Real World (E)DSLs

Scottish Programming Languages and Verification
Summer School 2019

Rob Stewart (R.Stewart@hw.ac.uk)
August 2019

Heriot-Watt University, Edinburgh

What is a DSL

What is a DSL

Paul Hudak: "A DSL is..”

- Programming language geared for application domain
- Capture semantics of a domain, no more no less
- User immersed in domain knows domain semantics

- Just need a notation to express those semantics

Paul Hudak. “Domain Specific Languages”. In: ed. by Peter Salus. Vol. 3.
Handbook of Programming Languages, Little Languages and Tools.
MacMillan, Indiana, 1998. Chap. 3.

DSL Design Guidelines

Choose a domain

Design DSL to accurately capture domain semantics
Use the KISS (keep it simple, stupid) principle

“Little languages” are a Good Thing

Concentrate on domain semantics; not too much on syntax
Don't let performance dominate design

Don't let design dominate performance either
Prototype your design, refine, iterate

Build tools to support the DSL

Develop applications with the DSL

. Keep end user in mind; Success = A Happy Customer

2 P @ NGO WSS

o =
Y

Hudak, “Domain Specific Languages”.

Domain Specificity

- Scheduling

- Simulation

- Lexing/parsing

- Robotics

- Graphics & animation
- Databases

- Logic

- Security

Application Domain Examples

- Modelling

- Graphical user

interfaces

- Symbolic computing
- Hardware description
- Text processing

- Computer music

- Distributed & parallel

computing

Domain Specificity

DSLs ACM Computing Survey:

- Some consider Cobol a DSL for business applications,
others argue this is pushing the notion of application
domain too far

- Think of DSLs in terms of a gradual scale: specialised DSLs
e.g. BNF on left and GPLs such as C++ on right

- Hard to tell if command languages like the Unix shell or
scripting languages like Tcl are DSLs

- Domain-specificity is a matter of degree

Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and how to
develop domain-specific languages”. In: ACM Comput. Surv. 37.4 (2005),
pp. 316-344.

Why DSLs?

DSL Advantages

1. More concise: easy to look at, see, think about, show

2. Increase programmer productivity: DSLs tend to be high
level meaning shorter programs

3. Programs easier to maintain

- less code == less maintenance

4. Are easier to reason about: programs expressed at level of
problem domain, domain knowledge can be conserved,
validated, and reused

Debasish Ghosh. DSLs in Action. Greenwich, CT, USA: Manning Publications
Co., 2010.

The DSL pay off

y

Total SW Cost Conventional s
methodology . -~
Iiad I >
__,,_-:—i—/ ———————————— D Sl-based
c2 | methodology
Start-up e
Costs P
cl
»
Ll

Software Life-Cycle

- Initial DSL costs high, but software development costs low

- Should eventually start saving time and money

Hudak, “Domain Specific Languages”.

DSLs: Return On Investment

- Rhapsody: UML model to develop software components
- Philips had issues with Rhapsody (see paper)

- Dezyne: another modelling language, verifies live-lock
freedom, determinism etc. properties
- Philips developed ComMA DSL
- automates translation of Rhapsody to Dezyne

Mathijs Schuts, Jozef Hooman, and Paul Tielemans. “Industrial Experience
with the Migration of Legacy Models using a DSL". In: Real World Domain
Specific Languages Workshop, Vienna, Austria, February 24. 2018, 1:1-1:10.

DSLs: Return On Investment

- Manual: 576 hours (16 person weeks)
- manual transformation of 8 state machines

- Automated: 190 hours to develop automation
- 60 hours: Rhapsody input, Dezyne output with ComMA
- 15 hours: model learning, equivalence checking

- 25 hours: Visual Studio integration
- 90 hours: develop additional state machine support

ROT — gain from investment — cost of investment
N cost of investment

ROI = (576 - 190)/190 = 2

Schuts, Hooman, and Tielemans, “Industrial Experience with the Migration

of Legacy Models using a DSL".

Early DSL example

APT

APT (Automatically Programmed Tool):

- Numerically controlled machine tools
- One of the 1% DSLs

1. The entire field of automatic program-
ming for numerical control was brand
new. Therefore, with respect to
language design, the semantics of the
language had to come first and the
syntax of the language had to derive
from the thinking or viewpoint engen-
dered by technical ability to have a
""'systematized solution'' to the general
problem area,

Douglas T. Ross. “Origins of the APT Language for Automatically
Programmed Tools”. In: SIGPLAN Not. 13.8 (Aug. 1978), pp. 61-99. 9

Future Proofing APT

4.

In order to satisfy the requirements
for the system and language as a
whole, both the syntactic and seman-
tic aspects of both the language and
the systerm had to be open-ended,

so that both the subject matter and
the linguistic treatment of it could
be extended as the underlying manu-
facturing technology evolved, In
particular, the system had to be
independent of geometric surface
types, and had to be able to support
any combination of machine tool and
control system.

10

Domain Specifity of APT Semantics

appear to lack generality. But it turns out that,
because the application area was brand new and
never before had been attacked in any way at all,
the study of the origins of the APT language
necessarily involves much greater attention to
semantics than is the case with respect to more
general-purpose languages which obtained most
of their background ready-made from the fields
of mathematics and logic. There is no way to

n

APT Declarative vs Imperative

Declarative statements are also necessary,
Examples of declarative sentences used to

program a numerically controlled machine
tool might then be of the form:

'Sphere No. 1 has center at (1, 2, 3}
and radius 4!

tAirfoil No, 5 is given by equation.,.'

