
Haskell EDSL Implementations
Scottish Programming Languages and Verification
Summer School 2019

Rob Stewart (R.Stewart@hw.ac.uk)
August 2019

Heriot-Watt University, Edinburgh

Haskell Take on DSLs

haskell-cafe mailing list

Subject: [Haskell-cafe] What *is* a DSL?
From: Günther_Schmidt <gue.schmidt () web ! de>
Date: 2009-10-07 15:10:58

Hi all,

for people that have followed my posts on the DSL subject this
question probably will seem strange, especially asking it now ..

Because out there I see quite a lot of stuff that is labeled as DSL,
I mean for example packages on hackage, quite useuful ones too,
where I don't see the split of assembling an expression tree from
evaluating it, to me that seems more like combinator libraries.

Thus:

What is a DSL?

Günther

1

haskell-cafe mailing list

2

haskell-cafe mailing list

A DSL is just a domain-specific language. It doesn’t
imply any specific implementation technique.
A shallow embedding of a DSL is when the ”evaluation”
is done immediately by the functions and combinators
of the DSL. I don’t think it’s possible to draw a line be-
tween a combinator library and a shallowly embedded
DSL.
A deep embedding is when interpretation is done on
an intermediate data structure.

– Emil Axelsson, Chalmers University.

3

haskell-cafe mailing list

I’ve argued that every monad gives a DSL. They all
have the same syntax - do-notation, but each choice
of monad gives quite different semantics for this nota-
tion.

– Dan Piponi

4

haskell-cafe mailing list

I’ve informally argued that a true DSL – separate from
a good API – should have semantic characteristics of a
language: binding forms, control structures, abstrac-
tion, composition. Some have type systems.
Basic DSLs may only have a few charateristics of lan-
guages though – a (partial) grammar. That’s closer to
a well-defined API in my books.

– Don Stewart

5

haskell-cafe mailing list

Parsec, like most other parser combinator libraries, is a
shallowly embedded DSL… a Haskell function that does
parsing, i.e. a function of type
String -> Maybe (String, a)
You can’t analyse it further—you can’t transform it into
another grammar to optimise it or print it out—because
the information about what things it accepts has been
locked up into a non-analysable Haskell function. The
only thing you can do with it is feed it input and see
what happens.

– Bob Atkey

6

Embeddings in Haskell

Embeddings with Haskell

• GHC gives us
• frontend: syntax & type checking
• interpreter: test components and small programs

• Haskell EDSL often rely on
• higher order functions
• type class overloading
• monads

• Choices
1. functions directly capture semantics of language (shallow)
2. based on the abstract syntax of EDSL program (deep)

• multiple interpretations e.g. acceleration, visualisation..

7

Shallow Embeddings

8

Compile Time Metaprogramming

9

Three case studies

1. Repa: array processing
2. Accelerate: array processing

• strict evaluation semantics (host language is lazy)

3. Lava: circuit description

10

Array Processing: Repa

Haskell Embeddings

11

Parallel Shallow Embedding

12

Repa Language

data family Array rep sh e
data instance Array D sh e = ADelayed sh (sh -> e)
data instance Array U sh e = AUnboxed sh (Vector e)

-- types for array representations
data D -- Delayed
data U -- Manifest, unboxed

computeP :: (Load rs sh e, Target rt e)
=> Array rs sh e
-> Array rt sh e

Ben Lippmeier et al. “Guiding parallel array fusion with indexed types”. In:
Proceedings of the 5th ACM SIGPLAN Symposium on Haskell, Haskell 2012,
Copenhagen, Denmark, 13 September 2012. 2012, pp. 25–36.

13

Repa Example

type Image a = Array U DIM2 a

gradientX :: Image Float -> IO (Image Float)
gradientX img = computeP

$ forStencil2 BoundClamp img
[stencil2| -1 0 1

-2 0 2
-1 0 1 |]

gradientY :: Image Float -> IO (Image Float)
gradientY img = computeP

$ forStencil2 BoundClamp img
[stencil2| 1 2 1

0 0 0
-1 -2 -1 |]

gradMagnitude :: Float -> Image Float -> Image Float
-> IO (Image (Float, Word8))

gradMagnitude threshLow dX dY = computeP $ R.zipWith mag dX dY
where mag = ...

