Lecture #3

The Standardisation Theorem
1958 Curry / Feys for CL

1975 Plotkin for λ^v, λ^v via 'standard sequences'

1979 Mitschke for λ^p via semi-standardisation

1975 - 77 Lévy via labelled λ-calculus

Barendregt

Hyland
what does it say?

if \(M \xrightarrow{p} N \) then there exists a standard reduction \(\delta: M \xrightarrow{\delta} N \)

where \(\delta: M_0 \xrightarrow{\Delta_0} M_1 \quad ... \quad M_i \xrightarrow{\Delta_i} M_{i+1} \quad ... \quad M_n \)

is standard (reducing the redex occurrence \(\Delta_i \) at the \(i^{th} \) step)

if \(\forall i \forall j < i \left[\Delta_i \text{ is not a residual of a redex to the left of } \Delta_j \right] \)

(†)

(-relative to the given reduction from \(M_j \) to \(M_i \))

(Barandregt, 1984, Ch. 11 p 296 ; nested parentheses in original)
... Can we do better ???
let \rightarrow^ω be the least reflexive, transitive relation

- containing \rightarrow^ρ
 $e \rightarrow^\rho e' \Rightarrow e \rightarrow^\omega e'$

- closed under application on the right
 $e \rightarrow^\omega e'$

\[e = a \quad \text{and} \quad (\ast) \]

\[e = a \rightarrow^\omega e' \cdot a \]

NB if $\lambda e \rightarrow^\omega e'$ then $e' = \lambda e$ and there is no reduction

ditto. $x \rightarrow^\omega e' \Rightarrow e' = x$ "weak head normal forms"

what about $e = a$?
say that $M \to_{s} N$ is standard

resp. $M \to_{i} N$ is internal

\[\begin{array}{c}
M \to_{s} \lambda P \to_{s} \lambda N \\
\hline
M \to_{s} N
\end{array}\]

\[\begin{array}{c}
M \to_{s} N \\
\hline
\lambda M \to_{s} \lambda N
\end{array}\] (\(\lambda\))

where $x \to_{i} x$

and $M \to_{i} M' \quad \lambda N \to_{s} \lambda N'$

\[\begin{array}{c}
M \to_{i} M' \\
\hline
MN \to_{i} \lambda M'N'
\end{array}\] (\(\cdot\))

"Semi-standardization": standard reduction factors into a weak head reduction followed by internal reduction

NB in rule (\(\lambda\)), we revert to standard reduction under the outermost symbol \(\lambda\)

in rule (\(\cdot\)), we factor outermost \(\to_{s}\) reduction on the left off an application
in this last rule: Suppose we wanted \(MN \rightarrow_{s} M'N' \) from \(M \rightarrow_{s} M' \) and \(N \rightarrow_{s} N' \), then, inductively, we may suppose
\[M \rightarrow_{w} P \rightarrow_{w} M' \]

- but then \(MN \rightarrow_{w} PN \)
- so provided we take \(PN \rightarrow_{w} M'N' \) then
\[MN \rightarrow_{w} PN \rightarrow_{w} M'N' \]
is a plausible factorisation of \(MN \rightarrow_{w} M'N' \)

NB
- \(M \rightarrow_{w} N \) satisfies property (†), immediately
- if \(P \rightarrow_{w} iN \) satisfies (†), then so too does \(M \rightarrow_{w} P \rightarrow_{w} iN \)
- \(M \rightarrow_{w} iN \) satisfies (†), by mutual induction
in $M \to^i M', N \to^s N'$, we could contract all the redexes in the sequence $N \to^s N'$ before contracting the redexes in the sequence $M \to^i M'$ (and they would therefore violate the `spatial' invariant (\dagger)).

So to be yet more precise define \to^{li} `left internal', \to^{ri} `right internal', \to^i `internal'.

(mutually with one another, and hence also with \to_s)

by $M \to^i N$, $P \to^s Q$, $M \to^{li} P \to^{ri} N$.

(and with all before) then each of \to^i, \to^{li}, \to^{ri}, \to^s satisfy property (\dagger).
we're almost shown that if \(M \rightarrow^\beta N \) then \(M \rightarrow^\alpha N \)

(simple step) immediate, \(M \rightarrow^\beta N \Rightarrow M \rightarrow^\alpha N \)

(var) immediate, \(x \rightarrow^\alpha x \rightarrow^\beta x \), by (var)

(\lambda) immediate, \(\rightarrow^\alpha \subseteq \rightarrow^\beta \), by (var)

(app) we've seen this by way of motivating (app) for \(\rightarrow^\beta \);
so the only thing left to show is TRANSITIVITY

(and then we are done, with \(\rightarrow^\beta \) as the least precongruence containing \(\rightarrow^\beta \))

