
Reasoning with Weak Memory
An Introduction

Susmit Sarkar

University of St Andrews

SPLV: July 2022

Memory: a basic abstraction

Ever since von Neumann/Turing (arguably even Babbage):

EDVAC – picture credit Wikipedia

Processor

Memory

Store Load

2

Another old idea: Multiprocessors
Parallel hardware/concurrent programs

BURROUGHS D825, 1962

Picture credit: Burroughs Corporation

Outstanding features include truly modular hardware with parallel
processing throughout.
FUTURE PLANS
The complement of compiling languages is to be expanded.

3

Another old idea: Multiprocessors
Parallel hardware/concurrent programs

BURROUGHS D825, 1962

Picture credit: Burroughs Corporation

Outstanding features include truly modular hardware with parallel
processing throughout.
FUTURE PLANS
The complement of compiling languages is to be expanded. 3

Shared Memory

For variety of reasons, shared memory multiprocessors are now everywhere

Different threads communicate via shared memory

Aside: Message-passing hardware explored, but not mainstream

Key Question: What view does each thread have of shared memory?

4

Sequential Consistency

…the result of any execution is the same
as if the operations of all the processors
were executed in some sequential order,
respecting the order specified by the pro-
gram.

[Lamport, 1979]

5

Sequential Consistency

Thread 0 Thread 1 Thread 2 Thread 3

(Shared) Memory

Traditional assumption (concurrent algorithms, semantics,
verification): Sequential Consistency (SC)
Implies: can use interleaving semantics
Note: Optimisations allowed, as long as results “as if” linear order

False on modern (since 1972) multiprocessors, or with optimizing
compilers

6

Sequential Consistency

Thread 0 Thread 1 Thread 2 Thread 3

(Shared) Memory

Traditional assumption (concurrent algorithms, semantics,
verification): Sequential Consistency (SC)
Implies: can use interleaving semantics
Note: Optimisations allowed, as long as results “as if” linear order

False on modern (since 1972) multiprocessors, or with optimizing
compilers

6

Our world is not SC

Not since IBM System 370/158MP (1972)

……Nor in x86, ARM, POWER, RISC-V, SPARC, or Itanium, …

……Nor in C, C++, Java, JavaScript, …

7

Example: Mutual Exclusion

At heart of mutual exclusion algorithm (Dekker’s, Peterson’s)
there is usually code like:

Initially: t0wants = FALSE; t1wants = FALSE;
Thread 0 Thread 1

t0wants = TRUE;
if (NOT t1wants) {
{ …CRITICAL1 };

t1wants = TRUE;
if (NOT t0wants) {
{ …CRITICAL2 };

Does it work?

Forbidden on SC (no interleaving allows that result)

8

Example: Mutual Exclusion Litmus Test

Distilling that example

Initially: x = 0; y = 0;
Thread 0 Thread 1

x := 1;
r0 := y;

y := 1;
r1 := x;

Finally: r0 = 0 ∧ r1 = 0 ??

Does it work?

Forbidden on SC (no interleaving allows that result)

8

On actual hardware?

We use the litmus7 tool (diy.inria.fr, Alglave and Maranget)
SB.litmus

X86 SB
"Fre PodWR Fre PodWR"
{ x=0; y=0; }
P0 | P1 ;
MOV [x],$1 | MOV [y],$1 ;
MOV EAX,[y] | MOV EAX,[x] ;
locations [x;y;]
exists (0:EAX=0 /\ 1:EAX=0)

9

diy.inria.fr

Test Results

$ litmus7 SB.litmus
[...]
Histogram (4 states)
14
*>0:rax=0; 1:rax=0;
499983:>0:rax=1; 1:rax=0;
499949:>0:rax=0; 1:rax=1;
54
:>0:rax=1; 1:rax=1;
[...]
Observation SB Sometimes 14 999986
[...]

14 in 1e6 (Intel Core i7)

10

Test Results

$ litmus7 SB.litmus
[...]
Histogram (4 states)
7136481
:> 0:X2=0; 1:X2=0;
596513783:> 0:X2=0; 1:X2=1;
596513170:> 0:X2=1; 1:X2=0;
36566
:> 0:X2=1; 1:X2=1;
[...]
Observation SB Sometimes 7136481 1193063519
[...]