14

Repa Example

readImage :: String -> IO Image
saveImage :: Image -> String -> IO ()

main = do
image1 <- readImage "input.png"
image2 <- gradientX image1
image3 <- gradientY image1
image4 <- gradMagnitude thresh image2 image3
saveImage image4 "output.png"

• Each computeP call uses static scheduler
• assumes well balanced regular parallelism

• Monadic interface sequences parallel ”gang” schedulers
• avoid: cache contention, overloading OS scheduler

Lippmeier et al., “Guiding parallel array fusion with indexed types”.

15

Repa Parallelism: Use Multithreaded GHC

-- 'n' is number of threads to use
forkGang :: Int -> IO Gang
forkGang n =
...
zipWithM_ forkOn [0..] -- create worker threads
$ zipWith3 gangWorker

[0 .. n-1] mvsRequest mvsDone

gangWorker :: Int -> MVar Req -> MVar () -> IO ()
gangWorker threadId varRequest varDone
= do -- Wait for a request

req <- takeMVar varRequest
case req of
ReqDo action
-> do -- Run the action we were given.

action threadId
...

16

Array Processing: Accelerate

Haskell Embeddings

17

Parallel Deep Embedding

18

Deep Embeddings with Haskell

Andy Gill. “Domain-specific languages and code synthesis using Haskell”.
In: Commun. ACM 57.6 (2014), pp. 42–49. 19

Accelerate Literature

Material from

• Trevor McDonell’s PhD thesis
• Email exchanges with Trevor

Trevor L. McDonell. “Optimising Purely Functional GPU Programs”.
PhD thesis. University of New South Wales, Sydney, Australia, 2015.

20

Accelerate

• User programs generate CUDA/LLVM programs at runtime

dotp :: Num a => Vector a -> Vector a -> Acc (Scalar a)
dotp xs ys =

let
xs' = use xs
ys' = use ys

in
fold (+) 0 (zipWith (*) xs' ys')

• Acc is an Accelerate program, will produce value of type a
• run function generates code, compiles it, executes it

run :: Arrays a => Acc a -> a

21

Accelerate Language

McDonell, “Optimising Purely Functional GPU Programs”.

22

Accelerate Language Surface AST

map :: (Shape sh, Elt a, Elt b)
=> (Exp a -> Exp b)
-> Acc (Array sh a)
-> Acc (Array sh b)

zipWith :: (Shape sh, Elt a, Elt b, Elt c)
=> (Exp a -> Exp b -> Exp c)
-> Acc (Array sh a)
-> Acc (Array sh b)
-> Acc (Array sh c)

stencil :: (Stencil sh a stencil, Elt b)
=> (stencil -> Exp b)
-> Boundary (Array sh a)
-> Acc (Array sh a)
-> Acc (Array sh b)

-- slice, fold, backpermute, ...

23

Comiling and Executing Accelerate

• Skeletons build trees to represent array computations
• GADTs preserve embedded program’s type info in term tree
• Smart constructors
Data.Array.Accelerate.Language

map = Acc $$ Map
zipWith = Acc $$$ ZipWith
fold = Acc $$$ Fold
...

• Internal conversion from HOAS to de Bruijn representation
enables program transformations and recovers sharing

-- convert array expression to de Bruijn form
-- incorporating sharing information
convertAcc :: Arrays arrs => Acc arrs -> AST.Acc arrs

24

Accelerate Internal IR

dotp :: Num a => Vector a -> Vector a -> Acc (Scalar a)
dotp xs ys =
let xs' = use xs

ys' = use ys
in fold (+) 0 (zipWith (*) xs' ys')

Becomes:
Fold add (Const 0) (ZipWith mul xs' ys')
where
add = Lam (Lam (Body (
PrimAdd (FloatingNumType (TypeFloat FloatingDict))

`PrimApp`
Tuple (NilTup `SnocTup` (Var (SuccIdx ZeroIdx))

`SnocTup` (Var ZeroIdx)))))
mul = -- same as add, but using PrimMul ...

