Reasoning with Weak Memory

An Introduction

Susmit Sarkar

University of St Andrews

SPLV: July 2022

Memory: a basic abstraction

Ever since von Neumann/Turing (arguably even Babbage):

Processor

Store | | Load

Memory

EDVAC - picture credit Wikipedia

Another old idea: Multiprocessors

Parallel hardware/concurrent programs

Another old idea: Multiprocessors

Parallel hardware/concurrent programs

BURROUGHS D825, 1962

Picture credit: Burroughs Corporation

Outstanding features include truly modular hardware with parallel
processing throughout.

FUTURE PLANS 3
The complement of compiling languages is to be expanded.

Shared Memory

For variety of reasons, shared memory multiprocessors are now everywhere

Different threads communicate via shared memory

Aside: Message-passing hardware explored, but not mainstream

Key Question: What view does each thread have of shared memory?

Sequential Consistency

..the result of any execution is the same
as if the operations of all the processors
were executed in some sequential order,
respecting the order specified by the pro-
gram.

[Lamport, 1979]

i /W,_,"Z'T‘ e

Sequential Consistency

| Thread 0] [Thread 1| [Thread 2] |Thread 3]

[(Shared) Memory }

e Traditional assumption (concurrent algorithms, semantics,
verification): Sequential Consistency (SC)

@ Implies: can use interleaving semantics

o Note: Optimisations allowed, as long as results “as if" linear order

Sequential Consistency

Thread 1 ‘

‘ Thread 2

(Shared) Memory

e Traditional assumption (concurrent algorithms, semantics,
verification): Sequential Consistency (SC)

@ Implies: can use interleaving semantics

o Note: Optimisations allowed, as long as results “as if" linear order

e False on modern (since 1972) multiprocessors, or with optimizing
compilers

Our world is not SC

Not since IBM System 370/158MP (1972)
...... Nor in x86, ARM, POWER, RISC-V, SPARC, or Itanium, ..

...... Nor in C, C++, Java, JavaScript, ..

Example: Mutual Exclusion

At heart of mutual exclusion algorithm (Dekker's, Peterson's)
there is usually code like:

Initially: tOwants = FALSE; tlwants = FALSE;
Thread 0 Thread 1
tOwants = TRUE; tlwants = TRUE;

if (NOT tilwants) { |if (NOT tOwants) {
{ ..CRITICAL1 }; { ..CRITICAL2 };

@ Does it work?

Example: Mutual Exclusion Litmus Test

Distilling that example

Initially: x=0; y=0;

Thread 0 Thread 1
x :=1; y = 1;
o = Vs ry = X;
Finally: o =0A =077

@ Forbidden on SC (no interleaving allows that result)

On actual hardware?

We use the 1itmus7 tool (diy.inria.fr, Alglave and Maranget)
SB.litmus

X86 SB

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

PO | P1 ;
MOV [x],$1 | MOV [yl,$1 ;
MOV EAX, [y] | MOV EAX, [x] ;
locations [x;y;]

exists (0:EAX=0 /\ 1:EAX=0)

diy.inria.fr

Test Results

$ litmus7 SB.litmus

[...]

Histogram (4 states)

14

*¥>0:rax=0; 1:rax=0;
499983:>0:rax=1; 1:rax=0;
499949:>0:rax=0; 1:rax=1;

54

:>0:rax=1; 1l:rax=1;

[...]

Observation SB Sometimes 14 999986
[...]

14 in 1e6 (Intel Core i7)

10

Test Results

$ litmus7 SB.litmus

[...]

Histogram (4 states)
7136481

:> 0:X2=0; 1:X2=0;
596513783:> 0:X2=0; 1:X2=1;
596513170:> 0:X2=1; 1:X2=0;

36566

> 0:X2=1; 1:X2=1;

[...]

Observation SB Sometimes 7136481 1193063519
[...]

7e6 in 1.2e9 on Apple A10 (iPhone7)

11

What's going on here?

Multiprocessors (and compilers) incorporate many
performance optimisations

(local store buffers, cache hierarchies, speculative execution,
common subexpression elimination, hoisting code above loops, ...)