7e6 in 1.2e9 on Apple A10 (iPhone7)

11

What’s going on here?

Multiprocessors (and compilers) incorporate many

performance optimisations

(local store buffers, cache hierarchies, speculative execution,
common subexpression elimination, hoisting code above loops, …)

These are:
unobservable by single-threaded code;
sometimes observable by concurrent (multi-threaded) code

12

What’s going on here?

Multiprocessors (and compilers) incorporate many

performance optimisations

(local store buffers, cache hierarchies, speculative execution,
common subexpression elimination, hoisting code above loops, …)

These are:
unobservable by single-threaded code;
sometimes observable by concurrent (multi-threaded) code

Upshot:

No longer a sequential consistent memory model

Instead, only a weak (consistency) (or relaxed)
memory model

12

Weak Memory Consistency Models

Real memory consistency models are subtle
Real memory consistency models differ between architectures
Real memory consistency models differ between languages
Real memory consistency models make SC concurrent reasoning
unsound

Research Opportunity!

13

Why Care? – A Motivating Tale

Kernel Traffic #47 For
20 Dec 1999

1. spin_unlock() Optimization On Intel

20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin_unlock
optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock()
down from about 22 ticks for the "lock; btrl $0,%0" asm code, to 1
tick for a simple "movl $0,%0" instruction, a huge gain. Later, he
reported that Ingo Molnar noticed a 4% speed-up in a benchmark
test, making the optimization very valuable. Ingo also added that the
same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing,
saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster
timings. They will crash, eventually.

The window may be small, but if you do this, then
suddenly spinlocks aren't reliable any more.

The issue is not writes being issued in-order (although
all the Intel CPU books warn you NOT to assume that
in-order write behaviour - I bet it won't be the case in
the long run).

The issue is that you _have_ to have a serializing
instruction in order to make sure that the processor
doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally

delay a read that happened inside the critical region
(maybe it missed a cache line), and get a stale value for
any of the reads that _should_ have been serialized by
the spinlock.

Note that I actually thought this was a legal
optimization, and for a while I had this in the kernel. It
crashed. In random ways.

Note that the fact that it does not crash now is quite
possibly because of either

we have a lot less contention on our spinlocks these
days. That might hide the problem, because the
spinlock will be fine (the cache coherency still
means that the spinlock itself works fine - it's just
that it no longer works reliably as an exclusion
thing)
the window is probably very very small, and you
have to be unlucky to hit it. Faster CPU's, different
compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the
worst possible thing to use for this, and you might test
whether a simpler "xor+xchgl" might be better - it's still
serializing because it is locked, but it should be the
normal 12 cycles that Intel always seems to waste on
serializing instructions rather than 22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably
never show the problem in real life, but is instructive as
an example), imaging running the following test in a
loop on multiple CPU's:

int test_locking(void)
{

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;

mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;

}

Now, OBVIOUSLY the above always has to return 0,
right? All accesses to "a" are inside the spinlock, and we
always set it to zero before we read it into "b" and
return it. So if we EVER returned anything else, the
spinlock would obviously be completely broken,
wouldn't you say?

And yes, the above CAN return 1 with the proposed
optimization. I doubt you can make it do so in real life,
but hey, add another access to another variable in the
same cache line that is accessed through another
spinlock (to get cache-line ping-pong and timing
effects), and I suspect you can make it happen even with
a simple example like the above.

The reason it can return 1 quite legally is that your new
"spin_unlock()" isnot serializing any more, so there is
very little effective ordering between the two actions

b = a;
spin_unlock();

as they access completely different data (ie no data
dependencies in sight). So what you could end up doing
is equivalent to

CPU#1 CPU#2

b = a; /* cache miss, we'll delay
this.. */

spin_unlock();

spin_lock();

a = 1;

/* cache miss satisfied, the "a" line
is bouncing back and forth */

b gets the value 1

a = 0;

and it returns "1", which is wrong for any working
spinlock.

