HERIOT
JWAT'T

UNIVERSITY

Domain Specific Languages
5: Are DSLs domain specific?

Greg Michaelson
School of Mathematical & Computer Sciences
Heriot Watt University

SPLV 2019 University of Strathclyde

DSLs and expressiveness

* DSL’s alleged to have greater expressiveness than
general purpose languages

* claimed DSLs can express:

— same things as other languages, but more
succinctly

— things other languages can’t
* notion of expressiveness is comparative

What is expressivity?

59. Rob Stewart
N robstewartUK

Please RT! Expressivity of a programming
language: the ability write a small/succinct
program, or the ability to write a program?

55% A small/succinct program
45% A program

A0

65 votes « Final results
RETWEETS —
SRPYSRAEe N2
7 - m = 0
9:31 AM - 5 Jan 2017

£y 17

SPLV 2019 University of Strathclyde

Formalising expressiveness

* M. Felleisen, On the Expressive Power of
Programming Languages, Science of Computer
Programming, pp134-151, 1990

* suppose language X has constructors which are not
in language Y

* language X is a conservative extension of language Y
If:

— instances of X can be translated into instances of Y
without changing semantics of Y

Formalising expressiveness

* e.g. GpH adds par & seqg constructs to Haskell
— conservative extension

— simple elimination of seg & par preserves
meanings of programs

* weak expressibility

Formalising expressiveness

if constructors in X cannot be eliminated in
translation to Y then:

— X has semantic properties Y lacks

— Xextends 'Y

e.g. pure functional Scheme based on LISP
cannot express state changing assignment set !
LISP extends Scheme

Embedded DSL (EDSL)

DSL embedded in extant host language

. write functions in host language

call directly

can use arbitrary host language constructs
not a distinct language

shallow embedding

Embedded DSL

2. add abstract syntax
* interpret ASTs

* call interpreter components from arbitrary host
language constructs

* not a distinct language unless only use ASTs to program
* deep embedding
* conservative extension

Embedded DSL

3. design concrete syntax

add concrete syntax -> AST compiler
call interpreter component with parsed strings

can embed interpreter component calls in arbitrary
host language constructs

not a distinct language unless only use concrete
syntax strings

deep embedding
conservative extension

Embedded DSL

4. extend host language syntax
* conservative extension

5. extend host language semantics
* extension

Turing completeness

* Hilbert’s program
— can number theoretic predicate calculus establish
its own completeness & consistency?

* no - Godel - 1932
— can theorem-hood be established mechanically?
* no - Turing & Church - 1936

Turing completeness

* need a system for formalising “mechanical”
* models of computation
— Church
* algorithm/effectively calculable
* A calculus
— Turing
* computable
* Turing machines
* Turing proved these equivalent 1936/37

Turing completeness

Church-Turing thesis
— all models of computation are equivalent

— demonstrate by constructing/proving translations
both ways between known & new systems

system that satisfies C-T Thesis is Turing complete
(TC)

e.g. von Neumann machines . digital computers
e.g. programming languages

EDSL & host language

EDSL inherits semantics of host language

if host language is not TC then EDSL may be more
expressive

— i.e. EDSL == host + external library in 3" language
— can't be less or differently expressive

if host language is TC then so is EDSL

— not domain specific?

EDSL & host language

* if host language exposed to programmer...

* ...then programmer can deploy arbitrary host
language constructs

* not domain specific?

Implemented DSL

expose parser/interpreter only as stand alone
language processor

can only use domain specific syntax
have implemented DSL in host language

DSL bloat

* tend to want familiar general purpose programming
language abstractions as well, so add:

— arithmetic & logic
— sequence/selection/iteration
— sub programs
— data structures
* as DSL grows, tends to become :
— more and more like favourite language
— |less and less DS

Language & program

* language = syntax + semantics
* semantics: program * state -> state

* semantics transforms initial state to final state guided
by structure of program instance

Language & program

program: input * state -> output * state
treat outputs as part of final state
program: input * state -> state

program changes initial state to final state depending
on input structure

define input structure with syntax
program is semantics of inputs
does every program define a DSL?

What is domain specificity?

* Light Bulb Language
program -> switch
switch -> SWITCH |«
m [SWITCH] ON = OFF
SWITCH] OFF = ON
€] ON = ON

€] OFF = OFF

3 3 3

What is domain specificity?

* Linear Light Bulbs Language
program -> row | row program
row -> switch | switch row

S, € rOW

b. e {ON,OFF}

m’ [Sy,...,Sn] {b1,...,.bnd = 1M s; by,...,m sy by}

What is domain specificity?

* Grid Light Bulbs Language
program -> grid

grid -> row | row grid

r. € row

br.e b*

))

m” [r,,...r J{ibr,...br .} ={m’' p br,....m" p br}

What is domain specificity?

