
Domain Specific Languages
1: Defining and Implementing

Languages
Greg Michaelson

School of Mathematical & Computer Sciences

Heriot Watt University

1SPLV 2019 University of Strathclyde

Introduction

• Domain Specific Language (DSL)

– notation oriented to some problem domain

– specialised types & control structures

• DSL is a library + syntax

– library: what it can do

– syntax: how to tell it what to do

18/6/14 2SPLS, Glasgow

Where do DSLs come from?

• tiresome writing lots of small programs for same
problem area

• end up using same set of:

– programming tropes

– abstractions

• types

• control

18/6/14 3SPLS, Glasgow

Where do DSLs come from?

• construct an ad hoc command based framework

– scripts to invoke and configure individual program
components

• nice to deploy:

– consistent notation oriented to problem area

– built in constructs capturing specialised
abstractions

• how to define & implement languages?

18/6/14 4SPLS, Glasgow

Language

• symbolic system for communicating state changing
meanings

• components:

– alphabet

– symbols/lexicon

– syntax

– semantics

5SPLV 2019 University of Strathclyde

Example

• calculator language

– integers

– define variables

– expressions output values

• e.g.

a = 7;
b = 4;
a*(b+4)==> 56

6SPLV 2019 University of Strathclyde

Medium

• how utterances are conveyed

• must be capable of bearing distinguishable units of
difference

– sounds in air

– marks on paper

– electro-magnetic waves

– charges in transistors

• fundamental but not relevant...

7SPLV 2019 University of Strathclyde

Alphabet

• basic distinguishable units of expression

• not meaningful in themselves

• e.g.

letter: a b c d ...z
digit: 0 1 2 3 ... 9
punctuation: + - * / () = ;

8SPLV 2019 University of Strathclyde

Symbols/lexicon

• “words” in “dictionary”

• alphabet sequences

• smallest meaningful units

• list them

• regular expressions/Chomsky Type 3

• e.g.

operator -> + | - | * | / | (|) | ; | =
identifier -> letter | letter identifier

e.g. a be sea

9SPLV 2019 University of Strathclyde

Symbols/lexicon

• e.g.

integer -> digit | positive int

positive -> 1 | 2 ... | 9
int -> digit | digit int

e.g. 0 12 45700 but not 00 012

10SPLV 2019 University of Strathclyde

Syntax

• grammar

• well formed symbol sequences

• not necessarily meaningful

• concrete syntax

– representational structure

• abstract syntax

– meaningful structure

11SPLV 2019 University of Strathclyde

Concrete Syntax

• context free/Chomsky Type 2

• Backus Naur Form (BNF)

• e.g.

commands -> command | command ; commands

command -> identifier = expression | expression

expression -> term | term + term | term – term

term -> base | base * base | base / base

base -> identifier | integer | (expression)

12SPLV 2019 University of Strathclyde

Concrete Syntax

• use grammar to:

– parse symbol sequence

– build internal representation

• parse tree

e.g.
a = 7;
b = 4;
a*(b+4)

13SPLV 2019 University of Strathclyde

Concrete Syntax

14
SPLV 2019 University of Strathclyde

4b

commands

command

term

;

=identifier expression

a

base

integer

7

commands

command

term

;

=identifier expression

b

base

integer

4

command

term

expression

base

identifier

a

* base

base

integer

()

term

expression

base

identifier

+
commands -> command | command ; commands
command -> identifier = expression | expression
expression -> term | term + term | term – term
term -> base | base * base | base / base
base -> identifier | integer | (expression)

a = 7;
b = 4;
a*(b+4)

term

Abstract Syntax

• concrete syntax contains irrelevant information for
meaning

• e.g. don’t care that:

 7 is

integer is

base is

term is

expression

SPLV 2019 University of Strathclyde 15

Abstract Syntax

• simplify grammar

– to reflect key constructs

– e.g. commands & expressions with identifiers &
integers

– drop irrelevant punctuation e.g. ; (...)
c -> c c | id = e | e

e -> id | int | e + e | e – e | e * e | e / e

• doesn’t matter that grammar is ambiguous

• use to derive structure of abstract syntax tree

SPLV 2019 University of Strathclyde 16

Abstract Syntax

SPLV 2019 University of Strathclyde 17

c

c

=id e

a int

7

c

c

=id e

b int

4

c

e

id

a

*

int

e

id

+

4b
c -> c c | id = e | e
e -> id | int | e + e | e – e | e * e | e / e

a = 7;
b = 4;
a*(b+4)

e

e e

Semantics

• what constructs mean

• express in meta-language

– informal – natural language

– formal – some theory of computability

• e.g. number theoretic predicate calculus

• e.g. set theory

– static semantics: types

– dynamic semantics: run time behaviour

18SPLV 2019 University of Strathclyde

Semantics

• dynamic

• denotational semantics

• Scott-Strachey

– meanings expressed as functions

– λ calculus with syntactic sugar

– compositional on abstract syntax

SPLV 2019 University of Strathclyde 19

Semantics

state: identifier -> integer

• state maps syntactic identifiers to semantic integers

me: expression -> state -> integer

• meaning of an expression given a state is an integer

mc: command -> state * output -> state * output

• meaning of a command given a old state and old

output is a new state and new output

SPLV 2019 University of Strathclyde 20

Semantics

me [int] state = value([int])

• value == valuation function from syntactic int to
semantic integer

me [id] state = state([id])

• apply state to id to return associated integer

me [e1+e2] state = m [e1] state + m [e2] state

me [e1-e2] state = m [e1] state - m [e2] state

me [e1*e2] state = m [e1] state * m [e2] state

me [e1/e2] state = m [e1] state /m [e2] state

SPLV 2019 University of Strathclyde 21

Semantics

mc [c1 c2] (state,output) =

 mc [c2] (mc [c1] (state, output))

• meaning of command sequence given old state and
output is:

– meaning of c2 using state and output from...

– meaning of c1 with old state and output

SPLV 2019 University of Strathclyde 22

Semantics

mc [id = e] (state,output) =

 (state{id/(me [e] state)}, output)

• meaning of definition given old state and output is:

– old state updated with id associated with value of
e in old state

– old output

SPLV 2019 University of Strathclyde 23

Semantics

mc [e] (state,output) = (state, output++me [e] state)

• meaning of expression given old state and output is:

– old state, and

– old output augmented with value of expression in
old state

SPLV 2019 University of Strathclyde 24

Semantics

ε == empty state

{} == empty output

mc [a=7;b=4;a*(b+4)] (ε,{})
mc [b=4;a*(b+4)] (mc [a=7] (ε,{}))

mc [a*(b+4)](mc [b=4] (mc [a=7] (ε,{})))
mc [a*(b+4)](mc [b=4] ({a->7},{}))
mc [a*(b+4)] ({b->4, a->7},{}))
({b->4, a->7},{me [a*(b+4)] {b->4, a->7})

SPLV 2019 University of Strathclyde 25

Semantics

({b->4, a->7},{me [a] {b->4, a->7} *

 me [b+4] {b->4, a->7})
({b->4, a->7},{me [a] {b->4, a->7} *

 (me [b] {b->4, a->7} +

 me [4] {b->4, a->7})}
({b->4, a->7},{7*(4+4)})
({b->4, a->7},{56})

SPLV 2019 University of Strathclyde 26

Implementation

• front end

SPLV 2019 University of Strathclyde 27

lexical analyser

syntax analyser

static
semantics

source text

symbols

abstract syntax tree

abstract syntax tree’

