

Domain Specific Languages 1: Defining and Implementing Languages

Greg Michaelson

School of Mathematical & Computer Sciences Heriot Watt University

Introduction

- Domain Specific Language (DSL)
 - notation oriented to some problem domain
 - specialised types & control structures
- DSL is a library + syntax
 - library: what it can do
 - syntax: how to tell it what to do

Where do DSLs come from?

- tiresome writing lots of small programs for same problem area
- end up using same set of:
 - programming tropes
 - abstractions
 - types
 - control

Where do DSLs come from?

- construct an ad hoc command based framework
 - scripts to invoke and configure individual program components
- nice to deploy:
 - consistent notation oriented to problem area
 - built in constructs capturing specialised abstractions
- how to define & implement languages?

Language

- symbolic system for communicating state changing meanings
- components:
 - alphabet
 - symbols/lexicon
 - syntax
 - semantics

Example

- calculator language
 - integers
 - define variables
 - expressions output values
- e.g.
 - a = 7; b = 4; a*(b+4)==> 56

Medium

- how utterances are conveyed
- must be capable of bearing distinguishable units of difference
 - sounds in air
 - marks on paper
 - electro-magnetic waves
 - charges in transistors
- fundamental but not relevant...

Alphabet

- basic distinguishable units of expression
- not meaningful in themselves

• e.g. letter: a b c d . . . z digit: 0 1 2 3 . . . 9 punctuation: + - * / () = ;

Symbols/lexicon

- "words" in "dictionary"
- alphabet sequences
- smallest meaningful units
- list them
- regular expressions/Chomsky Type 3
- e.g.

operator -> + | - | * | / | (|) | ; | =
identifier -> letter | letter identifier
e.g. a be sea

Symbols/lexicon

e.g.
 integer -> digit | positive int
 positive -> 1 | 2 ... | 9
 int -> digit | digit int
 e.g. 0 12 45700 but not 00 012

Syntax

- grammar
- well formed symbol sequences
- not necessarily meaningful
- concrete syntax
 - representational structure
- abstract syntax
 - meaningful structure

Concrete Syntax

- context free/Chomsky Type 2
- Backus Naur Form (BNF)

• e.g.

commands -> command | command ; commands command -> identifier = expression | expression expression -> term | term + term | term – term term -> base | base * base | base / base base -> identifier | integer | (expression)

Concrete Syntax

- use grammar to:
 - parse symbol sequence
 - build internal representation
 - parse tree

Abstract Syntax

- concrete syntax contains irrelevant information for meaning
- e.g. don't care that:
 7 is

 integer is
 base is
 term is
 expression

Abstract Syntax

- simplify grammar
 - to reflect key constructs
 - e.g. commands & expressions with identifiers & integers
 - drop irrelevant punctuation e.g. ; (...) $c \rightarrow c c \mid id = e \mid e$
 - e-> id | int | e + e | e e | e * e | e / e
- doesn't matter that grammar is ambiguous
- use to derive structure of abstract syntax tree

Abstract Syntax

- what constructs mean
- express in meta-language
 - informal natural language
 - formal some theory of computability
 - e.g. number theoretic predicate calculus
 - e.g. set theory
 - static semantics: types
 - dynamic semantics: run time behaviour

- dynamic
- denotational semantics
- Scott-Strachey
 - meanings expressed as functions
 - $-\lambda$ calculus with syntactic sugar
 - compositional on abstract syntax

state: identifier -> integer

- state maps syntactic *identifiers* to semantic integers
 me: *expression* -> state -> integer
- meaning of an *expression* given a state is an integer
 mc: *command* -> state * output -> state * output
- meaning of a *command* given a old state and old output is a new state and new output

me [int] state = value([int])

 value == valuation function from syntactic int to semantic integer

me [id] state = state([id])

• apply state to *id* to return associated integer me $[e_1+e_2]$ state = m $[e_1]$ state + m $[e_2]$ state me $[e_1-e_2]$ state = m $[e_1]$ state - m $[e_2]$ state me $[e_1*e_2]$ state = m $[e_1]$ state * m $[e_2]$ state me $[e_1/e_2]$ state = m $[e_1]$ state / m $[e_2]$ state

