Effect handler oriented programming

Sam Lindley

The University of Edinburgh

SPLV 2022

What is an effect?

Effects

Programs as black boxes (Church-Turing model)?

—l-

Effects

Programs must interact with their environment

[
\ /

7

2 W*

4

Effects

Programs must interact with their environment

Effects

Programs must interact with their environment

Effects are pervasive
> input/output
user interaction

» concurrency
web applications

» distribution
cloud computing

» exceptions
fault tolerance

» choice
backtracking search

Typically ad hoc and hard-wired

Effect handlers

g ’ Gordon Plotkin i Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Effect handlers

.
S' Gordon Plotkin ‘ Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Effect handlers

o
sw Gordon Plotkin ‘ Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers

@
s Gordon Plotkin ‘ Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context

Growing industrial interest

GitHub

(c.f. resumable exceptions, monads, delimited control)

semantic Code analysis library (> 25 million repositories)

JavaScript Ul lib > 2 milli bsit
React avaScrip ibrary (million websites)

Pl

Statistical inference (10% ad spend saving)
Pyro

Effect handlers as composable user-defined operating systems

\

Effect handlers as composable user-defined operating systems

=

ﬂb‘ébﬂo«jo

NS
ﬁ*

a7

Example 1: choice and failure

Effect signature
{choose : 1 — Bool, fail: 1 — 0}

Example 1: choice and failure

Effect signature
{choose : 1 — Bool, fail: 1 — 0}

Drunk coin tossing

toss : 1 — Toss!(E W {choose : 1 — Bool})
toss () = if choose () then Heads else Tails

drunkToss : 1 — Toss!(E W {choose : 1 — Bool, fail: 1 — 0})
drunkToss () = if choose () then
if choose () then Heads else Tails
else

absurd (fail ())

drunkTosses : Nat — List Toss!(E & {choose : 1 — Bool, fail: 1 — 0})
drunkTosses n = if n = 0 then []
else drunkToss () :: drunkTosses (n — 1)

Example 1: choice and failure

Handlers

maybeFail : Al(E W {fail : 1 — 0}) = Maybe AlE
maybeFail = — exception handler

return x — Justx
(fail ()) +— Nothing

Example 1: choice and failure

Handlers

maybeFail : Al(E W {fail : 1 - 0}) = Maybe AlE

maybeFail = — exception handler
return x — Justx handle 42 with maybeFail = Just 42
(fail ()) +— Nothing handle (absurd (fail ())) with maybeFail = Nothing

Example 1: choice and failure

Handlers

maybeFail : Al(E W {fail : 1 - 0}) = Maybe AlE

maybeFail = — exception handler
return x — Justx handle 42 with maybeFail = Just 42
(fail ()) +— Nothing handle (absurd (fail ())) with maybeFail = Nothing
trueChoice : Al(E & {choose : 1 — Bool}) = AlE
trueChoice = — linear handler
return x = X

(choose () — r) + rtt

Example 1: choice and failure

Handlers

maybeFail : Al(E W {fail : 1 - 0}) = Maybe AlE

maybeFail = — exception handler
return x — Justx handle 42 with maybeFail = Just 42
(fail ()) +— Nothing handle (absurd (fail ())) with maybeFail = Nothing
trueChoice : Al(E & {choose : 1 — Bool}) = AlE
trueChoice = — linear handler
return x — X handle 42 with trueChoice = 42

(choose () — r) + rtt handle toss () with trueChoice = Heads

Example 1: choice and failure

Handlers

maybeFail : Al(E W {fail : 1 - 0}) = Maybe AlE

maybeFail = — exception handler
return x — Justx handle 42 with maybeFail = Just 42
(fail ()) +— Nothing handle (absurd (fail ())) with maybeFail = Nothing
trueChoice : Al(E & {choose : 1 — Bool}) = AlE
trueChoice = — linear handler
return x = X handle 42 with trueChoice = 42
(choose () — r) + rtt handle toss () with trueChoice = Heads
allChoices : Al(E & {choose : 1 — Bool}) = List AlE
allChoices = — non-linear handler
return x — [x]