(actually we also need REFLEXIVITY for (\beta) - exercise!)
transitivity for \rightarrow_s

forms, provided:

i.e that we can standardise

(factor into $\rightarrow_w \cdot \rightarrow_i$)

all composites of the form $\rightarrow_i \cdot \rightarrow_w$

NB we need to show simultaneously

so by induction on \rightarrow_w

it suffices to show

$$\star \star \quad \rightarrow_i \circ \to \beta = \rightarrow_s$$

to conclude \star
idea. internal reduction \(\rightarrow \Rightarrow \)

preserves, and reflects, the shape of terms

- indeed, the property of being a \(\beta \) redex (\(\triangledown \))

if \(M \rightarrow_{s} (\lambda R) \cdot S \), then \(M \equiv (\lambda P) \cdot Q \)

where \(\lambda P \rightarrow_{s} \lambda R \)

\(\Rightarrow P \rightarrow_{s} R \)

and \(Q \rightarrow_{s} S \)

- so to show (\(\ast \ast \)) \(P \rightarrow_{s} R \quad Q \rightarrow_{s} S \)

we need

\((\lambda P) \cdot Q \rightarrow_{p} P[Q] \rightarrow_{s} R[S] \)
finally $P \rightarrow_{w} W \rightarrow_{i} R$ from $P \rightarrow_{s} R$

so $P[Q] \rightarrow_{w} W[Q]$ (exercise)

So we may conclude the proof of $(\ast \ast)$, and hence of (\ast), and hence of transitivity of \rightarrow_{s}

provided $P \rightarrow_{i/s} R \text{ Q } \rightarrow_{s} S$ are last mutual

induction on $P \rightarrow_{i} R$ resp. $P \rightarrow_{s} R$

now \rightarrow_{s} is a reflexive, transitive relation closed under $(\lambda), (\cdot)$

hence $M \rightarrow_{\beta} N \Rightarrow M \rightarrow_{s} N$
more on normal forms

\[\begin{align*}
\text{normal forms} & \quad \frac{nf_p e}{nf_p x} \quad \frac{nf_p e}{nf_p (\lambda e)} \\
\text{may be inductively} & \quad \frac{nf_p e}{nf_p (e \cdot a)} \\
\text{characterised}
\end{align*}\]

\[\begin{align*}
\text{alternatively} & \quad \frac{ne_p e}{ne_p x} \quad \frac{ne_p e}{ne_p (e \cdot a)} \\
\text{(neutral/normal)} & \quad \frac{ne_p e}{ne_p (e \cdot a)} \\
\end{align*}\]

\[\begin{align*}
\text{whinormal forms} & \quad \frac{whnf_p e}{whnf_p x} \quad \frac{whnf_p e}{whnf_p (\lambda e)} \\
\text{alternatively} & \quad \frac{whnf_p e}{whnf_p (e \cdot a)} \\
\text{define 'weakly neutral' and whnf_p (exercise)}
\end{align*}\]
Further remarks

- \(\rightarrow^* \) preserves (and reflects) weak head normal forms

- Normal forms are weak head normal forms

So we have as Corollaries

- Leftmost reduction

 If \(M \rightarrow^* \beta N \) and \(\text{nfr} \) \(N \)

 Then \(\exists W. \ M \rightarrow^* \omega W \), \(\text{whnfr} \) \(W \), \(W \rightarrow^* \gamma N \)

- Quasi-normalisation

 If \(\not\exists N. \text{nfr} N \), \(M \rightarrow^* \beta N \) "\(M \) has no \(\beta \)-nf"

 Then \(\forall W. \ M \rightarrow^* \omega W \rightarrow \bot \text{whnfr} W \)
A characterization of reduction to normal form define, as usual mutually

\[M \rightarrow^{nf}_s N = \exists W. \text{whnf} W, M \rightarrow^{nf}_w W \rightarrow^{nf}_i N \]

and for applications

\[M \rightarrow^{nf}_i M' \neq \lambda P \quad N \rightarrow^{nf}_i N' \]

then

\[M \rightarrow^{nf}_s N \text{ iff } M \rightarrow^{nf}_s N \text{ and } nf \text{ p } N \]

the premise \(M \rightarrow^{nf}_i M' \neq \lambda P \) is equivalent to

\[M \rightarrow^{nf}_i M' \text{ and } nf \text{ p } M' \]
Also, we have exactly analogous results for \Rightarrow^h_\ast head reduction satisfying:

\[
\begin{align*}
M & \Rightarrow^h_\ast N \\
\lambda M & \Rightarrow^h_\ast \lambda N \\
\lambda M & \Rightarrow^h_\ast \lambda N
\end{align*}
\]

with appropriate adjustments to \Rightarrow_\ast:

\[
\begin{align*}
M & \Rightarrow_\ast N \\
M & \Rightarrow_\ast N \\
\lambda M & \Rightarrow_\ast \lambda N
\end{align*}
\]

- also for CL, taking $KMN \Rightarrow_\ast M$, $SPQR \Rightarrow_\ast (PR)(QR)$ as primitive \Rightarrow_\ast^0 steps, together with 'diamonds' \Rightarrow_\ast^0:

- also for CL+Y, taking $Y \Rightarrow_\ast Y$ and $YM \Rightarrow_\ast M(YM)$ as primitive:

etc.

- also for $\lambda + \Omega$ with $\Omega \Rightarrow_\ast \Omega$, $\lambda \Omega \Rightarrow_\ast \Omega$, $\Omega P \Rightarrow_\ast \Omega$.
FIN