'Surface No, 16 is a third order
fairing of surface 4 into surface 7
with boundaries.,.!

An imperative sentence might have the
form:

'Cut the region of Sphere No, 1
bounded by planes 1, 2, and 3 by
a clockwise spiral cut to a tolerance
of 0,005 inch. '
12

APT Implementation Concerns

2. A written form of the language must
be designed which is not too cryptic to be easily
remembered and used by the human, but which
is relatively easy for a computer program to
translate,

13

INSTRUCTIONS

Terminated by ', " or "/"

FROM S
Defines current cutter location S. S must

‘be a Eoint

GO TO S
Move cutter center to S, S must be a

point
GO LFT S1,S2 --——-: 2\" —"'*j ?/u

GO RGT S1,82
Go left or Right on curve S1 until S2 is
reached,

14

MODIFIERS

Terminated by ', ' or ''/"

TL RGT —o®
TL LFT —_—

Cutter (tool) to right or left of curve
when looking in direction of movement,
These words also modify all following
instructions,

15

DEFINITION NAMES

Terminated by ''," or "/"

CIRCL
ELIPS
PARAB
HYPRB
LINE
POINT
CURVE
INT OF
TAN TO
SPHER
PLANE
QDRC
SURFC
ZFNXY
YENX
CONE
CYLNR
CTR OF

Circle

Ellipse
Parabola
Hyperbola
Line

Point

Curve
Intersection of

Tangent to

Sphere

Plane

Quadric

Surface

Z=FX,Y)

Y = F{X)

Right circular cone
Right circular cylinder
Center of

H. EXAMPLE

FED RT = +80. $$
FROM / P $$
DNT CT, GO TO / Q $$
TL LFT, DNT CT, GO LFT, NEAR / A,B $%
GO LFT / B, G $$
GO RGT / C,D $$
GO LFT / D,E $§

FAR, CROSS / F,G, $$
NEAR,GO CLW / G,H §$
GO CCW / H,1$%

TL RGT, TERM, GO LFT /I $%
STOP $%

END $$

NOTE: ANY INSTRUCTION
HERE CAN HAVE FEEDRATE
GIVEN BEFORE "$$"

IF ONLY ONE SYMBOL IS

USED IT IS THE DESTINATION
CURVE (EXCEPT FOR "TERM")
1,E, COULD HAVE

"

Minor' Section Words
Symbol = Major Section Words (Separated by Commas) / (Separated by Commas)
Symbols Motion Instructions Modifiers Geometric Names Definition Modifiers
(ExLaTn_ple_s) -
Al FROM [TLLFT M POINT © TO o
2532 IN DIR o TL RGT M LINE o on o
SET PT GO TO o TL ON M CIRCLE o PAST o
Y AXIS GO ON e { ©O-M ELLIFS) TAN o
LINE 5 GO PAST o DNT CUT ©O-M HYPERB o CTR AT o
JOHN O TAN 9 NEAR O0-M PARAB g AT ANGL [
GO DELTA I FAR 0-M PLANE RADIUS o
Special Words GO RGT) 2 T SPHERE o INT OF T
REMARK GO LFT o 3 T CONE o TAN TO T
GO FWD o Pt T CYLNDR o X LARGE T
GO BAC L o ELL CON) X SMALL T
GO BAC R o glﬁ‘;l[c"‘ﬁ’t‘:gs) ELL CYL o Y LARGE T
GO UP o (Concord Tanl PAR CYL o SMALL T
GO DOWN [MODE 1 M HYP CYL) Z LARGE T
. MCDE 2 M TAB CYL o Z SMALL T
Special Instructions | yopgs M ELLPSE o RIGHT T
Z SURF M P STOP [e] ELL PAR [e] LEFT T
TN CK PT M STOP o HYP PAR o LARGE T
LOOK TN M HEAD 1 M HEYPLD 1 o SMALL T
LOOK D§ M HEAD 2 ™M HYPLD 2 o Numbers
LOOK PS M HEAD 3 M QADRIC)
2D CALC M OF KUL M VECTOR o (Examples)
3D CALC M ON KUL M +123.4
PSS M END) Parameter Namea -0.01234
FINI o LOKX ™M TOLER M +123
ULOKX M FEDRAT M -123
Ignorables MAX DP M 123
WITH AND TL RAD M-
ALONG TL DIA v | EBrecDefined Symbols
INCH COR RAD M
DEG COR DIA M
1PM BAL RAD M
THRU BAL DIA M
UNTIL GNRL TL M
JOINT
TOOL

DSLs used Today

- PERL: text manipulation

- VHDL: hardware description

- BIEX: typesetting

- HTML: document markup

- SQL: database transactions

- Maple: symbolic computing

- AutoCAD: computer aided design
- Prolog: logic

- Excel

DSL Application

never intended

|

Hudak, “Domain Specific Languages”.