These are:
@ unobservable by single-threaded code;
@ sometimes observable by concurrent (multi-threaded) code

12

What's going on here?

Multiprocessors (and compilers) incorporate many

(local stq Upshot:

common

No longer a sequential consistent memory model

These ar| .
Instead, only a weak (consistency) (or relaxed)
LA LILY memory model
@ som

12

Weak Memory Consistency Models

Real memory consistency models are subtle
Real memory consistency models differ between architectures

Real memory consistency models differ between languages

Real memory consistency models make SC concurrent reasoning
unsound

Research Opportunity!

13

Why Care? — A Motivating Tale

Kernel Traffic #47 For
20 Dec 1999

14

Why Care? — A Motivating Tale

Kernel Traffic #47 For
20 Dec 1999

T

Manfred Spraul:

"

We can shave spin_unlock()
down from about 22 ticks [
for the “lock; btrl $0, %0"
asm code, to 1 tick for a simple
“movl $0, %0" instruction, a
huge gain.

i

77 Ll
i

14

Why Care? — A Motivating Tale

Ingo Molnar:

4% speedup in a benchmark
test, making the optimization
very valuable. The same op- |nlock()
timization cropped up in the [22 ticks

FreeBSD mailing list. $0, %0"
f a simple

N “movl $0, %0" instruction, a [

huge gain. F

14

Why Care? — A Motivating Tale

]

Linus Torvalds:

Ingo Molnar:

4% speedup in a beng
test, making the optim
very valuable. The san|

timization Ctjc?ppe(.i up Let the FreeBSD people use it,
FreeBSD mailing list. and let them get faster timings.
They will crash, eventually.

‘movl $0, As a completely made up exam-
huge gain. ple, ..

It does NOT WORK!

14

y Care? — A Motivating Tale

Manfred Spraul:
..according to the Pentium Processor Family Developers Man-
ual, VolI3, Chapter 19.2 Memory Access Ordering, “to optimize

1
performance, the Pentium processor allows memory reads to be PRK!
reordered ahead of buffered writes in most situations. Internally, ble use it,
CPU reads (cache hits) can be reordered around buffered writes. F timings.
Memory reordering does not occur at the pins, reads (cache miss) ua”y
and writes appear in-order. up exam-

Your example cannot happen.
L

14

Why Care? — A Motivating Tale

Manfred Spraul:

performance, the Pgq
reordered ahead of |
CPU reads (cache h
Memory reordering d

and writes appear i

Your

..according to the Pentium Processor Family Developers Man-

ual, VolI3, Chapter 19.2 Memory Access Ordering, “to optimize

DRK1

Linus Torvalds:

from the Pentium Pro manual, “The only enhancement
in the PentiumPro processor is the added support for
speculative reads and store-buffer forwarding.”

A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you'll never see the problem.

14

Why Care? — A Motivating Tale

Manfred Spraul:

Jeff V. Markey:

DRK1

| have seen the behavior Linus describes on a hard-
ware analyzer, BUT ONLY ON SYSTEMS THAT
WERE PPRO AND ABOVE. | guess the BSD peo- |ly enhancement
. . ded support for
ple must still be on older Pentium hardware and |yi,g»

that's why they don’t know this can bite in some fout any of the
cases. p on a Pentium

14

Why Care? — A Motivating Tale

Manfred Spraul:

Jeff V. Markey:

DRK1

| have seen the behavior Llnus descrlbes on a hard—
ware analyzer, BUT Q™ B
WERE PPRO AND A
ple must still be on ¢
that's why they don’t
cases.

Erich Boleyn (Architect, Intel):

It will always return 0. You don't need
“spin_unlock()" to be serializing.

L_ —— J'_)

14

Why Care? — A Motivating Tale

(

Linus Torvalds:

| feel comfortable again.

DRK1

Thanks, guys, we'll be that much | 5 hard-
faster due to this... “ea

, Erich Boleyn (Architect, Intel):
ple must still be on ¢

that's why they don’t
cases.

It will always return 0. You don't need
“spin_unlock()" to be serializing.

