programmer applies the Introduce Pipeline Refactor-
ing (Rule PipeComp) to transform the function composition into a parallel
pipeline, in order to reduce the overall runtime by the first stage:

denoise(Ims) -> skel:run ([{pipe , [{seq , fun ?MODULE:geoRef /1},

{seq , fun ?MODULE:f filter /1}]}] , Ims).

Using the parallel pipeline cost model, we can determine the total completion
time for the pipeline to be 477 seconds for 1024 images (Max(171, 466)⇤1024),
plus some small overhead to fill the pipeline and to send messages.

Stage 2: Introduce a Parallel Map Using the cost models given in Section 3.3
it can be determined that the next stage of the refactoring process is to exploit
data parallelism in either, or both, of the pipeline stages. The first stage of the
pipeline, geoRef, does not have a corresponding partition function to trans-
form into a map skeleton. The partitioner and combiner for the second filter

stage, however, can be easily derived from the implementation of filter. The
programmer therefore first introduces a new definition, filter’, plus associ-
ated partition and combine functions. This new filter’ function works over
smaller portions of the image, with partition breaking down the image into
16 smaller partitions (where each partition goes to a single worker operating
in a thread). Based on these new functions, we can calculate the new costs
for filter’ (TFun) = 52 milliseconds. Profiling the costs for the distribu-
tion, combine, gathering and copying stages of the parmap appear to be have
an approximate uniform value of 0.001 milliseconds. Using the new costs of
filter, Tgather and Tdistrib, the programmer applies the Introduce Parallel
Map Refactoring (Rule ParMapIntroSeq) to produce:

14

to each image as it is received to consolidate geo-referencing information. These
images are then passed to a second stage, filter, where they are denoised.
For the purposes of our experiment, we abstract over the algorithm, providing
a synthetic reproduction of the sequential denoiser code in Erlang. Figure 4
shows an example of a satellite image with 70% noise on the left hand side, and
on the right hand side after the denoising. The bottom portion of the figure
shows the original image. The programmer uses information about the costs of
each computation stage, plus basic metrics for Tgather and Tdistrib (obtained
using profiling) to instantiate the cost models and the choice of refactoring.

Stage 1: Introduce a Pipeline The basic structure of the denoiser is:

denoise(Ims) -> [filter (geoRef (Im)) || Im <- Ims].

Here a simple function composition is applied to a list of images. Our timings
show that the GeoRef stage takes 171 milliseconds to compute one image,
and the Filter stage takes 466 milliseconds for one image. The cost of the
composition is simply the sum of the costs of the stages:

TCcomp = (Tstage1 + Tstage2)

Thus to denoise 1024 images takes (171 + 466) ⇤ 1024 milliseconds. Based on
these calculations, the programmer applies the Introduce Pipeline Refactor-
ing (Rule PipeComp) to transform the function composition into a parallel
pipeline, in order to reduce the overall runtime by the first stage:

denoise(Ims) -> skel:run ([{pipe , [{seq , fun ?MODULE:geoRef /1},

{seq , fun ?MODULE:f filter /1}]}] , Ims).

Using the parallel pipeline cost model, we can determine the total completion
time for the pipeline to be 477 seconds for 1024 images (Max(171, 466)⇤1024),
plus some small overhead to fill the pipeline and to send messages.

Stage 2: Introduce a Parallel Map Using the cost models given in Section 3.3
it can be determined that the next stage of the refactoring process is to exploit
data parallelism in either, or both, of the pipeline stages. The first stage of the
pipeline, geoRef, does not have a corresponding partition function to trans-
form into a map skeleton. The partitioner and combiner for the second filter

stage, however, can be easily derived from the implementation of filter. The
programmer therefore first introduces a new definition, filter’, plus associ-
ated partition and combine functions. This new filter’ function works over
smaller portions of the image, with partition breaking down the image into
16 smaller partitions (where each partition goes to a single worker operating
in a thread). Based on these new functions, we can calculate the new costs
for filter’ (TFun) = 52 milliseconds. Profiling the costs for the distribu-
tion, combine, gathering and copying stages of the parmap appear to be have
an approximate uniform value of 0.001 milliseconds. Using the new costs of
filter, Tgather and Tdistrib, the programmer applies the Introduce Parallel
Map Refactoring (Rule ParMapIntroSeq) to produce:

14

652288

477184

Stage 1: Introduce Par Map
38

to each image as it is received to consolidate geo-referencing information. These
images are then passed to a second stage, filter, where they are denoised.
For the purposes of our experiment, we abstract over the algorithm, providing
a synthetic reproduction of the sequential denoiser code in Erlang. Figure 4
shows an example of a satellite image with 70% noise on the left hand side, and
on the right hand side after the denoising. The bottom portion of the figure
shows the original image. The programmer uses information about the costs of
each computation stage, plus basic metrics for Tgather and Tdistrib (obtained
using profiling) to instantiate the cost models and the choice of refactoring.

