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Introduction

• Domain Specific Language (DSL)

– notation oriented to some problem domain

– specialised types & control structures

• DSL is a library + syntax

– library: what it can do

– syntax: how to tell it what to do
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Where do DSLs come from?

• tiresome writing lots of small programs for same 
problem area

• end up using same set of:

– programming tropes

– abstractions

• types

• control
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Where do DSLs come from?

• construct an ad hoc command based framework

– scripts to invoke and configure individual program 
components

• nice to deploy:

– consistent notation oriented to problem area

– built in constructs capturing specialised 
abstractions

• how to define & implement languages?
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Language

• symbolic system for communicating state changing 
meanings

• components:

– alphabet

– symbols/lexicon

– syntax

– semantics
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Example 

• calculator language

– integers

– define variables

– expressions output values

• e.g.

a = 7;
b = 4;
a*(b+4)==> 56
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Medium

• how utterances are conveyed

• must be capable of bearing distinguishable units of 
difference

– sounds in air

– marks on paper

– electro-magnetic waves

– charges in transistors

• fundamental but not relevant...
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Alphabet

• basic distinguishable units of expression

• not meaningful in themselves

• e.g. 

letter: a b c d ...z
digit: 0 1 2 3 ... 9
punctuation: + - * / ( ) = ; 
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Symbols/lexicon

• “words” in “dictionary”

• alphabet sequences

• smallest meaningful units

• list them

• regular expressions/Chomsky Type 3

• e.g.

operator -> + | - | * | / | ( | ) | ; | =
identifier -> letter | letter identifier

e.g. a be sea 

9SPLV 2019 University of Strathclyde



Symbols/lexicon

• e.g.

integer -> digit | positive int

positive -> 1 | 2 ... | 9
int -> digit | digit int

e.g. 0 12 45700 but not 00 012
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Syntax

• grammar

• well formed symbol sequences

• not necessarily meaningful

• concrete syntax

– representational structure

• abstract syntax

– meaningful structure
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Concrete Syntax

• context free/Chomsky Type 2

• Backus Naur Form (BNF)

• e.g.

commands -> command | command ; commands

command ->  identifier = expression | expression

expression -> term | term + term | term – term

term -> base | base * base | base / base

base -> identifier | integer | ( expression )
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Concrete Syntax

• use grammar to:

– parse symbol sequence

– build internal representation

• parse tree

e.g. 
a = 7;
b = 4;
a*(b+4) 
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Concrete Syntax
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Abstract Syntax

• concrete syntax contains irrelevant information for 
meaning

• e.g. don’t care that:

 7 is 

integer is 

base is 

term is 

expression 
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Abstract Syntax

• simplify grammar 

– to reflect key constructs

– e.g. commands & expressions with identifiers & 
integers

– drop irrelevant punctuation e.g. ; (...)
c -> c c | id = e | e

e -> id | int | e + e | e – e | e * e | e / e

• doesn’t matter that grammar is ambiguous

• use to derive structure of abstract syntax tree
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Abstract Syntax
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Semantics

• what constructs mean

• express in meta-language

– informal – natural language

– formal – some theory of computability

• e.g. number theoretic predicate calculus 

• e.g. set theory

– static semantics: types

– dynamic semantics: run time behaviour
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Semantics

• dynamic

• denotational semantics

• Scott-Strachey

– meanings expressed as functions 

– λ calculus with syntactic sugar

– compositional on abstract syntax

SPLV 2019 University of Strathclyde 19



Semantics

state: identifier -> integer

• state maps syntactic  identifiers to semantic integers

me: expression -> state -> integer

• meaning of an expression given a state is an integer

mc: command -> state * output -> state * output

• meaning of a command given a old state and old 

output  is a new state and new output
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Semantics

me [int] state = value([int])

• value == valuation function from syntactic int to 
semantic integer

me [id] state = state([id])

• apply state to id to return associated integer

me [e1+e2] state = m [e1] state + m [e2] state

me [e1-e2] state = m [e1] state - m [e2] state

me [e1*e2] state = m [e1] state * m [e2] state

me [e1/e2] state = m [e1] state /m [e2] state
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Semantics

mc [c1 c2] (state,output) = 

  mc [c2] (mc [c1] (state, output))

• meaning of command sequence given old state and 
output is:

– meaning of c2 using state and output from... 