1|

14

Lecture Plan

@ Introduction

© SC and x86-TSO Memory Models

e ARM, Power, RISC-V Memory Models

e Programming Language Memory Models: C11 and Release Acquire

© What next? Reasoning over Weak Memory Models

15

Recall: Dekker/SB test

Initially: x=0; y=0;

Thread 0 Thread 1
x :=1; y :=1;
rg = §; r1 = X3
Finally: o =0 Ar =077

@ Forbidden on SC
@ Observed on x86

@ How come?

16

Microarchitecture Interlude: Store Buffering

Storing to memory is expensive

Thread has to gain exclusive ownership of location

In practice, thread buffers stores

..letting the thread go ahead if it can

@ We think x86 has FIFO store buffers

17

An Explanation
Thread 0 Thread 1

; , x =y = 0 initially
TO's Tl's Thread 0 | Thread 1
Store Store =3 y =1
Buffer Buffer ro =y ro=x
[(Shared) Memory }

18

Initially: x=0; y=0;
Thread 0 Thread 1
x :=1; VA=
Tro = X; T3 1= y;
o := y; r| = x;
Finally: g =0ArH=0Ar=0Ars =077

Another Test: SB+rfi-pos

@ Not observed on x86

@ Threads required to read from local store buffer

19

Regaining order when needed

@ Suppose you wanted to program, e.g. mutual exclusion

@ Need to regain strong ordering

@ MFENCE memory barrier

20

Fences: SB-+mfences

Initially: x=0; y=0;

Thread 0 Thread 1
x :=1; VA=
MFENCEQ) ; MFENCEQ) ;
rg = V; ri = X;
Finally: o =0 A =077

@ Not observed on x86

@ Store buffer must be emptied (flushed) at fence

21

@ x86 is very much not RISC

@ Instructions like INCrement
@ Can be made atomic by using a LOCK prefix
@ ..in the early days, literally locked the bus

22

x86 is very much not RISC

Instructions like INCrement

Can be made atomic by using a LOCK prefix

..in the early days, literally locked the bus

Instructions like LOCK CMPXCHG

Atomic (either exchanges if memory as expected, or not)

22

x86 is very much not RISC

Instructions like INCrement

Can be made atomic by using a LOCK prefix

..in the early days, literally locked the bus

Instructions like LOCK CMPXCHG

Atomic (either exchanges if memory as expected, or not)

Store Buffers must be empty

Note: fence effect

22

x86-TSO: An abstract machine

Thread Thread
e o o

Store Store
e 0 o
Lock Buffer Buffer
[Shared Memory }

23

x86-TSO: An abstract machine
[Threads in order J

Global lock for exclusive . ee \’Tead‘

memory access

Store
Lok FIFO Store Buffer Buffer
per thread
T T #
[Shared Memory j

23

machine

Thread co o Thread
ﬁ 1 |

Store Store 2 b e h

Lock Buffer Buffer

[l Shared Memory l] # h W

Force: Of the internal optimizations of processors, only per-thread FIFO
write buffers are visible to programmers.

Still quite a loose spec: unbounded buffers, nondeterministic
unbuffering, arbitrary interleaving

24

Formalising Models

Syntactic Domains:

r Local variables
X Shared locations
v Values (integers)
Commands:
e = rlv]je+t+el.
c = skip|ca;a|ri=e|r=x|x:=e
if r then ¢ | ..
Programs:
pi=ci|...|cn

25

Operational Models

@ We sketched an abstract machine
@ Relatable to microarchitectural intuitions

e Formalised as a (Labelled) Transition System

26

Formalisation: Outcomes

@ The transition system has states, initialised to initial values

@ Behaviour is a function on the final state (representing a final
observation)

o A satisfying state is reachable iff behaviour allowed

27

Model Structure

Typically, (inspired by microarchitectural intuitions):

Separate
Thread subsystem (what the thread knows and can execute by itself)
from

Storage subsystem (what the interconnection knows and can execute)

Synchronising when they communicate (hence the labels)

28

Model Structure

Typically, (inspired by microarchitectural intuitions):

