Type-checking session-typed π -calculus with Coq

Uma Zalakain

University of Glasgow

Problem

Formalising session typed π -calculus in Coq

- subset (finite, no shared channels)
- strong correctness guarantees
- interesting modelling exercise
- perfect excuse to familiarise with Coq

Correctness by construction

- \blacktriangleright coq type-checks process \iff process uses STs correctly
- bonus: the session types of channels are type-inferred

Continuation passing

 an action A consumes a channel :A.T creates a channel :T

Abstraction

- channels and messages as arguments
- variable references lifted to Coq
- no environments (only closed processes)
- no substitution lemmas

Parametric channel type

- opaque unforgeable channels
- indexed by session type

| PNew

- : forall (s r : SType)
- , Duality s r
- → (Message C[s] → Message C[r] → Process)
- → Process

| PInput

- : forall {m : MType} {s : SType}
- , (Message m \rightarrow Message C[s] \rightarrow Process)
- \rightarrow Message C[? m ; s]
- → Process

The catch

$\xrightarrow{x:C[A.T]} A(x) \xrightarrow{y:C[T]} A(\mathbf{x}) \xrightarrow{z:C[T]} \dots$

Workaround

- Inearity as an inductive predicate on processes
- process traversal:
 - need to construct messages of arbitrary type
 - parametrise message types
 - project messages types to the unit type
 - cannot use constructs of the metalanguage anymore
- ▶ process is linear ⇔ process uses STs correctly

Subject reduction

$\forall P Q : Process, \\ P \rightarrow Q, \ lin(P) \implies lin(Q)$