Excel Macro Language | spreadsheets and many things H

19

The rest of this talk

1. Counterexamples for many "in general” observations
2. Code examples mostly extracted from publications
- Footnote citations on these slides

20

Modern DSL examples

Motivations for DSLs: Examples

- Familiar notation for domain experts (SQL)
- High level abstraction (Keras)

- Compositionality (Frenetic)

- Speed (Halide)

- Productivity (Halide)

- Correctness (lvory)

21

Domain Expert Familiarity: SQL

SELECT firstName, lastName, address
FROM employee
WHERE salary > ALL

(SELECT salary

FROM employee

WHERE firstName = 'Paul')

- Programmer training

- 1 day to become SQL competent
- months to become SQL expert

Hudak, “Domain Specific Languages”.

22

Abstraction: Keras

Embedded in Python for defining neural networks

model = Sequential()

model.add(Dense(12, input_dim=8, activation='relu')
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid"'))

- High level API on top of Tensorflow

- Rapid prototyping of neural networks

- Insert Tensorflow code to Keras model/training pipeline
- TF flexibility: custom cost function or layer
- TF functionality: threads, debugger
- TF control: set variables to be trainable or not

- Analogous to inline ASM, inline C, etc.

23

Compositionality: Frenetic Network programming language

- Problem with OpenFlow and NOX (SDN languages)
- lack compositionality
- low level: programs unnecessarily complicated
- two-tier programs lead to race conditions
- Solution: Frenetic DSL
- high level compositional patterns (translates to OpenFlow)
- two sub-languages
1. "see every packet” network query language
2. functional reactive network policy language
- queries and policies compose
Nate Foster et al. “Frenetic: a network programming language”. In:

Proceeding of the 16th ACM SIGPLAN ICFP 2011, Tokyo, Japan, September 19-21,
2011. ACM, 2011, pp. 279-291.

2%

Compositionality: Frenetic

Embedded in Python... "to ease adoption”

def host_query():
return (Select(sizes) =
Where(inport_fp(2)) =
GroupBy([dstmac]) *
Every(60))

def all_stats():
Merge(host_query(),web_query()) >> Print()

def repeater_web_monitor():
repeater()
all_stats()

25

Speed: Halide

- High performance C++ embedded image/array processing
- Separates algorithm from scheduling code

Func blur_3x3(Func input) {
Func blur_x, blur_y;
Var x, vy, xi, vyi;
// The algorithm - no storage or order
blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;
blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;
// The schedule - defines order, locality; implies storage
blur_y.tile(x, y, xi, yi, 256, 32)
.vectorize(xi, 8).parallel(y);
blur_x.compute_at(blur_y, x).vectorize(x, 8);
return blur_y;

Jonathan Ragan-Kelley et al. “Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing

pipelines”. In: ACM SIGPLAN PLDI, Seattle, WA, USA, June. 2013, pp. 519-530. -

Speed and Productivity: Halide

- Programmer productivity and fast performance
- Bilateral slicing layer

- high-performance image processing architecture to
approximate complicated image processing pipelines

- Halide extensions

- Automatic Differentiation
- Scheduling

- Programmer productivity
- Halide 24 lines, PyTorch 42 lines, CUDA 308 lines

- Halide 10x faster than CUDA, 20x faster than PyTorch

Tzu-Mao Li et al. “Differentiable programming for image processing and
deep learning in halide”. In: ACM Trans. Graph. 37.4 (2018), 139:1-139:13.

27

Speed and Productivity:

// Slice an affine ma m———— 32 e e, O e, D)
D £l CEUis e R gt & 33 = Varibla(on sraa(o, h).codaO-viewC 1 1. repentCl; 1)
// transform the color
Expr gx = cast<float>(x)/signa_s;
e o cast<float>(y)/signa_s;
Pl
Clamautdecx, ,¥,m),0.7,1.F)+grid.channels);
Expr fx = cast<int>(gx ety]
Expr fy = cast<int>(gy); e e ®) e
Expr fz = cast<int>(g2); cteiatt)
EXpr wx = gx-fix, wy = gy-fy, w2 = gz-fz; P e
Expr tent = e -
abs(rt.x-wx)*abs(rt.y-wy)*abs(rt.z-wz); oy = th clanp(fye1, maxeeh-1);
RDom rt(0,2,0,2,0,2); 2lmame
Func affine; CeEobhA
affine(x,y,e,n) += e T ey v, 1, 1, 1.1on0-cuts0)
grid(fxsrt.x, fysrt.y, fzert.z,c,nystent; PR
. for < in rancado):
Func output; v o1, (Gt 1) teny
Expr nci = input.channels(); . 1) o). oty
Rbom 18, nciy; z-nm[u(cmax‘ e O BN e ¢

output(x,y,co,n) = affine(x,y,cox(nci+y+nci,n);
output(x,y,co,n)
affine(x,y, cox(nci*1)+r,n) * in(x,y,r,n);

g
- S
ropagate_adjoints(output, adjoints); e ("J""S'"'m
Lin = d(in);
Func d_guide = d(guide
Func d_grid = d(grid); fEirh
Halide Runtime PyTorch Runtime CUDA Runtime
2 lines 64 ms (1 MPix) 42 lines 1440 ms (1 MPix) 308 lines 430 ms (1 MPix)
165 ms (4 MPix) out of memory (4 MPix) 2270 ms (4 MPix)

Li et al,, “Differentiable programming for image processing and deep
learning in halide”

28

Correctness: Ivory

- Ivory: safe systems programming, memory and type safety

- Type system shallowly embedded using GHC type features
- Syntax is deeply embedded, from one AST:

- Embedded C generation

- SMT-based symbolic simulator

- Theorem-prover back-end

Industry strength EDSL:

- Boeing use Ivory to implement level-of-interoperability for
a NATO standard interface for Unmanned Control System
(UCS) & Unmanned Aerial Vehicle (UAV) interoperability

Trevor Elliott et al. “Guilt free ivory”. In: Proceedings of the 8th ACM
SIGPLAN Symposium on Haskell, Vancouver, BC, Canada, September 3-4, 2015.
2015, pp. 189-200.
29

Correctness: Ivory

fib_loop :: Def ('[Ix 1000] :-> Uint32)

- Def is Ivory procedure (aka C function)
- '"[Ix 1000] :-> Uint32

- takes index argument n
+ 0=<n<1000
- this procedure returns unsigned 32 bit integer

fib_loop = proc "fib_loop" $ \ n -> body $ do

- Ivory body func takes argument of type Ivory eff ()

- eff effect scope enforces type & memory safety

30

Correctness: Ivory

a <- local (ival 0)
b <- local (ival 1)

- a and b local stack variables

n “times® _ith -> do
a' <- deref a
b' <- deref b
store a b'

store b (a' + b')

- Run a loop 1000 times (inferred from [Ix 1000])

31

Correctness: Ivory

fib_loop :: Def ('[Ix 1000] :-> Uint32)
fib_loop = proc "fib_loop" $ \ n -> body $ do
a <- local (ival 0)
b <- local (ival 1)
n “times® _ith -> do
a' <- deref a
b' <- deref b
store a b'
store b (a' + b')
result <- deref a
ret result

fib_module :: Module
fib_module = package "fib" (incl fib_loop)

main = C.compile [fib_module]

https://ivorylang.org/ivory-fib.nhtml 32

Implementations

Notice distinguishing feature?

- Internal
- Keras (Python)
- Frenetic (Python)
- Halide (C++)
- Ivory (Haskell)
- External
- SQL

Embedding of external languages too

e.g. Selda: a type safe SQL EDSL

Anton Ekblad. “Scoping Monadic Relational Database Queries”. In:
Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell.
Haskell 2019. Berlin, Germany, 2019, pp. 114-124.
33

Internal and External DSLs

DSL Implementation Choices

External

1. Parser + Interpreter: interactive read-eval-print loop
2. Parser + Compiler: DSL constructs to another language
- LLVM a popular IR to target for CPUs/GPUs

Internal

- Embed in a general purpose language
- Reuse features/infrastructure of existing language
- frontend (syntax + type checker)
- maybe its backend too
- maybe its runtime system too
- Concentrate on semantics
- Metaprogramming tools to have uniform look and feel

Trend: language embeddings, away from external approaches
34

External Advantages

- Domain specific notation not constrained by host’s syntax
- Building DSLs from scratch: better error messages
- DSL syntax close to notations used by domain experts

- Domain specific analysis, verification, optimisation,
parallelisation and transformation (AVOPT) is possible

- AVOPT for internal? host’s syntax or semantics may be too
complex or not well defined, limiting AVOPT

35

External Disadvantages

- External DSLs is large development effort because a
complex language processor must be implemented

- syntax, semantics, interpreter/compiler, tools
- DSLs from scratch often lead to incoherent designs

- DSL design is hard, requiring both domain and language
development expertise. Few people have both.

- Mission creep: programmers want more features

- A new language for every domain?

Mernik, Heering, and Sloane, “When and how to develop domain-specific
languages”.

36

Implementation of Internal DSLs

- Syntax tree manipulation (deeply embedded compilers)
- create & traverse AST, AST manipulations to generate code
- Type embedding (e.g. Par monad, parser combinators)
- DS types, operations over them
- Runtime meta-programming (e.g. MetaOCaml, Scala LMS)
- Program fragments generated at runtime
- Compile-time meta-programming (e.g. Template Haskell)
- Program fragments generated at compile time
- Preprocessor (e.g. macros)
- DSL translated to host language before compilation
- Static analysis limited to that performed by base language

- Extend a compiler for domain specific code generation

37

Internal DSL Advantages/Disadvantages

- Advantages
- modest development effort, rapid prototyping
- many language features for free
- host tooling (debugging, perf benchmarks, editors) for free
- lower user training costs
- Disadvantages
- syntax may be far from optimal
- cannot easily introduce arbitrary syntax
- difficult to express/implement domain specific
optimisations, affecting efficiency
- cannot easily extend compiler
- bad error reporting

Mernik, Heering, and Sloane, “When and how to develop domain-specific
languages”.

38

Counterexamples

Claimed disadvantages of EDSLs:

1. Difficult to extend a host language compiler
2. Bad error messages

Are these fair criticisms?

39

Extending a Compiler

Counterexample to "extensible compiler” argument:

- user defined GHC rewrites

- GHC makes no attempt to verify rule is an identity

- GHC makes no attempt to ensure that the right hand side
is mor efficient than the left hand side

- Opportunity for domain specific optimisations?

blur5x5 :: Image -> Image
blur3x3 :: Image -> Image

{-# RULES
"blur5x5/blur3x3" forall image.
(blur3x3 (blur3x3 image)) = blur5x5 image
#-1}
40

Custom Error Message

EDSL "bad error reporting” claim not entirely true.