Separate
Thread subsystem (what the thread knows and can execute by itself)
from

Storage subsystem (what the interconnection knows and can execute)

Synchronising when they communicate (hence the labels)

Not a forced decision (we can divide responsibility almost arbitrarily)
..but turns out simpler to abstract actual hardware

28

Sequential Consistency, Operationally — 1

Thread subsystem: execute thread local operations in order

T-Store

t: Wixv .
x :=v,s —— skip, s

- T-Load
ri=x,s =% skip, s[r — (v)]

and rules for composition and local (silent) transitions

29

Sequential Consistency, Operationally — 2

Storage subsystem: state is just a
Memory M : loc — val

W SCS-Store
M E2Y Mix — v]
M(x)=v
TSCS—Load
M t:Rxv M

Thread and storage subsystems synchronise when their labels match
(and can take silent transitions when they are unlabelled transitions)

30

x86-TSO, Operationally — 1

Same thread subsystem as in SC

Storage subsystem: store is a combination of
@ Memory M : loc — val
o Buffers B : threadid — (loc x val)*

31

x86-TSO, Operationally — 2

Important storage subsystem rules:

TSOS-Store
(M, B) E22% (M, B[t — (x,v) - B(t)])
B(t)=b-(x,v)

(M, B) < (M[x ~ v], B[t — b])

TSOS-Mem

M(x) = v B(t) is free of loc x

t:Rxv

(M, By —— (M, B)

TSOS-LoadMem

B(t) = b1 - (x,v) - by by is free of loc x

t:Rxv

(M, By —— (M, B)

TSOS-LoadBuf

32

Axiomatic Models

@ Can be much more abstract in modeling

e Axiomatic (or declarative) models are very different in style

33

Axiomatic Models

Can be much more abstract in modeling

Axiomatic (or declarative) models are very different in style

@ The idea: consider candidate executions of a program, containing all
events (memory events) in one execution

@ Have a set of rules (axioms) to say if each such is legal

33

Axiomatic Models

@ Can be much more abstract in modeling
e Axiomatic (or declarative) models are very different in style

@ The idea: consider candidate executions of a program, containing all
events (memory events) in one execution

@ Have a set of rules (axioms) to say if each such is legal

@ Turns out most axioms can be phrased as
rules over binary relations and their composition (algebra of relations)

33

Candidate Executions - Part 1

A candidate execution is: a set of memory events (stores, loads, fences
etc), together with ..

the memory events corresponding to a complete execution path through
each thread

with loads getting some values

34

[[lustration

x =y = 0 initially
Thread 0 | Thread 1
x:=1 y:=1

rg =Yy r =X
Execution 1 Execution 2
iWx0e eiWy0 iWx0e eiWy0

0: Wx1le el: Wyl 0: Wx1le el: Wyl

0: RyOe e1: Rx0 0:Ryle ®1: Rx42

35

Candidate Executions - Part 2

A candidate execution is: a set of memory events (stores, loads, fences
etc), together with relations:

@ program-order (po);
@ reads-from (rf);

Reads-from relates a Store to a Load that gets its value

36

[llustration — 2

x =y = 0 initially
Thread 0 | Thread 1
x:=1 y:=1

rg :=y r:=x
Execution 1 Execution 2 L
W x 0 itWyo0 iWx0e eiWy0

0: Wx1le el: Wyl O:let/l:Wyl
1: Rx0 0: Ryl e 1: Rx42

0: RyO

37

An axiomatic SC model

Suppose E is a candidate execution

If there is a total order S on the events of E;

such that E.po C S; and

E.rf CS; and

if (W, R) € E.rf then there is no W’ # W to the same location between
W and R in S;

then E is SC-consistent

Basically Lamport’s definition: “some sequential order, respecting the
order specified by the program.”