(choose () — r) + rtt+ rff

Example 1: choice and failure

Handlers

maybeFail : Al(E W {fail : 1 - 0}) = Maybe AlE

maybeFail = — exception handler
return x — Justx handle 42 with maybeFail = Just 42
(fail ()) +— Nothing handle (absurd (fail ())) with maybeFail = Nothing
trueChoice : Al(E & {choose : 1 — Bool}) = AlE
trueChoice = — linear handler
return x = X handle 42 with trueChoice = 42
(choose () — r) + rtt handle toss () with trueChoice = Heads
allChoices : Al(E & {choose : 1 — Bool}) = List AlE
allChoices = — non-linear handler
return x — [x] handle 42 with allChoices = [42]

(choose() — r) + rtt+ rff handle toss () with allChoices = [Heads, Tails]

Example 1: choice and failure

Handler composition

handle (handle drunkTosses 2 with maybeFail) with allChoices

Example 1: choice and failure

Handler composition

handle (handle drunkTosses 2 with maybeFail) with allChoices : List (Maybe (List Toss)) =

Example 1: choice and failure

Handler composition

handle (handle drunkTosses 2 with maybeFail) with allChoices : List (Maybe (List Toss)) =
[Just [Heads, Heads]|, Just [Heads, Tails], Nothing,
Just [Tails, Heads], Just[Tails, Tails], Nothing,
Nothing]

Example 1: choice and failure

Handler composition

handle (handle drunkTosses 2 with maybeFail) with allChoices : List (Maybe (List Toss)) =
[Just [Heads, Heads]|, Just [Heads, Tails], Nothing,
Just [Tails, Heads], Just[Tails, Tails], Nothing,
Nothing]

handle (handle drunkTosses 2 with allChoices) with maybeFail

Example 1: choice and failure

Handler composition

handle (handle drunkTosses 2 with maybeFail) with allChoices : List (Maybe (List Toss)) =
[Just [Heads, Heads]|, Just [Heads, Tails], Nothing,
Just [Tails, Heads], Just[Tails, Tails], Nothing,
Nothing]

handle (handle drunkTosses 2 with allChoices) with maybeFail : Maybe (List (List Toss)) =

Example 1: choice and failure

Handler composition

handle (handle drunkTosses 2 with maybeFail) with allChoices : List (Maybe (List Toss)) =
[Just [Heads, Heads]|, Just [Heads, Tails], Nothing,
Just [Tails, Heads], Just[Tails, Tails], Nothing,
Nothing]

handle (handle drunkTosses 2 with allChoices) with maybeFail : Maybe (List (List Toss)) =
Nothing

Operational semantics (deep handlers)

Reduction rules
let x=Vin N ~ N[V/x]

handle V with H ~ N[V/x]
handle E[op V] with H ~» Ngp[V/p, (Ax.handle £[x] with H)/r],

where
H = return x — N

(op1p = r) — Nop,
(opkp = 1) +— Nop,

Evaluation contexts
Ex=[]|letx=~Ein N | handle £ with H

op#E&

Typing rules (deep handlers)

Effects

Computations

Operations

Handlers

MNx:AFN:D

E:=0|EW{op: A— B}

C,D:=AE

r-Vv:A

N~opV:BYEW{op:

r=mM:C MN-H:

A — B})

C=D

I - handle M with

[op; : Ai - Bj € EJ;

H:D

[I‘,p:A,-,r:B,-—)DI—N,-:D],-

return x — N

M-

((opip = r) = N;);

AlE=D

Example 2: generators

Effect signature
{send : Nat — 1}

Example 2: generators

Effect signature
{send : Nat — 1}

A simple generator

nats : Nat — 1!(E & {send : Nat — 1})
nats n = send n; nats (n + 1)