The generated IR is optimised (e.g. fusion) then compiled to
object code, which is linked at runtime and executed 25

Skeleton Code Templates: Map (CUDA)

[cunit |
$esc:("#include <accelerate_cuda.h>")
$edecls:texIn
extern "C" __global__ void map
(// types of the elements of the input/output arrays
$params:argIn,
$params:argOut

){
const int shapeSize = size(shOut);
const int gridSize = $exp:(gridSize dev);
int ix;
for (ix = $exp:(threadIdx dev); ix < shapeSize; ix += gridSize)
{ // gets input array element from index
$items:(dce x .=. get ix)

// scalar operation per element
$items:(setOut "ix" .=. f x)

}
|]

Listing 4.1 from McDonell’s PhD thesis. 26

Skeleton Code Templates

• Accelerate now LLVM based (not CUDA)
• But same template skeleton idea
• Parallel code structure defined by skeleton templates
• Types & user defined functions added to template during
code gen

• Doesn’t use TemplateHaskell’s quasiquotation
• Instead uses Haskell LLVM library API

Trevor L. McDonell et al. “Type-safe runtime code generation: accelerate to
LLVM”. In: Proceedings of the 8th ACM SIGPLAN Symposium on Haskell,
Vancouver, BC, Canada, September 3-4, 2015. ACM, 2015, pp. 201–212.

27

Skeleton Code Templates: Map (LLVM)

mkMap aenv apply =
let

(arrOut, paramOut) = mutableArray @sh "out"
(arrIn, paramIn) = mutableArray @sh "in"
paramEnv = envParam aenv

in
makeOpenAcc "map" (paramOut ++ paramIn ++ paramEnv) $ do
start <- return (lift 0)
end <- shapeSize (irArrayShape arrIn)
imapFromTo start end $ \i -> do
xs <- readArray arrIn i
ys <- app1 apply xs
writeArray arrOut i ys

return_

-- from 'accelerate-llvm' package
imapFromTo

:: IR Int -> IR Int
-> (IR Int -> CodeGen Native ()) -> CodeGen Native ()

28

Comparing Accelerate and Repa

Comparing Accelerate and Repa

Same goals:

• Collective operations on regular multidimensional arrays
• Non-nested, flat data-parallelism
• Embed in Haskell

Achieve these goals in very different ways:

• Repa uses type indexed array representations to help GHC
generate better code

• Accelerate avoids GHC’s code generation altogether

29

Performance

McDonell et al., “Type-safe runtime code generation: accelerate to LLVM”. 30

Benefits of Accelerate’s Deep Embedding

Things you can do many with an Accelerate program:

1. Pretty print it
2. Interpret it
3. Generate & execute CUDA for GPUs
4. Generate & execute LLVM for CPUs/GPUs
5. Visualise program graph with GraphViz

31

Accelerate Arrays and Functions

arr1 :: Acc (Array DIM2 Int)
arr1 = A.use $ A.fromList (Z :. 3 :. 3) [1..9]

arr2 :: Acc (Array DIM2 Int)
arr2 = A.use $ A.fromList (Z :. 3 :. 3) [10..19]

f :: Acc (Array DIM2 Int) -> Acc (Array DIM2 Int)
f = A.map (+2) . A.map (+1)

g :: Acc (Array DIM2 Int) -> Acc (Array DIM2 Int)
g = A.transpose

32

Pretty Print It

let program = A.zip (f arr1) (g arr2)
print program -- show it

let a0 = use (Array (Z :. 3 :. 3) [1,2,3,4,5,6,7,8,9]) in
let a1 = use (Array (Z :. 3 :. 3) [10,11,12,13,14,15,16,17,18])
in generate
(intersect

(shape a0)
(let x0 = shape a1
in Z :. indexHead x0 :. indexHead (indexTail x0)))

(\x0 -> (2 + (1 + (a0!x0))
, a1!Z :. indexHead x0 :. indexHead (indexTail x0)))