38

Execution Candidate (last piece): Coherence Order

Coherence order (co): For every location, a linear order of stores to that
location

All common hardware platforms ensure there is one such order per location
such that all observations are consistent with the order

..Because hardware (cache protocols) are designed for this

39

Coherence implications

This leads to an important derived relation:

fr=rf1 co

Intuition: reads-before in coherence order

40

An alternative axiomatic SC model

Suppose E is a candidate execution
If (E.po | E.rf | E.co | E.fr)" is acyclic,
then E is SC-consistent

Equivalent to Lamport's definition

41

Alternative model advantages

Phrased as an acyclicity check
This lets us generate tests which have cycles in certain relations

The diy7 tool will let us generate litmus tests from such a definition

0: W x 1: Wy
fr
po po
0:Ry fr 1: R x

42

Alternative model advantages

Phrased as an acyclicity check
This lets us generate tests which have cycles in certain relations

The diy7 tool will let us generate litmus tests from such a definition

i:WXQf 5] iWyo0

42

Axiomatic vs Operational

Axiomatic Models
@ Easier to state
@ Checking behaviour is easier

@ Entire executions; modularising is not obvious

Operational Models
@ State machine intuition
@ Abstracts machine behaviour

@ Can perform incremental calculation

43

Relating the Models

Naturally, want both styles
..and want them to be equivalent

Operationally allowed behaviours should all be axiomatically allowed
(look at traces)

Axiomatically allowed behaviours should all be operationally allowed
(use nondeterminism in operational models)

44

An axiomatic x86-TSO model

x86-TSO has a more complex (than SC) model, but not much more

Essentially have to account for:

@ Store-to-Load on same thread is not part of globally enforced order
@ Loads get ordered only if they see a value from other threads
@ Same-thread coherence violations are not allowed

@ Fences order everything before to everything after

See x86tso0.cat distributed with herd7 for more details

45

@ Introduction

@ SC and x86-TSO Memory Models

e ARM, Power, RISC-V Memory Models

@ Programming Language Memory Models: C11 and Release Acquire

@ What next? Reasoning over Weak Memory Models

46

Weaker memory models

x86-TSO is a relatively strong memory model
SPARC is similar

IBM Power much weaker (more interesting)

ARM similar (since ARMv8 stronger in a particular way)
RISC-V “RVWMO" similar to ARMv8

47

Litmus test: Message Passing (MP)

Initially: d=0; f=0;
Thread 0 Thread 1
ARESRE while (f == 0)
f:=1; {};
r :=d;
Finally: r =077

Forbidden on SC
Forbidden on x86-TSO

Observed on Power7 (1.7G/167G)
..and on ARM Tegra3 (138k/16M)

48

Explaining MP via Microarchitecture

Three possible explanations (at least):
@ Thread core execution does stores out of order
@ Stores propagate between threads out of order

@ Thread core execution does loads out of order

Power and ARM and RISC-V can do all three

49

Initially: x=0; y=0;

Thread 0 Thread 1
o = Vs ry = X5
x :=1; y = 1;
Finally: o =1 Ar =177

@ SC and TSO forbid this
o ARM, Power, RISC-V allow this

@ ..though current hardware do not show this

50

Fences

@ All these architectures have a full fence like MFENCE

@ But also weaker fences which are (usually) cheaper to only stop some
reorderings

@ Power: lwsync only orders stores-to-stores, loads-to-loads and stores;
eieio only orders stores-to-stores

@ ARM: dmb.1d only orders loads-to-loads and stores;
dmb. st only orders stores-to-stores

@ RISCV: fence p,s for all combinations p,s C r, w

51

In MP, if the stores are somehow stopped from being reordered
(store-store fence), load reordering can still show us the questionable result

But usually, algorithms are written with some dependencies (when you do
a load and use the resulting value)

Some (but not all) dependencies are guaranteed to be respected by
hardware

..and some code (e.g. Linux RCU) does really depend on this

52

Address Dependency

value read by one load is used to calculate address of subsequent
load /store

Data Dependency
value read by one load is used to calculate value of subsequent store

53

Address Dependency

value read by one load is used to calculate address of subsequent
load /store

Data Dependency
value read by one load is used to calculate value of subsequent store

Control Dependency

value read by one load is used to calculate whether to perform subsequent
events

53

Address Dependency
value read by one load is used to calculate address of subsequent
load /store

Data Dependency
value read by one load is used to calculate value of subsequent store

Control Dependency

value read by one load is used to calculate whether to perform subsequent
events

Control-Isync Dependency

value read by one load is used to calculate whether to perform subsequent
events, with intervening isync

53

Address Dependency
value read by one load is used to calculate address of subsequent
load /store

Data Dependency

Va/ue rea,.l L. 1 A : A 4 1 las 1 £ L + ~4
Control . . .