Stage 1: Introduce a Pipeline The basic structure of the denoiser is:

denoise(Ims) -> [filter (geoRef (Im)) || Im <- Ims].

Here a simple function composition is applied to a list of images. Our timings
show that the GeoRef stage takes 171 milliseconds to compute one image,
and the Filter stage takes 466 milliseconds for one image. The cost of the
composition is simply the sum of the costs of the stages:

TCcomp = (Tstage1 + Tstage2)

Thus to denoise 1024 images takes (171 + 466) ⇤ 1024 milliseconds. Based on
these calculations, the programmer applies the Introduce Pipeline Refactor-
ing (Rule PipeComp) to transform the function composition into a parallel
pipeline, in order to reduce the overall runtime by the first stage:

denoise(Ims) -> skel:run ([{pipe , [{seq , fun ?MODULE:geoRef /1},

{seq , fun ?MODULE:f filter /1}]}] , Ims).

Using the parallel pipeline cost model, we can determine the total completion
time for the pipeline to be 477 seconds for 1024 images (Max(171, 466)⇤1024),
plus some small overhead to fill the pipeline and to send messages.

Stage 2: Introduce a Parallel Map Using the cost models given in Section 3.3
it can be determined that the next stage of the refactoring process is to exploit
data parallelism in either, or both, of the pipeline stages. The first stage of the
pipeline, geoRef, does not have a corresponding partition function to trans-
form into a map skeleton. The partitioner and combiner for the second filter

stage, however, can be easily derived from the implementation of filter. The
programmer therefore first introduces a new definition, filter’, plus associ-
ated partition and combine functions. This new filter’ function works over
smaller portions of the image, with partition breaking down the image into
16 smaller partitions (where each partition goes to a single worker operating
in a thread). Based on these new functions, we can calculate the new costs
for filter’ (TFun) = 52 milliseconds. Profiling the costs for the distribu-
tion, combine, gathering and copying stages of the parmap appear to be have
an approximate uniform value of 0.001 milliseconds. Using the new costs of
filter, Tgather and Tdistrib, the programmer applies the Introduce Parallel
Map Refactoring (Rule ParMapIntroSeq) to produce:

14

to each image as it is received to consolidate geo-referencing information. These
images are then passed to a second stage, filter, where they are denoised.
For the purposes of our experiment, we abstract over the algorithm, providing
a synthetic reproduction of the sequential denoiser code in Erlang. Figure 4
shows an example of a satellite image with 70% noise on the left hand side, and
on the right hand side after the denoising. The bottom portion of the figure
shows the original image. The programmer uses information about the costs of
each computation stage, plus basic metrics for Tgather and Tdistrib (obtained
using profiling) to instantiate the cost models and the choice of refactoring.

Stage 1: Introduce a Pipeline The basic structure of the denoiser is:

denoise(Ims) -> [filter (geoRef (Im)) || Im <- Ims].

Here a simple function composition is applied to a list of images. Our timings
show that the GeoRef stage takes 171 milliseconds to compute one image,
and the Filter stage takes 466 milliseconds for one image. The cost of the
composition is simply the sum of the costs of the stages:

TCcomp = (Tstage1 + Tstage2)

Thus to denoise 1024 images takes (171 + 466) ⇤ 1024 milliseconds. Based on
these calculations, the programmer applies the Introduce Pipeline Refactor-
ing (Rule PipeComp) to transform the function composition into a parallel
pipeline, in order to reduce the overall runtime by the first stage:

denoise(Ims) -> skel:run ([{pipe , [{seq , fun ?MODULE:geoRef /1},

{seq , fun ?MODULE:f filter /1}]}] , Ims).

Using the parallel pipeline cost model, we can determine the total completion
time for the pipeline to be 477 seconds for 1024 images (Max(171, 466)⇤1024),
plus some small overhead to fill the pipeline and to send messages.