Implementation

• back end

SPLV 2019 University of Strathclyde 28

interpreter

abstract syntax tree’

code generator

interpreter/
computer

inputs

outputs

inputs

outputs

target
code

Interpreter

• implement in Haskell

• choose AST representation

c -> c c | id = e | e

e -> id | int | e + e | e – e | e * e | e / e
data SYMBOL = SADD | SSUB | SMULT | SDIV | ...
data AST = ID String | INT Int |
 DEF(AST,AST) |
 EXP(SYMBOL,AST,AST)
c c == [AST]

SPLV 2019 University of Strathclyde 29

Interpreter

data SYMBOL = SADD | SSUB | SMULT | SDIV | ...
data AST = ID String | INT Int |
 DEF(AST,AST) |
 EXP(SYMBOL,AST,AST)
a = 7;
b = 4;
a*(b+4)
[DEF(ID “a”,INT 7),
 DEF(ID “b”,INT 4),
 EXP(SMULT,ID “a”,EXP(SADD,ID “b”,INT 4))]

SPLV 2019 University of Strathclyde 30

Interpreter

• choose representations for semantic entities

– identifier == String
– integer == Int

• could model state as higher order function

• more flexible to use data structure + look up

• e.g. list

state: identifier -> integer [(String,Int)]
e.g. ({b->4, a->7} [(“b”,4),(“a”,7)]

SPLV 2019 University of Strathclyde 31

Interpreter

mc: command -> state * output -> state * output

mc [c1 c2] (state,output) = mc [c2] (mc [c1] (state, output))

mCs :: [AST] ->
 ([(String,Int)],[Int]) ->
 ([(String,Int)],[Int])
mCs [] (state,output) = (state,output)
mCs (c1:c2) (state,output) =
 mCs c2 (mC c1 (state,output))

SPLV 2019 University of Strathclyde 32

Interpreter

mc [id = e] (state,output) =

 (state{id/(me [e] state)}, output)

mc [e] (state,output) = (state, output++me [e] state)

mC :: AST -> ([(String,Int)],[Int]) ->
 ([(String,Int)],[Int])
mC (DEF(ID i,e)) (state,output) =
 ((i,mE e state):state,output)
mC e (state,output) =
 (state,output++[mE e state])

SPLV 2019 University of Strathclyde 33

Interpreter

me: expression -> state -> integer

me [int] state = value([int])

me [id] state = state([id])

mE :: AST -> [(String,Int)] -> Int
mE (INT n) _ = n
mE (ID i) state = lookUp i state

lookUp v [] = error ("can't find "++v++"\n")
lookUp v ((v1,i1):t) = if v==v1
 then i1
 else lookUp v t

SPLV 2019 University of Strathclyde 34

Interpreter

me [e1+e2] state = m [e1] state + m [e2] state

me [e1-e2] state = m [e1] state - m [e2] state

me [e1*e2] state = m [e1] state * m [e2] state

me [e1/e2] state = m [e1] state /m [e2] state
mE (EXP(SADD,e1,e2)) state =
 (mE e1 state) + (mE e2 state)
mE (EXP(SSUB,e1,e2)) state =
 (mE e1 state) - (mE e2 state)
mE (EXP(SMULT,e1,e2)) state =
 (mE e1 state) * (mE e2 state)
mE (EXP(SDIV,e1,e2)) state =
 (mE e1 state) `div` (mE e2 state)

SPLV 2019 University of Strathclyde 35

	Slide 1
	Introduction
	Where do DSLs come from?
	Where do DSLs come from?
	Language
	Example
	Medium
	Alphabet
	Symbols/lexicon
	Symbols/lexicon
	Syntax
	Concrete Syntax
	Concrete Syntax
	Concrete Syntax
	Abstract Syntax
	Abstract Syntax
	Abstract Syntax
	Semantics
	Semantics
	Semantics
	Semantics
	Semantics
	Semantics
	Semantics
	Semantics
	Semantics
	Implementation
	Implementation
	Interpreter
	Interpreter
	Interpreter
	Interpreter
	Interpreter
	Interpreter
	Interpreter