@ Sometimes naturally in algorithm
value red ent
events @ "“Fake” dependencies respected as well

Control-Tsync Dependency
value read by one load is used to calculate whether to perform subsequent
events, with intervening isync

53

Microarchitectural explanation

@ Address dependency means the subsequent memory event cannot
be issued by the thread

o Data dependency means the subsequent store cannot be issued by
the thread

o Control dependency is respected for loads-to-store, as stores are not
speculated;
..but loads are (observably!) speculated by branch prediction;
load-to-load not respected

e Control-isync dependency is respected (all speculation is stopped)

54

Doing MP on POWER: MP-lwsync+-ctrlisync

Initially: d=0; f=0;
Thread 0 Thread 1

st d 1; loop: 1d f rtmp;

lwsync; cmp rtmp O;

st £ 1; beq loop;
isync;
1d d r;

Finally: r =077

@ Forbidden (and not observed) on POWER?7, and ARM

@ lwsync prevents store-store reordering

@ control-isync dependency prevents load speculation

55

Thread subsystem

(Unlike x86-TSO)
Power/ARM/RISC-V have very interesting thread subsystems

Allow reordering of memory accesses to different locations
Allow speculation past branches not (yet) known to be taken

Pay attention to dependencies

Forbid reordering across fences of appropriate kinds

56

Inter-thread communication

In x86-TSO, once a store becomes visible to one other thread, it becomes
visible to all other threads

On Power, that is not necessarily the case

Technically called lack of Multi-copy Atomicity

57

Litmus test: lterated Message Passing (WRC)

Initially: d=0; f=0;
Thread 0 Thread 1 Thread 2
d :=1; while (d == 0)|while (f == 0)
{}; {};
f :=1; isync(Q);
r :=d;
Finally: r =0 77

@ The dependencies forbid in-thread reordering

@ Observed on Power

58

Litmus test: lterated Message Passing (WRC)

Initially: d=0; f=0;
Thread 0 Thread 1 Thread 2
d := 1; while (d == 0)|while (f == 0)
{}; {};
f :=1; isync(Q);
r :=d;

Finally: r =0 77

@ Observed on Power

@ The dependencies forbid in-thread reordering

@ Store on d making its way to Thread 1 does not mean it has also
made its way to Thread 2

58

Cumulativity in non-Multi-Copy-Atomicity

To restore SC, fences have to do more than just stop reordering

“It's not just reordering”

Have to make sure current thread-local view is transferred with fence

Hardware folk like to call this “cumulative barriers”

59

Storage subsystem

For Power, the storage subsystem can just be combination of each thread's
local view of memory

Together with point-to-point communication
(no single point of truth aka memory)

60

Multi-Copy Atomicity

ARM used to be (ARMv7) non-multi-copy-atomic in architecture
Since ARMv8, now multi-copy atomic

Turns out their implementations were not utilising the freedom of the
specification

..and they think it is unnecessary

61

@ Introduction

@ SC and x86-TSO Memory Models

O ARM, Power, RISC-V Memory Models

e Programming Language Memory Models: C11 and Release Acquire

@ What next? Reasoning over Weak Memory Models

62

Programming Language Models

Program in higher level languages... are you safe?