- mc $[c_1 c_2]$ (state,output) = mc $[c_2]$ (mc $[c_1]$ (state, output))
- meaning of command sequence given old state and output is:
 - meaning of c_2 using state and output from...
 - meaning of c_1 with old state and output

mc [*id* = *e*] (state,output) =

(state{*id*/(me [*e*] state)}, output)

- meaning of definition given old state and output is:
 - old state updated with *id* associated with value of *e* in old state

- old output

mc [e] (state,output) = (state, output++me [e] state)

- meaning of expression given old state and output is:
 old state, and
 - old output augmented with value of expression in old state

- $\epsilon == empty state$
- {} == empty output

mc[a=7;b=4;a*(b+4)] (ε,{}) =

mc [b=4; a*(b+4)] (mc [a=7] (ϵ ,{}))

mc[a*(b+4)](mc[b=4](mc[a=7] (ϵ ,{}))) =

mc[a*(b+4)](mc[b=4]({a->7},{})) =

mc[a*(b+4)]({b->4, a->7},{})) =

({b->4, a->7},{me[a*(b+4)]{b->4, a->7}) _=

$$({b->4, a->7}, {me [a] {b->4, a->7} * me [b+4] {b->4, a->7}) = me [b+4] {b->4, a->7}) = ({b->4, a->7}, {me [a] {b->4, a->7} * (me [b] {b->4, a->7} + me [4] {b->4, a->7})} = ({b->4, a->7}, {7*(4+4)}) = ({b->4, a->7}, {56})$$

Implementation

• front end

Implementation

- implement in Haskell
- choose AST representation
- $c \rightarrow c c \mid id = e \mid e$
- e -> id | int | e + e | e e | e * e | e / e

data SYMBOL = SADD | SSUB | SMULT | SDIV | .

data AST = ID String | INT Int |

DEF(AST,AST) |

EXP(SYMBOL,AST,AST)

cc == [AST]

data SYMBOL = SADD | SSUB | SMULT | SDIV data AST = ID String | INT Int | DEF(AST,AST) | EXP(SYMBOL, AST, AST) a = 7;b = 4;a*(b+4) = [DEF(ID ``a'', INT 7)]DEF(ID "b", INT 4), EXP(SMULT, ID "a", EXP(SADD, ID "b", INT 4))]

- choose representations for semantic entities
 - identifier == String
 - integer == Int
- could model state as higher order function
- more flexible to use data structure + look up
- e.g. list

state: identifier -> integer _ [(String, Int)]
e.g. ({b->4, a->7} _ [("b", 4), ("a", 7)]

mc: command -> state * output -> state * output mc $[c_1 c_2]$ (state,output) = mc $[c_2]$ (mc $[c_1]$ (state, output))

mCs :: [AST] ->
 ([(String,Int)],[Int]) ->
 ([(String,Int)],[Int])
mCs [] (state,output) = (state,output)
mCs (c1:c2) (state,output) =
 mCs c2 (mC c1 (state,output))

mc [id = e] (state,output) =
 (state{id/(me [e] state)}, output)
mc [e] (state,output) = (state, output++me [e] state)

mC :: AST -> ([(String,Int)],[Int]) ->
 ([(String,Int)],[Int])
mC (DEF(ID i,e)) (state,output) =
 ((i,mE e state):state,output)
mC e (state,output) =
 (state,output+=[mE e state])

```
me: expression -> state -> integer
me [int] state = value([int])
me [id] state = state([id])
```

```
mE :: AST -> [(String,Int)] -> Int
mE (INT n) _ = n
mE (ID i) state = lookUp i state
```

me $[e_1+e_2]$ state = m $[e_1]$ state + m $[e_2]$ state me $[e_1 - e_2]$ state = m $[e_1]$ state – m $[e_2]$ state me $[e_1 * e_2]$ state = m $[e_1]$ state * m $[e_2]$ state me $[e_1/e_2]$ state = m $[e_1]$ state / m $[e_2]$ state mE (EXP(SADD, e1, e2)) state = (mE e1 state) + (mE e2 state) mE (EXP(SSUB,e1,e2)) state = (mE el state) - (mE e2 state) mE (EXP(SMULT,e1,e2)) state = (mE e1 state) * (mE e2 state) mE (EXP(SDIV,e1,e2)) state = (mE el state) `div` (mE e2 state)