Open Games: Compositional Game Theory

Neil Ghani, Clemens Kupke, <u>Alasdair Lambert</u> and Fredrik Nordvall Forsberg

University of Strathclyde

6th August 2019

The mathematical study of strategic interaction between rational agents

- The mathematical study of strategic interaction between rational agents
- Analyse these games via Equilibrium concepts

- The mathematical study of strategic interaction between rational agents
- Analyse these games via Equilibrium concepts
- Mathematically rigorous
- But

Does not scale well

- The mathematical study of strategic interaction between rational agents
- Analyse these games via Equilibrium concepts
- Mathematically rigorous
- But
 - Does not scale well
 - No compositionality

- The mathematical study of strategic interaction between rational agents
- Analyse these games via Equilibrium concepts
- Mathematically rigorous

But

- Does not scale well
- No compositionality
- Computationally hard

Let X, Y, R and S be sets. An open game $\mathscr{G} : (X, S) \to (Y, R)$ consists of:

• a set $\Sigma_{\mathscr{G}}$ of *strategy profiles* for \mathscr{G} ,

- a set $\Sigma_{\mathscr{G}}$ of *strategy profiles* for \mathscr{G} ,
- a play function $P_{\mathscr{G}}: \Sigma_{\mathscr{G}} \times X \to Y$,

- a set $\Sigma_{\mathscr{G}}$ of *strategy profiles* for \mathscr{G} ,
- a play function $P_{\mathscr{G}}: \Sigma_{\mathscr{G}} \times X \to Y$,
- ► a coutility function $C_{\mathscr{G}} : \Sigma_{\mathscr{G}} \times X \times R \to S$ of \mathscr{G} ,

- a set $\Sigma_{\mathscr{G}}$ of *strategy profiles* for \mathscr{G} ,
- a play function $P_{\mathscr{G}}: \Sigma_{\mathscr{G}} \times X \to Y$,
- ► a coutility function $C_{\mathscr{G}} : \Sigma_{\mathscr{G}} \times X \times R \to S$ of \mathscr{G} ,
- ► an equilibrium function $E_{\mathscr{G}} : X \times (Y \to R) \to \mathscr{P}(\Sigma_{\mathscr{G}})$.

Sequential composition

Sequential composition

Parallel composition

Parallel composition

The category of open games

The category of open games

Theorem The collection of pairs of sets, with open games $\mathscr{G}: (X, S) \rightarrow (Y, R)$, as their morphisms forms a symmetric monoidal category.

- Infinite games using final coalgebra
- Subgame perfection

- Infinite games using final coalgebra
- Subgame perfection
- Monads and distributive laws for probabilistic strategies

Thanks!