3 + False

<interactive>:1:1 error:
» No instance for (Num Bool) arising from a use of ~+
« In the expression: 3 + False
In an equation for “it': it = 3 + False

George Wilson. “Functional Programming in Education”. YouTube. July 2019.

41

Custom Error Message

import GHC.TypelLits

instance TypeError
(Text "Booleans are not numbers" :$$%:
Text "so we cannot add or multiply them")
=> Num Bool where

3 + False

<interactive>:1:1 error:
« Booleans are not numbers
so we cannot add or multiple them
« In the expression: 3 + False
In an equation for "it': it = 3 + False
42

Library versus EDSL?

Are EDSL just libraries?

- Xis an EDSL for image processing
- Yis an EDSL for web programming
- Zis an EDSL for ...

When is a library not domain specific?

Are all libraries EDSLS?

43

DSL design patterns

- Language exploitation
1. Specialisation: restrict host for safety, optimisation..
2. Extension: host language syntax/semantics extended

- Informal designs
- Natural language and illustrative DSL programs
- Formal designs

- BNF grammars for syntax specifications
- Rewrite systems
- Abstract state machines for semantic specification

If library formally defined does it constitute "language” status?

Mernik, Heering, and Sloane, “When and how to develop domain-specific
languages”.

44

Library versus EDSL?

When is a library an EDSL?

1. Well defined DS semantics library has a formal semantics

e.g. HdpH-RS has a formal operational semantics for its
constructs?

2. Compiler library has its own compiler for its constructs
E.g. Accelerate?

3. Language restriction library is a restriction of expressivity
e.g. lifting values into the library’s types?

4. Extends syntax library extends host's syntax e.g. use of
compile time meta-programming?

45

Library versus EDSL?

HdpH-RS embedded in Haskell

-- task distribution

data Par a -- monadic parallel computation of type 'a'’
type Task a

spawn 3¢ Task a -> Par (Future a) -- lazy
spawnAt :: Node -> Task a -> Par (Future a) -- eager

-- communication of results via futures
type Future a
get :: Future a -> Par a -- local read

Robert J. Stewart, Patrick Maier, and Phil Trinder. “Transparent fault
tolerance for scalable functional computation”. In: J. Funct. Program. 26
(2016), €5.

46

Library versus EDSL?

States R, S, T =:=S|T parallel composition
(M)p thread on node p, executing M
(MY p spark on node p, to execute M

{M}y full IVar 7 on node p, holding M

i{(M)q}p empty IVarion node p, supervising thread (M),
{(M)q}p empty IVar i on node p, supervising spark (M))4
i{Ll}p zombie IVar ¢ on node p

dead, notification that node p is dead

(E[spawn M])p, — vi.((E[returni]), [i{ (M >>= rputi)) 3 }p | (M >>=rputi)),),

(spawn)

(E[spawnAt g M), — vi.((E[returni)), | (M >>=rputi)q}y | (M >>=rputi),),

(spawnAt)
(M)py [H{{(MPpre — {Mps | i{{(M)P}q, ifP1,p2 €P (migrate)
(M)p | i{{MN Py tg — {MDp | i{{M) P }q, ifpEPLNP (track)

etc...

47

Library versus EDSL?

Node A Node B Node C
[victim_] [thief]

@ B! llISHC 7{«]\/[»{5}}1‘1 ‘ «]V[»B

FISH C
B ? FISH C

A'REQ)rOEC

I
REQi0BC H (t'r'ack)
A7 REQ ir0 B C I
B! AUTH ic : :
AUTH i C n
InTransition B C] B 7 AUTH ic I if <<]w>>{B,C} ta | (M)s
I
c! SCHED‘JLE B I y
S?HF,DL‘LF_ B ! (migrate)
Il
R {{(M)(p,c1}a | (Mc
ACH i 10 A ! ACK i rO (track)
A ? ACK i rO:
H(M)erka | (Mo

48

Library versus EDSL?

HdpH-RS domain: scalable fault tolerant parallel computing

1. 3 primitives, 3 types
2. An operational semantics for these primitives
- domain: task parallelism + fault tolerance

3. Averified scheduler
It is a shallow embedding:

- primitives implemented in Haskell that return values
- uses GHCs frontend, backend and its RTS

Is HdpH-RS "just” library, or a DSL?

49

Library versus EDSL?

Accelerate DSL for parallel array processing

- GHC frontend: yes
- GHC code generator backend: no

+ GHC runtime system: no
Has multiple backends from Accelerate AST

+ LLVM IR
- CUDA

50

Language Embeddings

Shallow Embeddings: Par monad

- Abstract data types for the domain
- Operators over those types
- In Haskell a monad might be the central construct

newtype Par a
instance Monad Par

data IVar a

runPar :: Par a -> a

spawn :: NFData a => Par a -> Par (IVar a)
get :: IVar a -> Par a

- Shallow embeddings simple to implement
- no compiler construction
- Host compiler has no domain knowledge
- applies host language’s backend to generate machine code

51

Shallow Embeddings: Repa

data family Array rep sh e
data instance Array D sh e = ADelayed sh (sh -> e)
data instance Array U sh e = AUnboxed sh (Vector e)

-- types for array representations

data D -- Delayed
data U -- Manifest, unboxed
computeP :: (Load rs sh e, Target rt e)

=> Array rs sh e
-> Array rt sh e

Ben Lippmeier et al. “Guiding parallel array fusion with indexed types”. In:
Proceedings of the 5th ACM SIGPLAN Symposium on HasRell, Haskell 2012,
Copenhagen, Denmark, 13 September 2012. 2012, pp. 25-36.