Stage 2: Introduce a Parallel Map Using the cost models given in Section 3.3
it can be determined that the next stage of the refactoring process is to exploit
data parallelism in either, or both, of the pipeline stages. The first stage of the
pipeline, geoRef, does not have a corresponding partition function to trans-
form into a map skeleton. The partitioner and combiner for the second filter

stage, however, can be easily derived from the implementation of filter. The
programmer therefore first introduces a new definition, filter’, plus associ-
ated partition and combine functions. This new filter’ function works over
smaller portions of the image, with partition breaking down the image into
16 smaller partitions (where each partition goes to a single worker operating
in a thread). Based on these new functions, we can calculate the new costs
for filter’ (TFun) = 52 milliseconds. Profiling the costs for the distribu-
tion, combine, gathering and copying stages of the parmap appear to be have
an approximate uniform value of 0.001 milliseconds. Using the new costs of
filter, Tgather and Tdistrib, the programmer applies the Introduce Parallel
Map Refactoring (Rule ParMapIntroSeq) to produce:

14

477184

denoise(Ims) -> skel:run ([{pipe , [{seq , fun ?MODULE:geoRef /1},

{parmap , [{seq ,fun ?MODULE:filter ’/1}],

fun ?MODULE:partition/1,

fun ?MODULE:combine /1}]}] , Ims).

Stage 3: Introduce a Task Farm Although the geoRef stage does not lend
itself to easy partitioning, we can still use the cost models to determine that it
would be beneficial to apply the geoRef function to several images in parallel.
Therefore the next stage in the refactoring process is to apply the Introduce
Task Farm Refactoring (Rule FarmIntroSeq).

denoise(Ims) -> skel:run ([{pipe ,[{farm ,[{seq ,fun ?MODULE:geoRef}],

Nw}, {parmap , [{seq , fun ?MODULE:filter ’}],

fun ?MODULE:partition /1,

fun ?MODULE:combine /1}]}] , Ims).

Based on the cost model for the farm skeleton in Section 3.3, the programmer
predicts an approximate service time of 34 seconds with 8 workers (we intro-
duce 8 workers to soak up the remaining cores on the machine) by adding a
farmed geoRef stage. This represents a predicted speedup factor of 19.09 on
a 24 core machine, compared to the original sequential version.

5.2 Sum Euler

Stage 1: Introducing a Task Farm Introducing parallelism here is done by first
identifying a sub-expression in the program that generates a compound data
structure, such as a list, and where each operation on the list could be com-
puted in parallel. sumEuler is actually an irregular problem, with di↵erent
granularities for the task sizes. This means that we profile the range of granu-
larities, which range between 70 microseconds and 104 milliseconds. Using the
largest granularity to predict execution times allows us to predict a worst case
sequential execution path and a best case prediction for the parallelism. Our
performance measurements indicate that the predicted sequential execution
time for sumEuler will be 104 seconds, where N = 10000. Introducing a task
farm with 24 workers (one per core) will give a predicted execution time of 43
seconds on 24 cores. This is a speedup prediction of 23.88. In our example, we
select the lists:map subexpression in sumEuler in order to introduce a farm:

sumEuler(N) -> result = lists:map(fun ?MODULE:euler/1,mkList(N)),

lists:sum(result).

To introduce a task farm, we then use the refactoring tool to apply the
FarmIntroMap rule from the Introduce Task Farm Refactoring :

sumEuler(N) -> result=skel:run([{farm ,[{seq , fun ?MODULE:euler /1}],

24}], mkList(N)),

lists:sum(result).

15

(Max(171, (0.001 + 29 + 0.001)) * 1024) 175104

Stage 1: Introduce Task Farm
39

denoise(Ims) -> skel:run ([{pipe , [{seq , fun ?MODULE:geoRef /1},

{parmap , [{seq ,fun ?MODULE:filter ’/1}],

fun ?MODULE:partition/1,

fun ?MODULE:combine /1}]}] , Ims).

Stage 3: Introduce a Task Farm Although the geoRef stage does not lend
itself to easy partitioning, we can still use the cost models to determine that it
would be beneficial to apply the geoRef function to several images in parallel.
Therefore the next stage in the refactoring process is to apply the Introduce
Task Farm Refactoring (Rule FarmIntroSeq).

denoise(Ims) -> skel:run ([{pipe ,[{farm ,[{seq ,fun ?MODULE:geoRef}],

Nw}, {parmap , [{seq , fun ?MODULE:filter ’}],

fun ?MODULE:partition /1,

fun ?MODULE:combine /1}]}] , Ims).

Based on the cost model for the farm skeleton in Section 3.3, the programmer
predicts an approximate service time of 34 seconds with 8 workers (we intro-
duce 8 workers to soak up the remaining cores on the machine) by adding a
farmed geoRef stage. This represents a predicted speedup factor of 19.09 on
a 24 core machine, compared to the original sequential version.

