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class Applicative f => Selective f where
    select :: f (b + a) -> f (b -> a) -> f a
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class Applicative f => Selective f where
    select :: f (b + a) -> f (b -> a) -> f a

Conditional e�ects for �nite types
ifS :: Selective f => f Bool -> f a -> f a -> f a
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Free Selective Functors
Inductive Select (F : Type -> Type) (A : Set) : Set :=
    Pure     : A -> Select F A
  | MkSelect : forall (B : Set),
               Select F (B + A) -> F (B -> A) -> Select F A.
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Free Selective Functors
Inductive Select (F : Type -> Type) (A : Set) : Set :=
    Pure     : A -> Select F A
  | MkSelect : forall (B : Set),
               Select F (B + A) -> F (B -> A) -> Select F A.

A is a non-uniform index
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Simple Proofs: Functor instance and laws

Function Select_map {A B : Set} `{Functor F}
         (f : A -> B) (x : Select F A) : Select F B :=
  match x with
  | Pure a => Pure (f a)
  | MkSelect x y =>
      MkSelect (Select_map (Either_map f) x)
                           (fmap (fun k => f \o k) y)
  end.

forall x, Select_map id x = id x.

forall f g x,
    (Select_map f \o Select_map g) x =
    Select_map (f \o g) x.

6 / 15



De�ning Selective (and Applicative) instance requires
well-founded recursion

Fixpoint Select_depth {A : Set} {F : Type -> Type}
         (x : Select F A) : nat :=
  match x with
  | Pure a => O
  | MkSelect y _ => S (Select_depth y)
  end.

Well-founded recursion via depth measure

forall x f,
  Select_depth (Select_map f x) = Select_depth x.

Use Select_depth with Function or Equations plugin
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Theorem Select_Applicative_law_Interchange
        `{FunctorLaws F} :
  forall (A B : Set) (u : Select F (A -> B)) (y : A),
  u <*> pure y = pure (fun f => f y) <*> u.
Proof. induction u.
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Theorem Select_Applicative_law_Interchange
        `{FunctorLaws F} :
  forall (A B : Set) (u : Select F (A -> B)) (y : A),
  u <*> pure y = pure (fun f => f y) <*> u.
Proof. induction u.

Error: Abstracting over the terms "S" and "u" leads to a term
fun (S0 : Set) (u0 : Select F S0) =>
u0 <*> pure y = pure (fun f : S0 => f y) <*> u0
  which is ill-typed.
...
The 5th term has type   "Select F S0      " which
should be coercible to  "Select F (A -> B)".
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Theorem Select_Applicative_law_Interchange
        `{FunctorLaws F} :
  forall (A B : Set) (u : Select F (A -> B)) (y : A),
  u <*> pure y = pure (fun f => f y) <*> u.
Proof. induction u.

Error: Abstracting over the terms "S" and "u" leads to a term
fun (S0 : Set) (u0 : Select F S0) =>
u0 <*> pure y = pure (fun f : S0 => f y) <*> u0
  which is ill-typed.
...
The 5th term has type   "Select F S0      " which
should be coercible to  "Select F (A -> B)".

S0 is a non-uniform index and this a�ects the
generated induction principle for Select
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Select_ind :
  forall (F : Type -> Type)
          (P : forall A : Set, Select F A -> Prop),
  (forall (A : Set) (a : A), P A (Pure F A a)) ->
  (forall (A B : Set) (s : Select F (B + A)),
     P (B + A) s -> forall f0 : F (B -> A),
       P A (MkSelect F A B s f0)) ->
  forall (A : Set) (s : Select F A), P A s

The predicate is generalised in A
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Select_ind :
  forall (F : Type -> Type)
          (P : forall A : Set, Select F A -> Prop),
  (forall (A : Set) (a : A), P A (Pure F A a)) ->
  (forall (A B : Set) (s : Select F (B + A)),
     P (B + A) s -> forall f0 : F (B -> A),
       P A (MkSelect F A B s f0)) ->
  forall (A : Set) (s : Select F A), P A s

The predicate is generalised in A

It is not yet clear to me what to do with it...

12 / 15



Challenges of formalising Haskell concepts

Non-structurally recursive functions (kinda solved)

Non-uniform indices cause problems with induction
(not solved)
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Challenges of formalising Haskell concepts

Non-structurally recursive functions (kinda solved)

Non-uniform indices cause problems with induction
(not solved)

Ways to go from here

Relax the notion of equality? Work up to isomorphism?

Come up with a di�erent formulation of Free Selective and see if
it's better for proofs?
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Links
Free Selective Functors in Coq:
https://github.com/tuura/selective-theory-coq

Selective functors in Haskell:
https://github.com/snowleopard/selective

Li-yao XIA's study of proofs for Free Applicative Functors:
https://blog.poisson.chat/posts/2019-07-14-free-applicative-
functors.html
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