Example 2: generators

Effect signature
{send : Nat — 1}

A simple generator

nats : Nat — 1!(E & {send : Nat — 1})
nats n = send n; nats (n + 1)

Handler — a function that returns a handler

until : Nat — 1!I(E @ {send : Nat — 1}) = List Nat!E
until stop =
return () —]
(sendn — r) — if n < stop then n:: r ()
else [|

Example 2: generators

Effect signature
{send : Nat — 1}

A simple generator

nats : Nat — 1!(E & {send : Nat — 1})
nats n = send n; nats (n + 1)

Handler — a function that returns a handler

until : Nat — 1!I(E @ {send : Nat — 1}) = List Nat!E

until stop =
return () —]
(sendn — r) — if n < stop then n:: r ()

else [|

handle nats0 with until8 = [0,1,2,3,4,5,6,7]

Example 3: lightweight threads

Effect signature
{yield : 1 — 1}

Example 3: lightweight threads

Effect signature
{yield : 1 — 1}

Two cooperative lightweight threads

tA () = print (“Al "); yield (); print ("A2 ")
t8() = print ("B1 ");yield (); print ("B2 ")

Example 3.1: lightweight threads (deep handlers)

Types
Thread E =1 — 1!(E W {yield : 1 — 1}) Res E =1 — List (Res E) — 11E
Handler
coop : 1!(Thread E) = (List (Res E) — 1!E)
coop = return () — Ars.case rs of || — ()
(rers)y—r()rs
(yield () — s) — Ars.case rs of] — s ()]
(rers) = r () (rs++[s])
lift : Thread E — Res E cooperate : List (Thread E) — 11E

lift t = A().handle t() with coop cooperate ts = lift id () (map lift ts)

Example 3.1: lightweight threads (deep handlers)

Types
Thread E =1 — 1!(E W {yield : 1 — 1}) Res E =1 — List (Res E) — 11E
Handler
coop : 1!(Thread E) = (List (Res E) — 1!E)
coop = return () — Ars.case rs of || — ()
(rers)y—r()rs
(yield () — s) — Ars.case rs of] — s ()]
(rers) = r () (rs++[s])
lift : Thread E — Res E cooperate : List (Thread E) — 11E
lift t = A().handle t() with coop cooperate ts = lift id () (map lift ts)

cooperate [tA, tB] = ()
Al B1 A2 B2

Example 3.2: lightweight threads (parameterised handlers)
Types

Thread E =1 — 1!(E W {yield : 1 — 1}) Res E = List (Res E) — 1 — 1lE

Handler — parameterised handler

coop : List (Res E) — 1I(E W {yield : 1 - 1}) = 1lE

coop ([]) = coop (r::rs) =
return () — () return () — rrs()
(yield () >) = 1) {yield () = ') = r (1 ++ []) ()
lift : Thread E — Res E cooperate : List (Thread E) — 1IE

lift t = Ars ().handle t() with coop rs cooperate ts = lift id (map lift ts) ()

Example 3.2: lightweight threads (parameterised handlers)
Types

Thread E =1 — 1!(E W {yield : 1 — 1}) Res E = List (Res E) — 1 — 1lE

Handler — parameterised handler

coop : List (Res E) — 1I(E W {yield : 1 - 1}) = 1lE

coop ([]) = coop (r::rs) =
return () — () return () — rrs()
(yield () >) = 1) {yield () = ') = r (1 ++ []) ()
lift : Thread E — Res E cooperate : List (Thread E) — 1IE
lift t = Ars ().handle t() with coop rs cooperate ts = lift id (map lift ts) ()

cooperate [tA, tB] = ()
Al B1 A2 B2

Parameterised effect handlers

rEM:C r=v:p rFH:P—-C=D
I+~ handle M with HV : D

Ng:P,x:AEN:D
[op; : Ai — B; € E]; [M,p:Ai,q:P,r:P— B —DFN;:DJ
Ag.return x — N
({opi p = r) = Nj);i