Unlikely? Yes, definitely. Something we are willing to
live with as a potential bug in any real kernel? Definitely
not.

Manfred objected that according to the Pentium Processor Family
Developers Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory reads to
be reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss) and
writes appear in-order." He concluded from this that the second CPU
would never see the spin_unlock() before the "b=a" line. Linus agreed
that on a Pentium, Manfred was right. However, he quoted in turn
from the Pentium Pro manual, "The only enhancement in the
PentiumPro processor is the added support for speculative reads and
store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you'll never see the problem.

But a Pentium is also very uninteresting from a SMP
standpoint these days. It's just too weak with too little
per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the
core do speculation (a Pentium doesn't need MTRR's, as
it won't re-order anything external to the CPU anyway,
and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above.
Using a mov instruction to unlock does work fine on a
486 or Pentium SMP system, but as of the PPro, this was
no longer the case, though the window is so
infintesimally small, most kernels don't hit it (Netware
4/5 uses this method but it's spinlocks understand this
and the code is writtne to handle it. The most obvious

aberrant behavior was that cache inconsistencies would
occur randomly. PPro uses lock to signal that the
piplines are no longer invalid and the buffers should be
blown out.

I have seen the behavior Linus describes on a hardware
analyzer, BUT ONLY ON SYSTEMS THAT WERE PPRO
AND ABOVE. I guess the BSD people must still be on
older Pentium hardware and that's why they don't know
this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also
replied to Linus, pointing out a possible misconception in his
proposed exploit. Regarding the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to
be serializing.

The only thing you need is to make sure there is a store
in "spin_unlock()", and that is kind of true by the fact
that you're changing something to be observable on
other processors.

The reason for this is that stores can only possibly be
observed when all prior instructions have retired (i.e.
the store is not sent outside of the processor until it is
committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock
have to have been externally observed for spin_lock to
be aquired (presuming a correctly functioning spinlock,
of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable
accesses. Speculation doesn't affect this. Also, stores
are not observed speculatively on other processors.

There was a long clarification discussion, resulting in a complete

turnaround by Linus:

Everybody has convinced me that yes, the Intel ordering
rules _are_ strong enough that all of this really is legal,
and that's what I wanted. I've gotten sane explanations
for why serialization (as opposed to just the simple
locked access) is required for the lock() side but not the
unlock() side, and that lack of symmetry was what
bothered me the most.

Oliver made a strong case that the lack of symmetry can
be adequately explained by just simply the lack of
symmetry wrt speculation of reads vs writes. I feel
comfortable again.

Thanks, guys, we'll be that much faster due to this..

Erich then argued that serialization was not required for the lock()
side either, but after a long and interesting discussion he apparently
was unable to win people over.

(

In fact, as Peter Samuelson pointed out to me after KT publication
(and many thanks to him for it):

"You report that Linus was convinced to do the spinlock optimization
on Intel, but apparently someone has since changed his mind back.
See <asm-i386/spinlock.h> from 2.3.30pre5 and above:

/*
* Sadly, some early PPro chips require the locked access,
* otherwise we could just always simply do
*
* #define spin_unlock_string \
* "movb $0,%0"
*
* Which is noticeably faster.
*/
#define spin_unlock_string \
"lock ; btrl $0,%0""

-- Ed: [23 Dec 1999 00:00:00 -0800]

14

Why Care? – A Motivating Tale

Kernel Traffic #47 For
20 Dec 1999

1. spin_unlock() Optimization On Intel

20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin_unlock
optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock()
down from about 22 ticks for the "lock; btrl $0,%0" asm code, to 1
tick for a simple "movl $0,%0" instruction, a huge gain. Later, he
reported that Ingo Molnar noticed a 4% speed-up in a benchmark
test, making the optimization very valuable. Ingo also added that the
same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing,
saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster
timings. They will crash, eventually.

The window may be small, but if you do this, then
suddenly spinlocks aren't reliable any more.