© Has to be compiled to run on hardware

@ Furthermore, compiler can optimise as well

63

Message Passing, Again

Initially: data = 0; flag = 0;
Thread 0 Thread 1
data = 1; rog = data;
flag = 1; while (flag == 0)
{};
r = data;
Finally: r =10

64

Message Passing, Again

Initially: data = 0; flag = 0;
Thread 0 Thread 1
data = 1; rog = data;
flag = 1; while (flag == 0)
{};
r = ro;
Finally: r =10

@ Compiler doing Common Subexpression Elimination

@ Can produce unexpected results even on SC hardware

64

Data Race Free Models

Should you even be writing programs like that?
Idea: No! Programmer mistake to write Data Races

Basis of C11 Concurrency

65

DRF as a programming model

Programs that do not have races (race-free) have only SC behaviour
Programs that have a race in some execution are Bad

In C/C++ terms, undefined behaviour

66

Well, how do you avoid races?

Option 1: Only do “normal” shared-memory accesses guarded by
mutexes/locks

@ But how do we program locks?

@ How about optimisations?

Option 2: Syntactically mark synchronisation accesses
@ Since C11/C++11 called atomic accesses
@ .. Atomic (Node *) tin C, or std::atomic<Node *> t in C++;

@ These are treated specially by compilers

67

What about low-level algorithms?

C11 introduces marked atomic operations
Races on these are ignored

Can be given parameters (strengths)
Sequentially consistent (the default)
Release; Acquire; AcqRel

Consume

Relaxed

68

Happens-before

The C11 model is phrased as an axiomatic model
..with the key relation called happens-before
Nonatomic accesses unrelated by happens-before are data races (UB)

Relaxed accesses do not create happens-before, but do not create data
races

69

Release and Acquire

Happens-before between unlocks and subsequent locks
This is a very common pattern

Essentially, transfer view of one thread at the lock release to the thread
acquiring the lock

Release-acquire synchronisation abstracts this phenomenon (when an
acquire atomic load reads-from a release atomic store)

70

MP in C11: mark atomics

Mark atomic variables (accesses have memory order parameter)

Initially: d=0; f=0;

Thread 0 Thread 1
d.store(1,rlx); while (f.load(rlx) == 0)
f.store(1l,rlx); {};

r = d.load(rlx);

Finally: r =077

@ (Forbidden on SC) (also forbidden on TSO)
@ Defined, and possible, in C/C++11

@ Allows for hardware (and compiler) optimisations

71

MP in C11 (contd.): release-acquire synchronisation

Mark release stores and acquire loads

Initially: d=0; f=0;

Thread 0 Thread 1
d.store(1,rlx); while (f.load(acq) == 0)
f.store(1l,rel); {3;

r = d.load(rlx);

Finally: r =0 77

@ Forbidden in C/C++11 due to release-acquire synchronisation

@ Implementation must ensure result not observed

72

@ Introduction

@ SC and x86-TSO Memory Models

O ARM, Power, RISC-V Memory Models

@ Programming Language Memory Models: C11 and Release Acquire

© What next? Reasoning over Weak Memory Models

73

Working with Formal Memory Models

Can we implement the C11 model on hardware?
We can now prove correctness of implementation schemes
Compilers require this (they earlier sometimes got it wrong)

Shows correspondence of notions
@ Release-acquire synchronisation — Iwsync and ctrlisync
@ Transitive part of happens-before — cumulativity

74

Model Checking

@ Model checking of code is mature technology

@ In the concurrent setting, can detect race bugs (but state-space
explosion problems)

@ What happens with weak memory?

75

Model Checking over Weak Memory

@ Considering interleavings not sufficient
@ Operational models can be explored (nondeterministic interleavings of

transition systems

@ ..but state space has lots of (unnecessary?) machinery

76

Program Logics

@ Hoare-style assertion reasoning is mainstay of program verification

@ Concurrent Separation Logic is a huge success story in concurrent
verification

@ The standard “heap model” assumes SC

@ Not sound for weak memory

I

Program Logics over Weak Memory

e Can adapt heap model to weak memory (most successful for TSO-like
models)

@ Can transfer ideas in the opposite way: Release-Acquire is transferring
a “view"

@ Basis of several RA style logics (work ongoing to scale up to C11)

78

Much Exciting Research to be Done!

Thank you!

	Introduction
	SC and x86-TSO Memory Models
	ARM, Power, RISC-V Memory Models
	Programming Language Memory Models: C11 and Release Acquire
	What next? Reasoning over Weak Memory Models