52

Shallow Embeddings: Repa

0s 1s
| T B

ARl

| VD I MY
DN [N AN | O

1 AR AR

- function composition on delayed arrays

- fusion e.g. map/map, permutation, replication, slicing, etc.
- relies on GHC for code generation

- makes careful use of GHCs primops (more next lecture)

- at mercy of GHC code gen capabilities 5

Language and Compiler Embeddings

Overview

Let's look at three approaches:

1. Deeply embedded compilers .e.g. Accelerate
2. Compile time metaprogramming e.g. Template Haskell
3. Compiler staging e.g. MetaOCaml, Scala

54

Deeply Embedded Compilers

Deep Embeddings

- Deep EDSLs don't use all host language

- may have its own compiler
- or runtime system

- constructs return AST structures, not values

55

Deep EDSL: Accelerate

dotp :: Vector Float -> Vector Float -> Acc (Scalar Float)
dotp xs ys = let xs' = use xs
ys' = use ys
in fold (+) 0 (zipwith (%) xs' ys')

dotProductGPU xs ys = LLVM.run (dotp xs ys)

1 S Ilanguage Code generation -CPU-
S " 3 1
& Reify & recover sharing m ilati
S HOAS = de Bruijn Coneuses A)
o 1 5 Allocate Link & configure
1 P . Memoisation memory kernel
ptimise (fusion) LLVM.run \ /
N overlap
Non-parametric array
| representation -GPU -
ﬁ — unboxed arrays CUDA.run Copy host — device
Q — array of tuples (asynchronously) Parallel execution
! = tuple of arrays
\ D,
[Frontend [Multiple Backends] [First pass I Second pass]

Manuel M. T. Chakravarty et al. “Accelerating Haskell array codes with
multicore GPUS". In: DAMP 2011, Austin, TX, USA, January 23, 2071. ACM, 2011,
pp. 3-14. 56

Deep EDSL: Accelerate

My function:

brightenBy :: Int -> Acc Image -> Acc Image
brightenBy i = map (+ (lift i))

The structure returned:

Map (\x y -> PrimAdd “PrimApp” ...)

57

Compiling and Executing Accelerate

run :: Arrays a => Acc a -> a
run a = unsafePerformIO (runIO a)

runIO :: Arrays a => Acc a -> IO a
runI0 a = withPool defaultTargetPool (\target -> runWithIO target a)

runWithIO :: Arrays a => PTX -> Acc a -> I0 a
runWithIO target a = execute
where
lacc = convertAcc a
execute = do
dumpGraph acc
evalPTX target $ do
build <- phase "compile" (compileAcc acc) >>= dumpStats
exec <- phase "link" (linkAcc build)
res <- phase "execute"
(evalPar (executeAcc exec >>= copyToHostlLazy))
return res

58

Compile Time Metaprogramming

Compile time metaprogramming

- Main disadvantage of embedded compilers
- cannot access to host language’s optimisations
- cannot use language constructs requiring host language
types e.g. if/then/else
- Shallow embeddings don't suffer these problems
- but inefficient execution performance
- no domain specific optimisations
- Compile time metaprogramming transforms user written
code to syntactic structures
- host language -> AST transforms -> host language
- all happens at compile time

Sean Seefried, Manuel M. T. Chakravarty, and Gabriele Keller. “Optimising
Embedded DSLs Using Template Haskell”. In: GPCE 2004, Vancouver, Canada,
October 24-28, 2004. Proceedings. Springer, 2004, pp. 186-205.

59

Compile time metaprogramming with Template Haskell

For a n x n matrix M, domain knowledge is: M x M~' =1
Host language does not know this property for matrices.
Consider the computation: m * inverse m * n

- Metaprogramming algorithm:
1. reify code into an AST data structure
exp_mat = [| \mn ->m * inverse m * n |]

2. AST -> AST optimisation for M x M—1 =T
3. reflect AST back into code (also called splicing)

Seefried, Chakravarty, and Keller, “Optimising Embedded DSLs Using
Template Haskell”.

60

Compile time metaprogramming with Template Haskell

Apply the optimisation:

rmMatByInverse (InfixE (Just 'm) 'GHC.Num.*
(Just (AppE 'inverse 'm))) =
VarE (mkName "identity")

Pattern match with Ap.e

rmMatByInverse (LamE pats exp) =
LamE pats (rmMatByInverse exp)

Pattern match with f a

rmMatByInverse (AppE exp exp') =
AppE (rmMatByInverse exp) (rmMatByInverse exp')

And the rest

rmMatByInverse exp = exp
61

Compile time metaprogramming with Template Haskell

Our computation:

\m n ->m % inverse m * n

Reify:

exp_mat = [| \mn ->m % inverse m * n |]
Splice this back into program:

$(rmMayByInverse exp_mat)

Becomes

\m n ->n

At compile time.