5.2 Sum Euler

Stage 1: Introducing a Task Farm Introducing parallelism here is done by first
identifying a sub-expression in the program that generates a compound data
structure, such as a list, and where each operation on the list could be com-
puted in parallel. sumEuler is actually an irregular problem, with di↵erent
granularities for the task sizes. This means that we profile the range of granu-
larities, which range between 70 microseconds and 104 milliseconds. Using the
largest granularity to predict execution times allows us to predict a worst case
sequential execution path and a best case prediction for the parallelism. Our
performance measurements indicate that the predicted sequential execution
time for sumEuler will be 104 seconds, where N = 10000. Introducing a task
farm with 24 workers (one per core) will give a predicted execution time of 43
seconds on 24 cores. This is a speedup prediction of 23.88. In our example, we
select the lists:map subexpression in sumEuler in order to introduce a farm:

sumEuler(N) -> result = lists:map(fun ?MODULE:euler/1,mkList(N)),

lists:sum(result).

To introduce a task farm, we then use the refactoring tool to apply the
FarmIntroMap rule from the Introduce Task Farm Refactoring :

sumEuler(N) -> result=skel:run([{farm ,[{seq , fun ?MODULE:euler /1}],

24}], mkList(N)),

lists:sum(result).

15

(Max(171, (0.001 + 29+ 0.001)) * 1024) 175104

denoise(Ims) -> skel:run ([{pipe , [{seq , fun ?MODULE:geoRef /1},

{parmap , [{seq ,fun ?MODULE:filter ’/1}],

fun ?MODULE:partition/1,

fun ?MODULE:combine /1}]}] , Ims).

Stage 3: Introduce a Task Farm Although the geoRef stage does not lend
itself to easy partitioning, we can still use the cost models to determine that it
would be beneficial to apply the geoRef function to several images in parallel.
Therefore the next stage in the refactoring process is to apply the Introduce
Task Farm Refactoring (Rule FarmIntroSeq).

denoise(Ims) -> skel:run([{pipe ,[{farm ,[{seq ,fun ?MODULE:geoRef}],

Nw}, {parmap , [{seq , fun ?MODULE:filter ’}],

fun ?MODULE:partition/1,

fun ?MODULE:combine /1}]}] , Ims).

Based on the cost model for the farm skeleton in Section 3.3, the programmer
predicts an approximate service time of 34 seconds with 8 workers (we intro-
duce 8 workers to soak up the remaining cores on the machine) by adding a
farmed geoRef stage. This represents a predicted speedup factor of 19.09 on
a 24 core machine, compared to the original sequential version.

5.2 Sum Euler

Stage 1: Introducing a Task Farm Introducing parallelism here is done by first
identifying a sub-expression in the program that generates a compound data
structure, such as a list, and where each operation on the list could be com-
puted in parallel. sumEuler is actually an irregular problem, with di↵erent
granularities for the task sizes. This means that we profile the range of granu-
larities, which range between 70 microseconds and 104 milliseconds. Using the
largest granularity to predict execution times allows us to predict a worst case
sequential execution path and a best case prediction for the parallelism. Our
performance measurements indicate that the predicted sequential execution
time for sumEuler will be 104 seconds, where N = 10000. Introducing a task
farm with 24 workers (one per core) will give a predicted execution time of 43
seconds on 24 cores. This is a speedup prediction of 23.88. In our example, we
select the lists:map subexpression in sumEuler in order to introduce a farm:

sumEuler(N) -> result = lists:map(fun ?MODULE:euler/1,mkList(N)),

lists:sum(result).

To introduce a task farm, we then use the refactoring tool to apply the
FarmIntroMap rule from the Introduce Task Farm Refactoring :

sumEuler(N) -> result=skel:run ([{farm ,[{seq , fun ?MODULE:euler /1}],

24}], mkList(N)),

lists:sum(result).

15

(Max(171/8, (0.001 + 29+ 0.001)) * 1024) 29698

Performance Results

• 8 Core Dell PowerEdge
• 24 Core Dual AMD Opteron 6176 2.3GHz
• 12GB RAM
• 6MB L2 Cache
• Linux 2.6.18
• Erlang 5.9.1 R15

• Runtimes averaged over 10 runs
• Input of 1024 images

40

Predicted vs. Actual Speedups for
Erlang

41

1 2 4 6 8 10 12 14 16 18 20 22 24

1

4

8

12

16

20

24

Cores

S
p
ee
d
u
p

Speedups for denoise

Pipe(G, D)

Pipe(G, ParMap(D)

Pipe(Farm(G), ParMap(D))

Pred. Pipe(G, D)

Pred. Pipe(G, ParMap(D)

Pred. Pipe(Farm(G), ParMap(D))

Thank you!
cmb21@st-andrews.ac.uk
@chrismarkbrown

mailto:cmb21@st-andrews.ac.uk