M+ P — AlE=D

handle E[op V] with H ~» Ny, [V/p, (Ax g.handle £[x] with H q)/r], op#¢&

Parameterised effect handlers

rEM:C r=v:p rFH:P—-C=D
I+~ handle M with HV : D

Ng:P,x:AEN:D
[op; : Ai — B; € E]; [M,p:Ai,q:P,r:P— B —DFN;:DJ
Ag.return x — N
({opi p = r) = Nj);i

M+ P — AlE=D

handle E[op V] with H ~» Ny, [V/p, (Ax g.handle £[x] with H q)/r], op#¢&

Exercise: express parameterised handlers as deep handlers

Example 3.3: lightweight threads (shallow handlers)

Types
Thread E =1 — 1/(E W {yield : 1 — 1}) Res E = Thread E

Handler — shallow handler
cooperate : List (Thread E) — 11E
cooperate [= () cooperate (r :: rs) = handle r() with

return () +— cooperate (rs)
(yield () — s) +— cooperate (rs +- [s])

Example 3.3: lightweight threads (shallow handlers)

Types
Thread E =1 — 1/(E W {yield : 1 — 1}) Res E = Thread E

Handler — shallow handler
cooperate : List (Thread E) — 11E
cooperate [= () cooperate (r :: rs) = handle r() with

return () +— cooperate (rs)
(yield () — s) +— cooperate (rs +- [s])

cooperate [tA, tB] = ()
Al B1 A2 B2

Deep effect handlers

r,X:Al—N:D [Op,-:A,'—»B,'EE],' [F,p:A,-,r:B,-—>DI—N,-:D],-

return x — N
M= CAlE= D
({op; p = r) = N;);

handle E[op V] with H ~» Ny [V/p, (Ax.handle E[x] with H)/r], op#¢&

Deep effect handlers

r,X:Al—N:D [Op,-:A,'—»B,'EE],' [F,p:A,-,r:B,-—>DI—N,-:D],-

return x — N
M= CAlE= D
({op; p = r) = N;);

handle E[op V] with H ~» Ny [V/p, (Ax.handle E[x] with H)/r], op#¢&

The body of the resumption r reinvokes the handler

Deep effect handlers

r,X:Al—N:D [Op,-:A,'—»B,'EE],' [F,p:A,-,r:B,-—>DI—N,-:D],-

return x — N
M= CAlE= D
({op; p = r) = N;);

handle E[op V] with H ~» Ny [V/p, (Ax.handle E[x] with H)/r], op#¢&

The body of the resumption r reinvokes the handler

A deep handler performs a fold (catamorphism) on a computation tree

Shallow effect handlers

Nx:AEN:D [op; : Aj = B;j € E]; [[,p:A;,r:B — AEE N;:DJ;

return x — N
M- AlE = D
((opip — r) — N;);

handle E[op V] with H ~ N [V/p, (Ax.E[x])/r], op#E

Shallow effect handlers

Nx:AEN:D [op; : Aj = B;j € E]; [[,p:A;,r:B — AEE N;:DJ;

return x — N
AlE = D
((opip — r) — N;);

handle E[op V] with H ~ N [V/p, (Ax.E[x])/r], op#E

The body of the resumption r does not reinvoke the handler

Shallow effect handlers

Nx:AEN:D [op; : Aj = B;j € E]; [[,p:A;,r:B — AEE N;:DJ;

return x — N
AlE = D
((opip — r) — N;);

handle E[op V] with H ~ N [V/p, (Ax.E[x])/r], op#E

The body of the resumption r does not reinvoke the handler

A shallow handler performs a case-split on a computation tree

Shallow effect handlers

Nx:AEN:D [op; : Aj = B;j € E]; [[,p:A;,r:B — AEE N;:DJ;

return x — N
AlE = D
((opip — r) — N;);

handle E[op V] with H ~ N [V/p, (Ax.E[x])/r], op#E

The body of the resumption r does not reinvoke the handler
A shallow handler performs a case-split on a computation tree