* is GLBL domain specific...?

— light bulbs?

— B/W images?

— anything representable as a Boolean?
* not very DS...

What is a domain?

* computer pioneers thought machine code was for
configuring hardware

* 60’s language designers thought languages were
purpose specific:

— FORTRAN - sums

— COBOL - accounts
— ALGOL - algorithms
— LISP - symbols

— BCPL - systems

What is a domain?

SPLV 2019 University of Strathclyde

25

What is a domain?

K. D. Tocher, The Constvuction of Efficient C ;

N eobuters o
U. Picciafuoco and M. Pacelli, Won i
 Recursive Progvamming.

..
STy

o eay
A

K. Wohlfahrt, On Static and Dynamic Treatment of Type,

B aslators, T:ypes

U. Hill, H. Langmaack, H. R. Schwarz, and G. Seegmiiller
o 3 . gmiller
Efficient Handling of Subscripted Variables i ’
L e e es z'n e
T. A. Dolotta, Méthode d’édition d’un programme en
gramme e
s e D e S S S e
B P, I:.evine, Efficient Compilator of Programs Written in
a Mixed Programming Language

" oaa

.................

Panel Discussion: Philosophies for Efficient Processor
Construction

DESIGN OF PROBLEM ORIENTED LANGUAGES—
ALGOL AND COMPETITORS

P. Naur, The Basic Philosophy Concept
A y pts, and Features of

........
.................... E R

MS Woodgzr, The Descvription of Computing Processes.
ome Observations on Automatic Programming and

ALGOL 60 . 43}
A. van Wijngaarden, Generalized ALGOT S i i s

8. Moriguti, A Family of S ;
ymbolic Input La
ALCOL Comprleyol |~ F npu s ."é.,u.a‘.g?s W

M. Pacelli, D. Gavioli, G. Palermo, and U. Picciafuoco,

PALGO: An Algorithmic La 1
Olivetti ELEA 6001 nguage and its Translator for

G. Savastano and B. Fadini, The Al] j
2 3 gebraic Compiler
BENDIX G.20 Computing System i P . -S.ffi?" e

L. Bosset. Le MACFE. un Innoaca ddwint 4. 1547 ~nr

............

1962

Eh i

325

331

. 391

409

421

439

449

DESIGN OF LANGUAGES-FOR COMMERCIAL PROBLEMS

E. Humby, Rapidwrite—COBOL without Tears 573
R. J. Ord-Smith and T. F. Goodwin, SEAL : A Language for
Business ' Data Pyocessing: - .= o o S s, o 585
R. M. Paine, A System and Language for Data Processing. . 601
J. C. Gower, An Autocode for Table Manipulation. 613

Panel Discussion: Reflections from Processor Imple-
mentors on the Design of Languages.« v v oo 625

DESIGN OF SPECIAL LANGUAGES

J. C. Gardin and F. Levy, Quelques operations auto-
matiques fondees sur la grammairve du SYNTOL en
documentation automatiques o .« o v s v b v i e e e 645
Mslle. Fouquet, Mm. Bertier, Céron, Darnaut, Félix,
Lattes, Le Boulanger, Roy, Sandier, Les langages
documentaires—Modele descriptif et problemes

fONAAMENIQUR.; o - - & oois v loiae bb it o i b e R 853
P. Camion, Traitement de l’information pay P’algebre de
Je i S e R e e e e Do i R 875

A. Gibbons, A Program for the Automatic Solution of
Ovrdinary Differential Equations with Two Point Boundary

CondTlioNS . iiiiv v visivi el f ke von e s oy sl el oo i 685
W. Petry, Genevating an Analog Computey Wiring Diagram
from the Differential Equation Input Language - . . . « + « « 709

R. Tabory, Premiers éléments d’un langage de pro-
grammation pour le traitement en ovdinateur des graphes

(examples et applications 0000 et e 11
P. Darnaut et G. Sandier, Ulilisation de F.L.P.L. dans la ;
résolution d’un probléme d’ordonnancement - - - -« = - - T3

A. L. Bastian, J. P. Foley, and S. R. Petrick, On the I'mple-
mentation and Usage of a Language for Contract Bridge |
RIAAING | . . & iiiiaia e s siais i sl s S b e T 4

e

SPLV 2019 University of Strathclyde 26

What is a domain?

iRAMMING SYSTEMS AND LANGUAGES

PROGRAMMING SYSTEMS
AND LANGUAGES

This di i lection of previously
published and unpublished reports con-
‘tains descriptions of the most important
ymming languages and discusses
any of the most important program-
system concepts.

ompiling PROGRAMMING
'[EMS AND LANGUAGES,
r Saul Rosen has screened
ntities of pertinent material
now available in book form.
hors represented are ex-
in the field of computer
. Their articles are
the best on the individual
ts and languages.

