
Information Awareness is Super Effective!

Philippa Cowderoy

SPLV 2019

email: flippa@flippac.org
twitter: @flippacpub

Symbol Games and Hidden Information

Our standard notation hides things from us.

Γ ` Tp : τp

Γ ` Tf : τp → τ r

Γ ` Tf Tp : τ r App1

Γ ` Tp : τp

Γ ` Tf : τ f

τp → τ r = τ f

Γ ` Tf Tp : τ r App2

I We are used to App1
I But App2 is easier for beginners to understand

I An implicit constraint (=) is made explicit

I When checking, τ r visibly ‘comes from’ the constraint

What are Information Effects – What are Effects?

Effects can be seen in relation to the models of
computing they break:

General computing
Hello World
Anything IO or ‘real’

Functional programming
Mutation
Control effects

Total programming Non-termination

Logic programming Exposing the solver (eg cut)

What are Information Effects – Breaking Isomorphism

I Arose from work on reversible programming

I Introduced by James and Sabry

I Isomorphic programming is a viable model

I Conservation of information holds

I Conservation of information can be broken by:

I Creating information
I Destroying information

What Can Information Effects Tell Us?

Suppose we’re writing an interpreter:

I Typical ‘fold’ pattern

I Traverse AST, use things at nodes
I Maybe target an abstract machine

I Syntactic sugar will be destroyed

I Whether or not explicitly desugared

I Created information is semantics

I The meaning we give the program!

Constraints for the Simply Typed Lambda Calculus

τ = τ Type equality

x : τ ∈ Γ Binding in context
Γ′ := Γ ; x : τ Context extension

Γ−〈ΓLΓR Context duplication

I Convention: write = as if ‘assigning’ to LHS

I Context constraints encode the structural rules

I An alternative interpretation could give us a
minimal linear calculus

Information-Aware Simply-Typed λ-Calculus

x : τ ∈ Γ

Γ ` x : τ Var

Γf := Γ ; x : τp

Γf ` T : τ r

τ f = τp → τ r

Γ ` λx .T : τ f Lam

Γ−〈ΓfΓp

Γf ` Tf : τ f Γp ` Tp : τp

τp → τ r = τ f

Γ ` Tf Tp : τ r App

Information-Aware Simply-Typed λ-Calculus (moded)

Mode: Γ+ ` T+ : τ− (Synthesis or ‘typechecking’)

x− : τ+ ∈ Γ−

Γ+ ` x+ : τ− Var

Γf + := Γ− ; x− : τp+

Γf − ` T− : τ r+

τ f + = τp− →+ τ r−

Γ+ ` λx+.T+ : τ f − Lam

Γ−−〈Γf +

Γp+

Γf − ` Tf − : τ f + Γp− ` Tp− : τp+

τp− →− τ r+ = τ f −

Γ+ ` Tf + Tp+ : τ r− App

New Tricks

Done:

I Information Aware type system presentations

I Telescopic Constraint Trees

I Derivable from Information Aware rules
I Represent [ongoing] checking problems

Working on:

I Information Aware elaboration

I Type-aware translation with sugar
I One copy to ‘translate’, one to think about
I Composition – entailment of constraints

I Error reporting

Generalising the Ultimate Answer

A telescopic constraint tree for
let id = λx .x in id 42:

{42 : ∀.N}, {∃τa}{∃σ}
|{;, ∃τb, σ = Gen(τb)} . . .
. . . {∃τp, ∃τ r , !x : ∀.τp, τb = τp → τ r} . . .

. . . {∃σr , ?x : σr , σr≥τ r}
|{!id : σ} . . .
. . . {∃τ f , ∃τp, τp → τa = τ f }

|{∃σf , ?id : σf , σf≥τ f }
|{∃σp, ?42 : σp, σp≥τp}

Setup&let
let (LHS)

lambda
x

let (RHS)
app

id
42

As in the original talk, the inference rules are left as an
exercise for the reader. . .

Summary

I Information effects help make sense of type
systems a lot

I Informal uses too: illumination and inspiration

I Structural proof theory for hackers?

I Notation and ideas ready for serious challenges

Other talks:

I SPLS March 2019:
Information Aware Type Systems

I Strathclyde MSP101, 2018:
Telescopic [Constraint] Trees, or:
Information-Aware Type Systems in Context

https://eb.host.cs.st-andrews.ac.uk/SPLS-Feb19/Slides/IATS.pdf
http://msp.cis.strath.ac.uk/101/slides/2018-08-31_cowderoy.pdf
http://msp.cis.strath.ac.uk/101/slides/2018-08-31_cowderoy.pdf

Extra: Free Join-the-Dots slide! Connect +ve to −ve

x− : τ+ ∈ Γ−

Γ+ ` x+ : τ− Var

Γf + := Γ− ; x− : τp+

Γf − ` T− : τ r+

τ f + = τp− →+ τ r−

Γ+ ` λx+.T+ : τ f − Lam

Γ−−〈Γf +

Γp+

Γf − ` Tf − : τ f + Γp− ` Tp− : τp+

τp− →− τ r+ = τ f −

Γ+ ` Tf + Tp+ : τ r− App