Exercise: express shallow handlers as deep handlers

Example 5: lightweight threads with UNIX-style fork

Effect signature

CoU E = Ew{yield: 1 - 1, ufork:1 — Bool}

Example 5: lightweight threads with UNIX-style fork

Effect signature

CoU E = Ew{yield: 1 - 1, ufork:1 — Bool}
A single cooperative program
main : 1 — CoU E!1

main () = print “M1 ";if ufork () then print “Al ";yield (); print “A2 "
else print “M2 "; if ufork () then print “B1 ";yield (); print "B2 " else print “M3 "

Example 5: lightweight threads with UNIX-style fork
Types
Thread E=1— CoU E!1 Res E = List (Res E) — 1 — 1IE

Parameterised handler

coop : List (Res E) — CoU E!1 = 11E

coop ([]) = coop (r::rs) =
return () — () return () = rrs()
(yield () = r’) = r"[]() (vield () = r) = r(rs+[r]) ()

(ufork () = r') — r'[Ars().r' rsff] (ufork () — r') — ' (r::rs +H [Ars().r' rsff])
tt tt

Example 5: lightweight threads with UNIX-style fork
Types
Thread E=1— CoU E!1 Res E = List (Res E) — 1 — 1IE

Parameterised handler

coop : List (Res E) — CoU E!1 = 11E

coop ([]) = coop (r::rs) =
return () — () return () = rrs()
(yield () = r’) = r"[]() (vield () = r) = r(rs+[r]) ()
(ufork () = r') — r'[Ars().r' rsff] (ufork () — r') — ' (r::rs +H [Ars().r' rsff])
tt tt

cooperate [main] = ()
M1 Al M2 B1 A2 M3 B2

Example 5: lightweight threads with UNIX-style fork
Types
Thread E=1— CoU E!1 Res E = List (Res E) — 1 — 1IE

Parameterised handler

coop : List (Res E) — CoU E!1 = 11E

coop ([]) = coop (r::rs) =
return () — () return () = rrs()
(yield () = r') = r"[1() (vield () = r) = r(rs+[r]) ()

(ufork () = ') — r'[Ars().r' rstt] (ufork () — ') — r'(r::rs ++ [Ars().r' rstt])
ff ff

Example 5: lightweight threads with UNIX-style fork
Types
Thread E=1— CoU E!1 Res E = List (Res E) — 1 — 11E

Parameterised handler

coop : List (Res E) — CoU E!1 = 11E

coop([]) = coop(r::rs) =
return () — () return () — rrs()
(yield () = r') — r"[1() (yield () = r') — r(rs ++[r']) ()
(ufork () = 'y = r'[Ars().r' rstt] (ufork () = 'y — ' (r::rs ++ [Ars().r' rstt])
ff ff

cooperate [main] = ()
M1 M2 M3 Al B1 A2 B2

Example 6: lightweight threads with higher-order fork

Effect signature — recursive effect signature

Co E=E4{yield:1—1, fork:(1—1lCo E) —» 1}

Example 6: lightweight threads with higher-order fork

Effect signature — recursive effect signature
Co E = Ew{yield: 1 1, fork: (1 — 1Co E) —» 1}
A single cooperative program
main: 1 — 11Co E

main () = print “M1 "; fork (A().print "A1 ";yield (); print "A2 ");
print “M2 "; fork (A().print “B1 "; yield (); print “B2 "); print “M3 "

Example 6: lightweight threads with higher-order fork

Types
Thread E=1— 1ICo E Res E = List (Res E) — 1 — 1lE

Parameterised handler

coop : List (Res E) — 11Co E = 1lE

coop ([]) = coop (r::rs) =
return () — () return () = rrs()
(vield () = r') = '] () (vield () = r) = r (rs +[r']) ()