and specific, the book in-

on the four major general
ages: ALGOL, FORTRAN,

L/1

 the major “'list-process-

IPL-V, COMIT, LISP,

)L (the last two written

book)

mpilers and compiling

as discussions of

lers, table-driven

1964

SPLV 2019 University of Strathclyde

27

12
125

125
126

’ 4! -
PROGRAMMING:" |
LANGUAGES: - ' |

128

128
128
129

History and
Fundamentals

130
131
132
133
134
134
135
137
139
143
143
of FORTRAN 143
characteristics of ASA (USASI) FORTRAN and

L 58 (cross-reference only)

characteristics of ASA (USASI) Basic FORTRAN 157
characteristics of ASA (USASI) FORTRAN 165
it contribution to technology 169

cs of Revised ALGOL 60—Proposed 150

" Revised ALGOL 60-—Proposed 1SO

1969

SPLV 2019 University of Strathclyde

Whatisad

2

g 6.1, Introdustory remarks
6.2. JOSS
6.3. QUIKTRAN
6.4. BASIC
a7 GBS
6.6. MAP
6.7. Lincoln Reckoner
6.8. APL/360 and PAT
6.9. Culler-Fried System
6.10. DIALOG
6.11. AMTRAN

7. Languages with Fairly Natural Mathematical Notatic
7.1. Introductory remarks
7.2. COLASL
7.3. MADCAP
7.4. MIRFAC
7.5. Klerer-May system

8. Miscellaneous
8.1. CORC
8.2. OMNITAB

8.3. More nonprocedural languages ‘

References

LANGUAGES FOR BUSINESS
DATA PROCESSING PROBLEMS

Scope of Chapter

. Languages of Primarily Historical Interest
FLOW-MATIC (and B-0)
N

1969

omain?

of Historical Interest Only

of IPL-v

characteristics of [PL-V

-al characteristics of IPL-V
ant contribution to technology

eristics of LISP 1.5
eristics of LISP 1.5

ution to technology

ics of SNOBOL
of SNOBOL
1 to technology

SPLV 2019 University of Strathclyde

29

What is a domain?

6. FLAP

7. Systems Requiring Special Equipment
7.1. Magic Paper
7.2. Symbolic Mathematical Laboratory

torical Interest Only
characteristics of FORMAC

i JOVIAL
aracteristics of JOVIAL
racteristics of JOVIAL

ibution to technology

tribution to technology

THLAB

ion to
felmcom ristics of PL/I

ristics of PL/I
ution to technology

1969

SPLV 2019 University of Strathclyde 30

What is a dom_ain?

plication Areas

1969

SPLV 2019 University of Strathclyde

31

What is domain specificity?

all TC languages capture common notion of
computation

TC languages with different semantics are mutually
extending

do all TC languages have the same expressiveness?

What is domain specificity?

designers of new languages think they've enabled
something other languages can’t do

new TC language =
old TC language + syntax + library

Is every language really an embeded DSL with a TC
host?

What is domain specificity?

Felleisen suggests comparisons in a common
language universe

some TC languages can express some algorithms
more succinctly than other TC languages

which language universe?
do language universes have language biases?

DSL is about pragmatics

* Felleisen:

— “...what advantages there are to programming in the more
expressive language when equivalent programs in the
simpler language already exist.”

— “...programs in less expressive languages exhibit repeated
occurrences of programming patterns and this pattern
oriented style is detrimental to the programming process.”

— “Conciseness conjecture. Programs in more expressive
languages that use the additional facilities in a sensible
manner contain fewer programming patterns than
equivalent programs in less expressive languages.”

DSL is about pragmatics

DSL abstractions & constructs make it easier to
express particular things

what may be complex in an arbitrary TC language
may become simpler in a DSL

domain may frame choice of DSL abstractions &
constructions

abstractions and constructions from one domain may
be appropriate for other domains

	Slide 1
	DSLs and expressiveness
	What is expressivity?
	Formalising expressiveness
	Formalising expressiveness
	Formalising expressiveness
	Embedded DSL (EDSL)
	Embedded DSL
	Embedded DSL
	Embedded DSL
	Turing completeness
	Turing completeness
	Turing completeness
	EDSL & host language
	EDSL & host language
	Implemented DSL
	DSL bloat
	Language & program
	Language & program
	What is domain specificity?
	What is domain specificity?
	What is domain specificity?
	What is domain specificity?
	What is a domain?
	What is a domain?
	What is a domain?
	What is a domain?
	What is a domain?
	What is a domain?
	What is a domain?
	What is a domain?
	What is domain specificity?
	What is domain specificity?
	What is domain specificity?
	DSL is about pragmatics
	DSL is about pragmatics