62

Comparison with Deeply Embedded Compiler Approach

Our computation:
\m n ->m * inverse m * n
Optimised at runtime:

rmMatByInverse :: Exp -> Exp
rmMatByInverse expd(Multiply (var x) (Inverse (Var y))) =
if x ==y then Identity else exp
rmMatByInverse (Lambda pats exp) =
Lambda (pats) (rmMatByInverse exp)
rmMatByInverse (App exp exp') =
App (rmMatByInverse exp) (rmMatByInverse exp')
rmMatByInverse exp = exp

optimise :: AST -> AST
optimise = .. rmMatByInverse ..

63

Deep Compilers vs Metaprogramming

- Pan: Deeply embedded compiler for image processing
- "Compiling embedded languages”
- PanTHeon: Compile time metaprogramming
- "Optimising Embedded DSLs Using Template Haskell”
- Performance: both sometimes faster/slower
- Pan aggressively unrolls expressions, PanTHeon doesn’t
- PanTHeon: cannot profile spliced code (TemplateHaskell)
- Source lines of code implementation
- Pan: ~13k
- PanTHeon: ~&4k (code generator + optimisations for free)

Conal Elliott, Sighjgrn Finne, and Oege de Moor. “Compiling embedded
languages”. In: J. Funct. Program. 13.3 (2003), pp. 455-481.

Seefried, Chakravarty, and Keller, “Optimising Embedded DSLs Using
Template Haskell”. 64

Staged Compilation

Staged program = conventional program + staging annotations

- Programmer delays evaluation of program expressions
- A stage is code generator that constructs next stage

- Generator and generated code are expressed in single
program
- Partial evaluation
- performs aggressive constant propagation
- produces intermediate program specialised to static inputs

- Partial evaluation is a form of program specialization.

65

Multi Stage Programming (MSP) with MetaOCaml

1. Brackets (.<..>.) around expression delays computation

let a = 1+2;;

val a : int = 3

let a = .<1+2>.;;

val a : int code = .<1+2>.

1. Escape (.~) splices in delayed values
let b = .<.~a * .~a >. ;;
val b : int code = .<(1 + 2) * (1 + 2)>.

1. Run (. !) compiles and executes code

let c = .! b;;
val ¢ : int = 9

Walid Taha. “A Gentle Introduction to Multi-stage Programming”. In:
Domain-Specific Program Generation, Dagstuhl Castle, Germany, Revised

Papers. Springer, 2003, pp. 30-50.
66

MetaOCaml Example

let rec power (n, x) =
match n with
0 ->1 | n->x * (power (n-1, x));;

let power2 = fun x -> power (2,x);;
(* power2 3 =)

(* => power (2,3) =*)

(*+ => 3 * power (1,3) =)

(# => 3 = (3 » power (0,3) *)

(¢ =>3 % (3% 1))

(x => 6 *)

let my_fast_power2 = fun x -> x*x*1;;

67

MetaOCaml Example: Specialising Code

let rec power (n, x) =
match n with
0 -> .<1>. | n -> .<.~x * .~(power (n-1, x))>.;;

- this returns code of type integer, not integer
- bracket around multiplication returns code of type integer
- escape of power splices in more code

let power2 = .! .<fun x -> .~(power (2,.<x>.))>.;;
behaves just like:

fun x -> x*x*1;;

We can keep specialising power

let power3 = .! .<fun x -> .~(power (3,.<x>.))>.;;
let powers = .! .<fun x -> .~(power (4&,.<x>.))>.;;

68

MetaOCaml Example: Staged Interpreter

A DSL for quantified boolean logic (QBF)

type bexp = True
| False
| And of bexp * bexp
| Or of bexp * bexp
| Not of bexp
| Implies of bexp * bexp
(* forall x. x and not x=)
| Forall of string =* bexp

| var of string
Vp. T = p

Forall ("p", Implies(True, Var "p"))

Krzysztof Czarnecki et al. “DSL Implementation in MetaOCaml, Template
Haskell, and C++". In: Domain-Specific Program Generation, Dagstuhl Castle,

69
Germany, March, 2003, Revised Papers. Springer, 2003, pp. 51-72.

MetaOCaml Example: Staged Interpreter

let rec eval b env =
match b with
True -> true

| False -> false

| And (b1,b2) -> (eval bl env) &5 (eval b2 env)

| or (b1,b2) -> (eval bl env) || (eval b2 env)

| Not bl -> not (eval bl env)

| Implies (b1,b2) -> eval (Or(b2,And(Not(b2),Not(b1)))) env

| Forall (x,bl) ->
let trywith bv = (eval bl (ext env x bv))
in (trywith true) && (trywith false)

| var x -> env x

eval (parse "forall x. x and not x");;

- Staging separates 2 phases of computation
1. traversing a program
2. evaluating a program 70

MetaOCaml Example: Staged Interpreter

let rec eval' b env =
match b with
True -> .<true>.
| False -> .<false>.
| And (b1,b2) -> .< .~(eval' bl env) &5 .~(eval' b2 env) >.
| or (b1,b2) -> .< .~(eval' bl env) || .~(eval' b2 env) >.
| Not bl -> .< not .~(eval' bl env) >.
| Implies (b1,b2) -> .< .~(eval' (Or(b2,And(Not(b2),Not(b1)))) env)
| Forall (x,b1l) ->
.< let trywith bv = .~(eval' bl (ext env x .<bv>.))
in (trywith true) && (trywith false) >.
| var x -> env x

let a = eval' (Forall ("p", Implies(True, Var "p"))) env0;;
a : bool code =
.<let trywith = fun bv -> (bv || ((not bv) && (not true)))
in ((trywith true) && (trywith false))>.