The issue is not writes being issued in-order (although
all the Intel CPU books warn you NOT to assume that
in-order write behaviour - I bet it won't be the case in
the long run).

The issue is that you _have_ to have a serializing
instruction in order to make sure that the processor
doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally

delay a read that happened inside the critical region
(maybe it missed a cache line), and get a stale value for
any of the reads that _should_ have been serialized by
the spinlock.

Note that I actually thought this was a legal
optimization, and for a while I had this in the kernel. It
crashed. In random ways.

Note that the fact that it does not crash now is quite
possibly because of either

we have a lot less contention on our spinlocks these
days. That might hide the problem, because the
spinlock will be fine (the cache coherency still
means that the spinlock itself works fine - it's just
that it no longer works reliably as an exclusion
thing)
the window is probably very very small, and you
have to be unlucky to hit it. Faster CPU's, different
compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the
worst possible thing to use for this, and you might test
whether a simpler "xor+xchgl" might be better - it's still
serializing because it is locked, but it should be the
normal 12 cycles that Intel always seems to waste on
serializing instructions rather than 22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably
never show the problem in real life, but is instructive as
an example), imaging running the following test in a
loop on multiple CPU's:

int test_locking(void)
{

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;

mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;

}

Now, OBVIOUSLY the above always has to return 0,
right? All accesses to "a" are inside the spinlock, and we
always set it to zero before we read it into "b" and
return it. So if we EVER returned anything else, the
spinlock would obviously be completely broken,
wouldn't you say?

And yes, the above CAN return 1 with the proposed
optimization. I doubt you can make it do so in real life,
but hey, add another access to another variable in the
same cache line that is accessed through another
spinlock (to get cache-line ping-pong and timing
effects), and I suspect you can make it happen even with
a simple example like the above.

The reason it can return 1 quite legally is that your new
"spin_unlock()" isnot serializing any more, so there is
very little effective ordering between the two actions

b = a;
spin_unlock();

as they access completely different data (ie no data
dependencies in sight). So what you could end up doing
is equivalent to

CPU#1 CPU#2

b = a; /* cache miss, we'll delay
this.. */

spin_unlock();

spin_lock();

a = 1;

/* cache miss satisfied, the "a" line
is bouncing back and forth */

b gets the value 1

a = 0;

and it returns "1", which is wrong for any working
spinlock.

Unlikely? Yes, definitely. Something we are willing to
live with as a potential bug in any real kernel? Definitely
not.

Manfred objected that according to the Pentium Processor Family
Developers Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory reads to
be reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss) and
writes appear in-order." He concluded from this that the second CPU
would never see the spin_unlock() before the "b=a" line. Linus agreed
that on a Pentium, Manfred was right. However, he quoted in turn
from the Pentium Pro manual, "The only enhancement in the
PentiumPro processor is the added support for speculative reads and
store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you'll never see the problem.

But a Pentium is also very uninteresting from a SMP
standpoint these days. It's just too weak with too little
per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the
core do speculation (a Pentium doesn't need MTRR's, as
it won't re-order anything external to the CPU anyway,
and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above.
Using a mov instruction to unlock does work fine on a
486 or Pentium SMP system, but as of the PPro, this was
no longer the case, though the window is so
infintesimally small, most kernels don't hit it (Netware
4/5 uses this method but it's spinlocks understand this
and the code is writtne to handle it. The most obvious

aberrant behavior was that cache inconsistencies would
occur randomly. PPro uses lock to signal that the
piplines are no longer invalid and the buffers should be
blown out.

I have seen the behavior Linus describes on a hardware
analyzer, BUT ONLY ON SYSTEMS THAT WERE PPRO
AND ABOVE. I guess the BSD people must still be on
older Pentium hardware and that's why they don't know
this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also
replied to Linus, pointing out a possible misconception in his
proposed exploit. Regarding the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to
be serializing.

The only thing you need is to make sure there is a store
in "spin_unlock()", and that is kind of true by the fact
that you're changing something to be observable on
other processors.

