Information Awareness is Super Effective!

Philippa Cowderoy

SPLV 2019

email: flippa@flippac.org
twitter: Oflippacpub

Symbol Games and Hidden Information

Our standard notation hides things from us.

F=Tp:7p

[=Tp:7p M=Tf:7f

Fr=Tf:7p — 7r TP — Tr=7f
=TF Tp:7r Appl '=TF Tp:7r App2

» We are used to Appl
» But App2 is easier for beginners to understand
» An implicit constraint (=) is made explicit

» When checking, 7r visibly ‘comes from’ the constraint

What are Information Effects — What are Effects?

Effects can be seen in relation to the models of
computing they break:

Hello World

General computing Anything 10 or ‘real’

Mutation

Functional programming Control effects

Total programming | Non-termination

Logic programming | Exposing the solver (eg cut)

What are Information Effects — Breaking Isomorphism

» Arose from work on reversible programming
» Introduced by James and Sabry

» Isomorphic programming is a viable model
» Conservation of information holds

» Conservation of information can be broken by:

» Creating information
» Destroying information

What Can Information Effects Tell Us?
Suppose we're writing an interpreter:

» Typical ‘fold" pattern

» Traverse AST, use things at nodes
» Maybe target an abstract machine

» Syntactic sugar will be destroyed
» Whether or not explicitly desugared

» Created information is semantics
» The meaning we give the program!

Constraints for the Simply Typed Lambda Calculus
T =1 Type equality

x:7 €[Binding in context
[":=T:x:7 Context extension
% Context duplication

» Convention: write = as if ‘assigning’ to LHS
» Context constraints encode the structural rules

» An alternative interpretation could give us a
minimal linear calculus

Information-Aware Simply-Typed A-Calculus

f.=r;x:7mp
Mf=T:7r
x:Tel Tf =Tp = Tr
N=x:7 Var =M. T @ 7f Lam
r{

[f=Tf:7f pkETp:71p

TP = T1r =7f

Fr=TFfTp:Tr App

Information-Aware Simply-Typed A-Calculus (moded)

Mode: '™ F T : 7~ (Synthesis or ‘typechecking’)
[t =T":;x :7p"
MF T 7t

x rterl” Tft =7p” =t 7

MrexT:7" Var MEMT.TY © 7f~ Lam

M
M+ Tf :7f" fp~ - Tp :7p"

o~ = Trt =71f"

=T Tpt7rr App

New Tricks

Done:
» Information Aware type system presentations
» Telescopic Constraint Trees

» Derivable from Information Aware rules
» Represent [ongoing] checking problems

Working on:
» Information Aware elaboration

» Type-aware translation with sugar
» One copy to ‘translate’, one to think about
» Composition — entailment of constraints

» Error reporting

Generalising the Ultimate Answer

A telescopic constraint tree for
let id = Ax.xin id 42:

{42 : V.N},{3ra}{do} Setup&let
{;;, 3tb, o0 = Gen(Tb)}... let (LHS)
{3rp, Irr, 'x:VNop, Tb=7p = 71} ... lambda

.o A{dor, ?x:or, or>7r} X

{lid: o} ... let (RHS)
{37f, Irp, Tp > Ta =71} app

|{Jof, ?id : of, of >7f} id

|{Jop, 742 : op, op>Tp} 42

As in the original talk, the inference rules are left as an
exercise for the reader. ..

Summary

» Information effects help make sense of type
systems a lot

» Informal uses too: illumination and inspiration
» Structural proof theory for hackers?

» Notation and ideas ready for serious challenges

Other talks:

» SPLS March 20109:
Information Aware Type Systems

» Strathclyde MSP101, 2018:
Telescopic [Constraint] Trees, or:
Information-Aware Type Systems in Context

https://eb.host.cs.st-andrews.ac.uk/SPLS-Feb19/Slides/IATS.pdf
http://msp.cis.strath.ac.uk/101/slides/2018-08-31_cowderoy.pdf
http://msp.cis.strath.ac.uk/101/slides/2018-08-31_cowderoy.pdf

Extra: Free Join-the-Dots slide! Connect +ve to —ve

rft=r—;x :7p*

M~ =T :7r"
x Tt erl” Tft =71p =t 11
MMext:7" Var MeEXMT.TY © 7f~ Lam
i

M~ b Tf o7t p~FTp :7p"

o = Trt=71f"

=T Tpt:7r App