– meaning of c1 with old state and output
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Semantics

mc [id = e] (state,output) = 

 (state{id/(me [e] state)}, output)

• meaning of definition given old state and output  is:

– old state updated with id associated with value of 
e in old state

– old output
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Semantics

mc [e] (state,output) = (state, output++me [e] state)

• meaning of expression given old state and output is:

– old state, and 

– old output augmented with value of expression in 
old state
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Semantics

ε == empty state

{} == empty output

mc [a=7;b=4;a*(b+4)] (ε,{}) 
mc [b=4;a*(b+4)] (mc [a=7] (ε,{}))

mc [a*(b+4)](mc [b=4] (mc [a=7] (ε,{}))) 
mc [a*(b+4)](mc [b=4] ({a->7},{})) 
mc [a*(b+4)] ({b->4, a->7},{})) 
({b->4, a->7},{me [a*(b+4)] {b->4, a->7}) 
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Semantics

({b->4, a->7},{me [a] {b->4, a->7} * 

                         me [b+4] {b->4, a->7}) 
({b->4, a->7},{me [a] {b->4, a->7} * 

                         (me [b] {b->4, a->7} + 

                          me [4] {b->4, a->7})} 
({b->4, a->7},{7*(4+4)}) 
({b->4, a->7},{56})
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Implementation

• front end
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Implementation

• back end
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Interpreter

• implement in Haskell 

• choose AST representation

c -> c c | id = e | e

e -> id | int | e + e | e – e | e * e | e / e
data SYMBOL = SADD | SSUB | SMULT | SDIV | ...
data AST = ID String | INT Int |
           DEF(AST,AST) |
           EXP(SYMBOL,AST,AST) 
c c == [AST]
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Interpreter

data SYMBOL = SADD | SSUB | SMULT | SDIV | ...
data AST = ID String | INT Int |
           DEF(AST,AST) |
           EXP(SYMBOL,AST,AST) 
a = 7;
b = 4;
a*(b+4) 
[DEF(ID “a”,INT 7),
 DEF(ID “b”,INT 4),
 EXP(SMULT,ID “a”,EXP(SADD,ID “b”,INT 4))]
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Interpreter

• choose representations for semantic entities

– identifier == String
– integer == Int

• could model state as higher order function

• more flexible to use data structure + look up

• e.g. list

state: identifier -> integer  [(String,Int)]
e.g. ({b->4, a->7}  [(“b”,4),(“a”,7)]
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Interpreter

mc: command -> state * output -> state * output

mc [c1 c2] (state,output) =  mc [c2] (mc [c1] (state, output))

mCs :: [AST] -> 
       ([(String,Int)],[Int]) ->   
       ([(String,Int)],[Int])
mCs [] (state,output) = (state,output)
mCs (c1:c2) (state,output) = 
  mCs c2 (mC c1 (state,output))
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Interpreter

mc [id = e] (state,output) =  

 (state{id/(me [e] state)}, output)

mc [e] (state,output) = (state, output++me [e] state)

mC :: AST -> ([(String,Int)],[Int]) -> 
     ([(String,Int)],[Int])
mC (DEF(ID i,e)) (state,output) = 
    ((i,mE e state):state,output)
mC e (state,output) = 
 (state,output++[mE e state])
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Interpreter

me: expression -> state -> integer

me [int] state = value([int])

me [id] state = state([id])

mE :: AST -> [(String,Int)] -> Int
mE (INT n) _ = n
mE (ID i) state = lookUp i state

lookUp v [] = error ("can't find "++v++"\n")
lookUp v ((v1,i1):t) = if v==v1 
                       then i1
                       else lookUp v t
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Interpreter

me [e1+e2] state = m [e1] state + m [e2] state

me [e1-e2] state = m [e1] state - m [e2] state

me [e1*e2] state = m [e1] state * m [e2] state

me [e1/e2] state = m [e1] state /m [e2] state
mE (EXP(SADD,e1,e2)) state = 
 (mE e1 state) + (mE e2 state)
mE (EXP(SSUB,e1,e2)) state = 
 (mE e1 state) - (mE e2 state)
mE (EXP(SMULT,e1,e2)) state = 
 (mE e1 state) * (mE e2 state)
mE (EXP(SDIV,e1,e2)) state = 
 (mE e1 state) `div` (mE e2 state)
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