The reason for this is that stores can only possibly be
observed when all prior instructions have retired (i.e.
the store is not sent outside of the processor until it is
committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock
have to have been externally observed for spin_lock to
be aquired (presuming a correctly functioning spinlock,
of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable
accesses. Speculation doesn't affect this. Also, stores
are not observed speculatively on other processors.

There was a long clarification discussion, resulting in a complete

turnaround by Linus:

Everybody has convinced me that yes, the Intel ordering
rules _are_ strong enough that all of this really is legal,
and that's what I wanted. I've gotten sane explanations
for why serialization (as opposed to just the simple
locked access) is required for the lock() side but not the
unlock() side, and that lack of symmetry was what
bothered me the most.

Oliver made a strong case that the lack of symmetry can
be adequately explained by just simply the lack of
symmetry wrt speculation of reads vs writes. I feel
comfortable again.

Thanks, guys, we'll be that much faster due to this..

Erich then argued that serialization was not required for the lock()
side either, but after a long and interesting discussion he apparently
was unable to win people over.

(

In fact, as Peter Samuelson pointed out to me after KT publication
(and many thanks to him for it):

"You report that Linus was convinced to do the spinlock optimization
on Intel, but apparently someone has since changed his mind back.
See <asm-i386/spinlock.h> from 2.3.30pre5 and above:

/*
* Sadly, some early PPro chips require the locked access,
* otherwise we could just always simply do
*
* #define spin_unlock_string \
* "movb $0,%0"
*
* Which is noticeably faster.
*/
#define spin_unlock_string \
"lock ; btrl $0,%0""

-- Ed: [23 Dec 1999 00:00:00 -0800]

Manfred Spraul:

We can shave spin_unlock()
down from about 22 ticks
for the “lock; btrl $0, %0”
asm code, to 1 tick for a simple
“movl $0, %0” instruction, a
huge gain.

14

Why Care? – A Motivating Tale

Kernel Traffic #47 For
20 Dec 1999

1. spin_unlock() Optimization On Intel

20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin_unlock
optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock()
down from about 22 ticks for the "lock; btrl $0,%0" asm code, to 1
tick for a simple "movl $0,%0" instruction, a huge gain. Later, he
reported that Ingo Molnar noticed a 4% speed-up in a benchmark
test, making the optimization very valuable. Ingo also added that the
same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing,
saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster
timings. They will crash, eventually.

The window may be small, but if you do this, then
suddenly spinlocks aren't reliable any more.

The issue is not writes being issued in-order (although
all the Intel CPU books warn you NOT to assume that
in-order write behaviour - I bet it won't be the case in
the long run).

The issue is that you _have_ to have a serializing
instruction in order to make sure that the processor
doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally

delay a read that happened inside the critical region
(maybe it missed a cache line), and get a stale value for
any of the reads that _should_ have been serialized by
the spinlock.

Note that I actually thought this was a legal
optimization, and for a while I had this in the kernel. It
crashed. In random ways.

Note that the fact that it does not crash now is quite
possibly because of either

we have a lot less contention on our spinlocks these
days. That might hide the problem, because the
spinlock will be fine (the cache coherency still
means that the spinlock itself works fine - it's just
that it no longer works reliably as an exclusion
thing)
the window is probably very very small, and you
have to be unlucky to hit it. Faster CPU's, different
compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the
worst possible thing to use for this, and you might test
whether a simpler "xor+xchgl" might be better - it's still
serializing because it is locked, but it should be the
normal 12 cycles that Intel always seems to waste on
serializing instructions rather than 22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably
never show the problem in real life, but is instructive as
an example), imaging running the following test in a
loop on multiple CPU's:

int test_locking(void)
{

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;

mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;

}

Now, OBVIOUSLY the above always has to return 0,
right? All accesses to "a" are inside the spinlock, and we
always set it to zero before we read it into "b" and
return it. So if we EVER returned anything else, the
spinlock would obviously be completely broken,
wouldn't you say?

And yes, the above CAN return 1 with the proposed
optimization. I doubt you can make it do so in real life,
but hey, add another access to another variable in the
same cache line that is accessed through another
spinlock (to get cache-line ping-pong and timing
effects), and I suspect you can make it happen even with
a simple example like the above.