(forkt = r') = lifte [] () (forke —r') = lifte (reors ++[]) ()

Example 6: lightweight threads with higher-order fork

Types
Thread E=1— 1ICo E Res E = List (Res E) — 1 — 1lE

Parameterised handler

coop : List (Res E) — 11Co E = 1lE

coop ([]) = coop (r::rs) =
return () — () return () = rrs()
(vield () = r') = '] () (vield () = r) = r (rs +[r']) ()

(forkt = r') = liftt[] () (forkt = r) = lifte (rrs 4+ [F]) ()

cooperate [main] = ()
M1 Al M2 B1 A2 M3 B2

Example 6: lightweight threads with higher-order fork

Types
Thread E=1— 1ICo E Res E = List (Res E) — 1 — 1lE

Parameterised handler

coop : List (Res E) — 11Co E = 1lE

coop ([]) = coop (r::rs) =
return () — () return () = rrs()
(vield () = r') = "1 () (vield () = r) = r (rs +[r']) ()

(forkt — r') — r[liftt]() (forkt —r') — r'(r:rs++[liftt]) ()

Example 6: lightweight threads with higher-order fork

Types
Thread E=1— 11Co E Res E = List (Res E) -1 — 11E

Parameterised handler

coop : List (Res E) — 1!Co E = 1lE

coop ([]) = coop(r::rs) =
return () — () return () — rrs()
(yield () = r') = r"[1 () (yield () = r') = r(rs + [F']) ()

(forkt = r'y — r[liftt]() (forkt = r'y — r'(r=rs+[liftt]) ()

cooperate [main] = ()
M1 M2 M3 Al B1 A2 B2

Example 6: pipes

Effect signatures

Sender = {send : Nat — 1} Receiver = {receive : 1 — Nat}

Example 6: pipes

Effect signatures
Sender = {send : Nat — 1}
A producer and a consumer

nats : Nat — 1!(E & Sender)
nats n = send n; nats (n + 1)

Receiver = {receive : 1 — Nat}

grabANat : 1 — Nat!(E & Receiver)
grabANat () = receive ()

Example 6: pipes

Effect signatures
Sender = {send : Nat — 1} Receiver = {receive : 1 — Nat}
A producer and a consumer

nats : Nat — 1!(E & Sender) grabANat : 1 — Nat!(E & Receiver)
nats n = send n; nats (n + 1) grabANat () = receive ()

Pipes and copipes as shallow handlers

pipe p ¢ = handle c () with copipe ¢ p = handle p () with
return x — X return x — X
(receive () — r) > copiperp (sendn — r) +— piper (X().cn)

Example 6: pipes

Effect signatures
Sender = {send : Nat — 1} Receiver = {receive : 1 — Nat}
A producer and a consumer

nats : Nat — 1!(E & Sender) grabANat : 1 — Nat!(E & Receiver)
nats n = send n; nats (n + 1) grabANat () = receive ()

Pipes and copipes as shallow handlers

pipe p ¢ = handle c () with copipe ¢ p = handle p () with
return x — X return x — X
(receive () — r) > copiperp (sendn — r) +— piper (X().cn)

pipe (A\().nats0) grabANat ~~ copipe (Ax.x) (A().nats0)
~ pipe (A()nats 1) (A().0) ~* 0

Example 6: pipes

Effect signatures
Sender = {send : Nat — 1} Receiver = {receive : 1 — Nat}
A producer and a consumer

nats : Nat — 1!(E & Sender) grabANat : 1 — Nat!(E & Receiver)
nats n = send n; nats (n + 1) grabANat () = receive ()