33

Run It

let program = A.zip (f arr1) (g arr2)
print print (A.run program) -- run it

Matrix (Z :. 3 :. 3)
[(4,10), (5,13), (6,16),

(7,11), (8,14), (9,17),
(10,12),(11,15),(12,18)]

34

Comparison of Profiling Tooling

Repa Profiling

• Repa uses GHC runtime system
• Threadscope for profiling GHC generated parallel code
• Hence: Repa can inherit Threadscope profiling tool

35

Accelerate Profiling

• Accelerate doesn’t generate parallel code via GHC
• Doesn’t have access to GHC tools e.g. Threadscope
• Use NVidia profiler GPU profiling tooling instead

Figure 4.2 from McDonell’s thesis.

McDonell, “Optimising Purely Functional GPU Programs”. 36

Implementation Considerations

Repa Implementation Considerations

• Good: GHC has good multicore/concurrency support
• Good: less engineering reuse GHC code generation
• Questionable: at mercy of GHC code generation

Question:
Can GHC Core be relied on for producing efficient high
performance numerical code? E.g inlining and con-
stant propagation for aggressive array fusion?

GHC Core is a SystemF language, not an array processing IR.
37

Accelerate Implementation Considerations

• Generate simple LLVM IR for the LLVM compiler
• Hope LLVM optimisations fire e.g. loop vectorisation
• LLVM/CUDA compilers assume human-written code
• Accelerate should mimic what a human would write
• Obscure LLVM code might rule out LLVM optimisations
• Don’t generate SIMD instructions

• Rely on LLVM auto-vectorisation
• Accelerate produces code it knows LLVM can vectorise well
• Accelerate tells LLVM exactly which CPU is being used
• Ask LLVM to vectorise for this CPU

38

Another Domain: Circuit Description

Deep EDSL: Lava

• Strongly typed EDSL for describing hardware circuits
• Deeply embedded

• test circuit designs with GHCi (host language interpreter)
• generate VHDL to synthesise circuits to hardware

Example from Andy Gill’s ACM Communications paper.

Gill, “Domain-specific languages and code synthesis using Haskell”.

39

Counting Pulses Schematic

counter
:: (Rep a, Num a) => Signal Bool -> Signal Bool -> Signal a

counter restart inc = loop
where reg = register 0 loop

reg' = mux2 restart (0,reg)
loop = mux2 inc (reg' + 1, reg')

40

Counting Pulses

Simulate with GHCi:

GHCi> counter low (toSeq (cycle [True,False,False]))
1 : 1 : 1 : 2 : 2 : 2 : 3 : 3 : 3 : ...

Reify deep embedding:

GHCi> reify (counter (Var "restart") (Var "inc"))
[(0,MUX2 1 (2,3)),
(1,VAR "inc"),
(2,ADD 3 4),
(3,MUX2 5 (6,7)),
(4,LIT 1),
(5,VAR "restart"),
(6,LIT 0),
(7,REGISTER 0 0)]

41

Counting Pulses

architecture str of counter is
signal sig_2_o0 : std_logic_vector(3 downto 0);
...

begin
sig_2_o0 <= sig_4_o0 when (inc = '1') else sig_6_o0;
sig_5_o0 <= stf_logic_vector(...);
sig_6_o0 <= "0000" when (restart = '1') else sig_10_o0;
sig_10_o0_next <= sig_2_o0;
proc14 : process(rst,clk) is
begin
if rst = '1' then

sig_10_o0 <= "0000";
elseif rising_edge(clk) then
if (clk_en = '1') then
sig_10_o0 <=sig_10_o0_next;

...
end architecture;

42

Summary

Summary

Approach domain specific opts host opts language examples
shallow yes (rewrite rules) yes host repa, HdpH-RS
deep yes (runtime) no host Accelerate, Lava
MP yes (compile time) yes quasiquotes PanTHeon

(MP = metaprogramming)

43

	Haskell Take on DSLs
	Embeddings in Haskell
	Array Processing: Repa
	Array Processing: Accelerate
	Comparing Accelerate and Repa
	Comparison of Profiling Tooling
	Implementation Considerations
	Another Domain: Circuit Description
	Summary

