
Type-checking
session-typed π-calculus

with Coq

Uma Zalakain

University of Glasgow

Problem

Formalising session typed π-calculus in Coq
▶ subset (finite, no shared channels)
▶ strong correctness guarantees
▶ interesting modelling exercise
▶ perfect excuse to familiarise with Coq

Goal

Correctness by construction
▶ coq type-checks process ⇐⇒ process uses STs correctly
▶ bonus: the session types of channels are type-inferred

Ingredients

Continuation passing
▶ an action A

consumes a channel :A.T
creates a channel :T

Ingredients

Abstraction
▶ channels and messages as arguments
▶ variable references lifted to Coq
▶ no environments (only closed processes)
▶ no substitution lemmas

Ingredients

Parametric channel type
▶ opaque unforgeable channels
▶ indexed by session type

Ingredients

| PNew
: forall (s r : SType)
, Duality s r
→ (Message C[s] → Message C[r] → Process)
→ Process

| PInput
: forall {m : MType} {s : SType}
, (Message m → Message C[s] → Process)
→ Message C[? m ; s]
→ Process

The catch

x:C[A.T]−−−−→ A(x) y:C[T]−−−→ A(x) z:C[T]−−−→ . . .

Workaround

▶ linearity as an inductive predicate on processes
▶ process traversal:

▶ need to construct messages of arbitrary type
▶ parametrise message types
▶ project messages types to the unit type
▶ cannot use constructs of the metalanguage anymore

▶ process is linear ⇐⇒ process uses STs correctly

Subject reduction

∀ P Q : Process,
P → Q, lin(P) =⇒ lin(Q)

