Information Awareness is Super Effective!

Philippa Cowderoy

SPLV 2019

email: *flippa@flippac.org* twitter: *@flippacpub*

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Symbol Games and Hidden Information

Our standard notation hides things from us.

$$\Gamma \vdash Tp:\tau p$$

$$\Gamma \vdash Tf:\tau p \rightarrow \tau r$$

$$\Gamma \vdash Tf:\tau p \rightarrow \tau r$$

$$\Gamma \vdash Tf Tp:\tau r \quad App1 \quad \Gamma \vdash Tf Tp:\tau r \quad App2$$

▶ We are used to App1

But App2 is easier for beginners to understand

An implicit constraint (=) is made explicit

 \blacktriangleright When checking, τr visibly 'comes from' the constraint

What are Information Effects - What are Effects?

Effects can be seen in relation to the models of computing they break:

General computing	Hello World Anything IO or 'real'
Functional programming	Mutation Control effects
Total programming	Non-termination
Logic programming	Exposing the solver (eg cut)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

What are Information Effects – Breaking Isomorphism

Arose from work on reversible programming

- Introduced by James and Sabry
- Isomorphic programming is a viable model
 Conservation of information holds
- Conservation of information can be broken by:
 Creating information
 Destroying information

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What Can Information Effects Tell Us?

Suppose we're writing an interpreter:

- Typical 'fold' pattern
 Traverse AST, use things at nodes
 Maybe target an abstract machine
- Syntactic sugar will be destroyed
 Whether or not explicitly desugared
- Created information is semantics
 The *meaning* we give the program!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Constraints for the Simply Typed Lambda Calculus

$$\tau = \tau$$
 Type equality

 $\begin{aligned} x:\tau\in \Gamma & \text{Binding in context} \\ \Gamma':=\Gamma \text{ ; } x:\tau & \text{Context extension} \\ \Gamma-\!\!\!\! \left< \begin{smallmatrix} \Gamma_L \\ \Gamma_R \end{smallmatrix} & \text{Context duplication} \end{aligned} \end{aligned}$

- Convention: write = as if 'assigning' to LHS
- Context constraints encode the structural rules
- An alternative interpretation could give us a minimal linear calculus

Information-Aware Simply-Typed λ -Calculus

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Information-Aware Simply-Typed λ -Calculus (moded)

Mode: $\Gamma^+ \vdash T^+$: τ^- (Synthesis or 'typechecking') $\Gamma f^+ := \Gamma^- : x^- : \tau p^+$ $\Gamma f^- \vdash T^- \cdot \tau r^+$ $x^- \cdot \tau^+ \in \Gamma^ \tau f^+ = \tau p^- \rightarrow^+ \tau r^ \Gamma^+ \vdash x^+ : \tau^- Var$ $\Gamma^+ \vdash \lambda x^+ : \tau f^- Lam$ $\Gamma^- - \langle \Gamma f^+ \\ \Gamma p^+ \rangle$ $\Gamma f^- \vdash T f^- : \tau f^+ \qquad \Gamma p^- \vdash T p^- : \tau p^+$ $\tau p^- \rightarrow^- \tau r^+ = \tau f^ \Gamma^+ \vdash Tf^+ Tp^+ : \tau r^-$ App

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

New Tricks

Done:

- Information Aware type system presentations
- Telescopic Constraint Trees
 - Derivable from Information Aware rules
 - Represent [ongoing] checking problems

Working on:

- Information Aware elaboration
 - Type-aware translation with sugar
 - One copy to 'translate', one to think about
 - Composition entailment of constraints
- Error reporting

Generalising the Ultimate Answer

A telescopic constraint tree for let $id = \lambda x.x$ in id 42:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

As in the original talk, the inference rules are left as an exercise for the reader...

Summary

- Information effects help make sense of type systems a lot
- Informal uses too: illumination and inspiration
- Structural proof theory for hackers?
- Notation and ideas ready for serious challenges

Other talks:

- SPLS March 2019: Information Aware Type Systems
- Strathclyde MSP101, 2018: Telescopic [Constraint] Trees, or: Information-Aware Type Systems in Context

Extra: Free Join-the-Dots slide! Connect + ve to -ve

$$\Gamma f^{+} := \Gamma^{-}; x^{-} : \tau p^{+}$$

$$\Gamma f^{-} \vdash T^{-} : \tau r^{+}$$

$$\tau f^{+} = \tau p^{-} \rightarrow^{+} \tau r^{-}$$

$$\tau f^{+} = \tau p^{-} \rightarrow^{+} \tau r^{-}$$

$$\tau f^{+} = \tau p^{-} \rightarrow^{+} \tau r^{-}$$

$$\Gamma^{+} \vdash \lambda x^{+} \cdot T^{+} : \tau f^{-} Lam$$

$$\Gamma^{-} \swarrow \Gamma f^{+} \Gamma f^{+} \Gamma p^{-} \vdash Tp^{-} : \tau p^{+}$$

$$\tau p^{-} \rightarrow^{-} \tau r^{+} = \tau f^{-}$$

$$\Gamma^{+} \vdash Tf^{+} Tp^{+} : \tau r^{-} App$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○