Pipes and copipes as shallow handlers

pipe p ¢ = handle c () with copipe ¢ p = handle p () with
return x — X return x — X
(receive () — r) > copiperp (sendn — r) +— piper (X().cn)

pipe (A\().nats0) grabANat ~~ copipe (Ax.x) (A().nats0)
~ pipe (A()nats 1) (A().0) ~* 0

Exercise: implement pipes using parameterised handlers

Built-in effects

Console I/0O
Console = {inch : 1 — char
ouch : char — 1}

print s = map (Ac.ouch ¢) s; ()

Generative state
GenState = {new : a. a — Ref a,
write : a. (Refa x a) - 1,
read : a. Ref a — a}

Example 7: actors
Process ids
Pid a = Ref (List a)
Effect signature

Actor a = {self 1 — Pid a,
spawn : b. (1 — 1!Actor b) — Pid b,
send : b. (b x Pid b) — 1,
recv 1— a}

Example 7: actors
Process ids
Pid a = Ref (List a)
Effect signature

Actor a = {self 1 — Pid a,
spawn : b. (1 — 1!Actor b) — Pid b,
send : b. (b x Pid b) — 1,
recv 1— a}

An actor chain

spawnMany : Pid String — Int — 1!(E W Actor String)
spawnMany p 0 = send (“ping!”, p)
spawnMany p n = spawnMany (spawn (A().let s = recv () in print “.";send (s, p))) (n — 1)

chain : Int — 1!(E & Actor String & Console)
chain n = spawnMany (self ()) n; let s = recv () in prints

Example 7: actors — via lightweight threads

act : Pida — 1!(E W Actor a) = 1!Co (E & GenState)

act mine = return () — ()
(self () = r) — r mine mine
(spawn you — r) — let yours = new [] in

fork (A().act yours (you ())); r mine yours
(send (m, yours) — r) +— let ms = read yours in
write (yours, ms ++ [m]); r mine ()
(recv () — r) — letrec recvWhenReady () =
case read mine of
(] — yield (); recvWhenReady ()
(m :: ms) — write (mine, ms); r mine m
in recvWhenReady ()

Example 7: actors — via lightweight threads

act : Pida — 1!(E W Actor a) = 1!Co (E & GenState)

act mine = return () — ()
(self () = r) — r mine mine
(spawn you — r) — let yours = new [] in

fork (A().act yours (you ())); r mine yours
(send (m, yours) — r) +— let ms = read yours in
write (yours, ms ++ [m]); r mine ()
(recv () — r) — letrec recvWhenReady () =
case read mine of
(] — yield (); recvWhenReady ()
(m :: ms) — write (mine, ms); r mine m
in recvWhenReady ()

cooperate [handle chain 64 with act (new [])] = ()

Effect handler oriented programming languages

Eff
Effekt
Frank

Helium

Links
Koka
Multicore OCaml

https://www.eff-lang.org/
https://effekt-lang.org/
https://github.com /frank-lang/frank
https://bitbucket.org/pl-uwr /helium

https://www.links-lang.org/
https://github.com /koka-lang/koka
https://github.com /ocamllabs/ocaml-multicore /wiki

https://www.eff-lang.org/
https://effekt-lang.org/
https://github.com/frank-lang/frank
https://bitbucket.org/pl-uwr/helium
https://www.links-lang.org/
https://github.com/koka-lang/koka
https://github.com/ocamllabs/ocaml-multicore/wiki

Resources

The EHOP project website: https://effect-handlers.org/
Jeremy Yallop's effects bibliography
_ https://github.com /yallop/effects-bibliography

Matija Pretnar's tutorial
“An introduction to algebraic effects and handlers”, MFPS 2015

Andrej Bauer's tutorial
“What is algebraic about algebraic effects and handlers?”, OPLSS 2018

% Daniel Hillerstrom’s PhD thesis
' “Foundations for programming and implementing effect handlers”, 2022

https://effect-handlers.org/
https://github.com/yallop/effects-bibliography

