
Juvix: Efficient, dependently-typed smart contracts
Christopher Goes, Cryptium Labs



Oh no, blockchain!
- Scams
- Buggy programs
- Too many buzzwords
- (aside: terrible terminology)

Contrapositive: excellent use-case for formal verification



Language economics for smart contracts
- Correctness matters

- No security-by-obscurity
- Controlling funds, data, high-value transactions

- Execution efficiency matters
- Must be replicated

- Compiler speed doesn’t matter much
- Developer accessibility, syntactic familiarity matter less



Core language
- Syntax, semantics from quantitative type theory (McBride, Atkey)

- Combines dependent & linear types, dependent linear implication
- Separates contemplation from computation

- Dependent types for property verification
- Linear types for efficient compilation, erasure
- Instantiated over Nat rig

- More precision for optimizations



Optimal reduction
- Interaction system

- Node types corresponding to atoms
- Rewrite rules corresponding to reduction

- Lambda term translated to graph, rewritten, read-back to lambda term



Optimal reduction
- Benefits

- Optimal sharding
- Efficient higher-order functions, lexical closures
- Asymptotically better (# of β reductions) than call-by-name, call-by-value

- No (separate) garbage collection
- Encoded in graph rewrite rules

- Automatic parallelism
- Constraints

- Subset of lambda terms (abstract algorithm): typable in EAL
- Elementary complexity class terms



Open questions
- Translation between QTT & EAL
- Tradeoffs between space & time in optimal reduction
- Lambda-encoding of user-defined data types

- Deriving induction for recursive types
- O(1) pattern matching (predecessor)

- Current: Mendler encoding, Scott encoding, work by Aaron Stump



References
- Optimal Implementation of Functional Programming Languages - Asperti et 

al. [1998]
- I Got Plenty O’ Nuttin’ - Conor McBride [2016]
- Quantitative Type Theory - Robert Atkey [2018]
- The Calculus of Dependent Lambda Eliminations - Aaron Stump [2018]


