
Formalising
Free Selective Functors

in Coq
Georgy Lukyanov

Newcastle University

Andrey Mokhov
Newcastle University

{g.lukyanov2@newcastle.ac.uk}
SPLV'19, August 8, 2019

1 / 15

file:///home/geo2a/Workspace/phd/personal/selective-talk-splv-2019/g.lukyanov2@newcastle.ac.uk

class Applicative f => Selective f where
 select :: f (b + a) -> f (b -> a) -> f a

2 / 15

class Applicative f => Selective f where
 select :: f (b + a) -> f (b -> a) -> f a

Conditional e�ects for �nite types
ifS :: Selective f => f Bool -> f a -> f a -> f a

3 / 15

Free Selective Functors
Inductive Select (F : Type -> Type) (A : Set) : Set :=
 Pure : A -> Select F A
 | MkSelect : forall (B : Set),
 Select F (B + A) -> F (B -> A) -> Select F A.

4 / 15

Free Selective Functors
Inductive Select (F : Type -> Type) (A : Set) : Set :=
 Pure : A -> Select F A
 | MkSelect : forall (B : Set),
 Select F (B + A) -> F (B -> A) -> Select F A.

A is a non-uniform index

5 / 15

Simple Proofs: Functor instance and laws

Function Select_map {A B : Set} `{Functor F}
 (f : A -> B) (x : Select F A) : Select F B :=
 match x with
 | Pure a => Pure (f a)
 | MkSelect x y =>
 MkSelect (Select_map (Either_map f) x)
 (fmap (fun k => f \o k) y)
 end.

forall x, Select_map id x = id x.

forall f g x,
 (Select_map f \o Select_map g) x =
 Select_map (f \o g) x.

6 / 15

De�ning Selective (and Applicative) instance requires
well-founded recursion

Fixpoint Select_depth {A : Set} {F : Type -> Type}
 (x : Select F A) : nat :=
 match x with
 | Pure a => O
 | MkSelect y _ => S (Select_depth y)
 end.

Well-founded recursion via depth measure

forall x f,
 Select_depth (Select_map f x) = Select_depth x.

Use Select_depth with Function or Equations plugin

7 / 15

Theorem Select_Applicative_law_Interchange
 `{FunctorLaws F} :
 forall (A B : Set) (u : Select F (A -> B)) (y : A),
 u <*> pure y = pure (fun f => f y) <*> u.
Proof. induction u.

8 / 15

Theorem Select_Applicative_law_Interchange
 `{FunctorLaws F} :
 forall (A B : Set) (u : Select F (A -> B)) (y : A),
 u <*> pure y = pure (fun f => f y) <*> u.
Proof. induction u.

Error: Abstracting over the terms "S" and "u" leads to a term
fun (S0 : Set) (u0 : Select F S0) =>
u0 <*> pure y = pure (fun f : S0 => f y) <*> u0
 which is ill-typed.
...
The 5th term has type "Select F S0 " which
should be coercible to "Select F (A -> B)".

9 / 15

Theorem Select_Applicative_law_Interchange
 `{FunctorLaws F} :
 forall (A B : Set) (u : Select F (A -> B)) (y : A),
 u <*> pure y = pure (fun f => f y) <*> u.
Proof. induction u.

Error: Abstracting over the terms "S" and "u" leads to a term
fun (S0 : Set) (u0 : Select F S0) =>
u0 <*> pure y = pure (fun f : S0 => f y) <*> u0
 which is ill-typed.
...
The 5th term has type "Select F S0 " which
should be coercible to "Select F (A -> B)".

S0 is a non-uniform index and this a�ects the
generated induction principle for Select

10 / 15

Select_ind :
 forall (F : Type -> Type)
 (P : forall A : Set, Select F A -> Prop),
 (forall (A : Set) (a : A), P A (Pure F A a)) ->
 (forall (A B : Set) (s : Select F (B + A)),
 P (B + A) s -> forall f0 : F (B -> A),
 P A (MkSelect F A B s f0)) ->
 forall (A : Set) (s : Select F A), P A s

The predicate is generalised in A

11 / 15

Select_ind :
 forall (F : Type -> Type)
 (P : forall A : Set, Select F A -> Prop),
 (forall (A : Set) (a : A), P A (Pure F A a)) ->
 (forall (A B : Set) (s : Select F (B + A)),
 P (B + A) s -> forall f0 : F (B -> A),
 P A (MkSelect F A B s f0)) ->
 forall (A : Set) (s : Select F A), P A s

The predicate is generalised in A

It is not yet clear to me what to do with it...

12 / 15

Challenges of formalising Haskell concepts

Non-structurally recursive functions (kinda solved)

Non-uniform indices cause problems with induction
(not solved)

13 / 15

Challenges of formalising Haskell concepts

Non-structurally recursive functions (kinda solved)

Non-uniform indices cause problems with induction
(not solved)

Ways to go from here

Relax the notion of equality? Work up to isomorphism?

Come up with a di�erent formulation of Free Selective and see if
it's better for proofs?

14 / 15

Links
Free Selective Functors in Coq:
https://github.com/tuura/selective-theory-coq

Selective functors in Haskell:
https://github.com/snowleopard/selective

Li-yao XIA's study of proofs for Free Applicative Functors:
https://blog.poisson.chat/posts/2019-07-14-free-applicative-
functors.html

15 / 15

https://github.com/tuura/selective-theory-coq
https://github.com/snowleopard/selective
https://blog.poisson.chat/posts/2019-07-14-free-applicative-functors.html