71

Metaprogramming: MetaOCaml versus Template Haskell

MetaOCaml (staged interpreter) Template Haskell (templates)

.<E>. (bracket) [| E|] (quotation)

.~ (escape) $s (splice)

.<t>. (type for staged code) Q Exp (quoted values)
.1 (run) none

- Template Haskell allows inspection of quoted values can
alter code’s semantics before reaches compiler
- Template Haskell: compile time code gen, no runtime
overhead
- MetaOCaml: runtime code gen, some runtime overhead
- speedups possible when dynamic variables become static
values, incremental compiler optimises away condition

checks, specialises functions, etc.
72

Lightweight Modular Staging (LMS) in Scala

- Programming abstractions used during code generation,
not reflected in generated code

- L = lightweight, just a library

- M = modular, easy to extend

- S = staging

- Types distinguish expressions evaluated

- "execute now” has type:

- "execute later” (delayed) has type:

Rep[T]

73

Lightweight Modular Staging (LMS) in Scala

Scala:

def power(b: Double, p: Int): Double =
if (p==0) 1.0 else b * power(b, p - 1)

Scala LMS:

def power(b: Rep[Doublel, p: Int): Rep[Double] =
if (p==0) 1.0 else b xpower(b, p - 1)

power(x,5)

def apply(x1: Double): Double = {
val x2 = x1 * x1
val x3 x1 * x2
val x4 = x1 * x3
valx5 = x1 * x4
x5

http://www.cs.uu.nl/docs/vakken/mcpd/slides/slides-scala-lms.pdf
http://www.cs.uu.nl/docs/vakken/mcpd/slides/slides-scala-lms.pdf

Lightweight Modular Staging (LMS) in Scala

def power(b: Rep[Double], p: Int): Rep[Double] = {
def loop(x: Rep[Double], ac: Rep[Double], y: Int): Rep[Double] = {
if(y ==0) ac
else if (y%2==0) loop(x * x, ac, y /2)
else loop(x, ac * x, y -1)
}
loop(b,1.0, p)
}

power(x,11)

def apply(x1: Double): Double = {
val x2 = x1 = x1 // x x X
val x3 = x1 = x2 // ac * x
val x4 = x2 = x2 // x * X
val x8 = x4 * x4 // x % X
val x11 = x3 * x8 // ac * x
x11

75

LMS in Practise: Delite

- Delite: compiler framework and runtime for parallel EDSLs

- Scala success story: Delite uses LMS for high performance
- Successful DSLs developed with Delite

- OptiML: Machine Learning and linear algebra
- OptiQL: Collection and query operations

- OptiMesh: Mesh-based PDE solvers

- OptiGraph: Graph analysis

76

Approach Host frontend Host backend Optimise via

Embedded compiler yes no traditional compiler opts
Staged compiler no yes MP: delayed expressions
Ext. metaprogramming yes yes MP: transformation

MP: metaprogramming

- Embedded compilers: Accelerate (Haskell)
- Extensional metaprogramming: Template Haskell

- Staged compilers: MetaOCaml, Scala LMS

Seefried, Chakravarty, and Keller, “Optimising Embedded DSLs Using
Template Haskell”.

77

Leaking Abstractions

Where does EDSL stop and host start?

In February 2016 | asked on Halide-dev about my functions:

Image<uint8_t> blurX(Image<uint8_t> image);
Image<uint8_t> blurY(Image<uint8_t> image);
Image<uint8_t> brightenBy(Image<uint8_t> image, float);

Hi Rob,

You've constructed a library that passes whole images
across C++ function call boundaries, so no fusion can
happen, and so you’re missing out on all the benefits of
Halide. This is a long way away from the usage model
of Halide. The tutorials give a better sense of ...

On [Halide-dev]:
https://lists.csail.mit.edu/pipermail/halide-dev/2016-February/002188.html

78

Where does EDSL stop and host start?

Correct solution:

Func blurX(Func image);
Func blurY(Func image);
Func brightenBy(Func image, float);

Reason: Halide is a functional language embedded in C++
But my program compiled and was executed (slowly)

| discovered the error of my ways by:

1. Emailing Halide-dev

2. Reading Halide code examples

Why not a type error?

79

Conclusions

Conclusions

- DSL: notation that captures domain semantics
- Why DSLs?
- AVOPT: Analysis, Verification (ComMA), Optimisation,
Parallelisation (Hdph-RS, Accelerate) and Transformation
- Compositionality (Frenetic), performance and productivity
(Halide), correctness (lvory)
- Drawbacks
- engineering effort, incoherent designs
- poor implementation choice from plethora of options
- unenforced boundaries between EDSL and host language
- Implementation choices
- Internal or external
- Shallow embed language (Repa), deeply embed compiler
(Accelerate), compile time metaprogramming (Template
Haskell), staged metaprogramming (MetaOCaml, Scala LMS)

80

	What is a DSL
	Domain Specificity
	Why DSLs?
	Early DSL example
	Modern DSL examples
	Internal and External DSLs
	Library versus EDSL?
	Language Embeddings
	Language and Compiler Embeddings
	Deeply Embedded Compilers
	Compile Time Metaprogramming
	Staged Compilation
	Leaking Abstractions
	Conclusions