The reason it can return 1 quite legally is that your new
"spin_unlock()" isnot serializing any more, so there is
very little effective ordering between the two actions

b = a;
spin_unlock();

as they access completely different data (ie no data
dependencies in sight). So what you could end up doing
is equivalent to

CPU#1 CPU#2

b = a; /* cache miss, we'll delay
this.. */

spin_unlock();

spin_lock();

a = 1;

/* cache miss satisfied, the "a" line
is bouncing back and forth */

b gets the value 1

a = 0;

and it returns "1", which is wrong for any working
spinlock.

Unlikely? Yes, definitely. Something we are willing to
live with as a potential bug in any real kernel? Definitely
not.

Manfred objected that according to the Pentium Processor Family
Developers Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory reads to
be reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss) and
writes appear in-order." He concluded from this that the second CPU
would never see the spin_unlock() before the "b=a" line. Linus agreed
that on a Pentium, Manfred was right. However, he quoted in turn
from the Pentium Pro manual, "The only enhancement in the
PentiumPro processor is the added support for speculative reads and
store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you'll never see the problem.

But a Pentium is also very uninteresting from a SMP
standpoint these days. It's just too weak with too little
per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the
core do speculation (a Pentium doesn't need MTRR's, as
it won't re-order anything external to the CPU anyway,
and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above.
Using a mov instruction to unlock does work fine on a
486 or Pentium SMP system, but as of the PPro, this was
no longer the case, though the window is so
infintesimally small, most kernels don't hit it (Netware
4/5 uses this method but it's spinlocks understand this
and the code is writtne to handle it. The most obvious

aberrant behavior was that cache inconsistencies would
occur randomly. PPro uses lock to signal that the
piplines are no longer invalid and the buffers should be
blown out.

I have seen the behavior Linus describes on a hardware
analyzer, BUT ONLY ON SYSTEMS THAT WERE PPRO
AND ABOVE. I guess the BSD people must still be on
older Pentium hardware and that's why they don't know
this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also
replied to Linus, pointing out a possible misconception in his
proposed exploit. Regarding the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to
be serializing.

The only thing you need is to make sure there is a store
in "spin_unlock()", and that is kind of true by the fact
that you're changing something to be observable on
other processors.

The reason for this is that stores can only possibly be
observed when all prior instructions have retired (i.e.
the store is not sent outside of the processor until it is
committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock
have to have been externally observed for spin_lock to
be aquired (presuming a correctly functioning spinlock,
of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable
accesses. Speculation doesn't affect this. Also, stores
are not observed speculatively on other processors.

There was a long clarification discussion, resulting in a complete

turnaround by Linus:

Everybody has convinced me that yes, the Intel ordering
rules _are_ strong enough that all of this really is legal,
and that's what I wanted. I've gotten sane explanations
for why serialization (as opposed to just the simple
locked access) is required for the lock() side but not the
unlock() side, and that lack of symmetry was what
bothered me the most.

Oliver made a strong case that the lack of symmetry can
be adequately explained by just simply the lack of
symmetry wrt speculation of reads vs writes. I feel
comfortable again.

Thanks, guys, we'll be that much faster due to this..

Erich then argued that serialization was not required for the lock()
side either, but after a long and interesting discussion he apparently
was unable to win people over.

(

In fact, as Peter Samuelson pointed out to me after KT publication
(and many thanks to him for it):

"You report that Linus was convinced to do the spinlock optimization
on Intel, but apparently someone has since changed his mind back.
See <asm-i386/spinlock.h> from 2.3.30pre5 and above:

/*
* Sadly, some early PPro chips require the locked access,
* otherwise we could just always simply do
*
* #define spin_unlock_string \
* "movb $0,%0"
*
* Which is noticeably faster.
*/
#define spin_unlock_string \
"lock ; btrl $0,%0""

-- Ed: [23 Dec 1999 00:00:00 -0800]

Manfred Spraul:

We can shave spin_unlock()
down from about 22 ticks
for the “lock; btrl $0, %0”
asm code, to 1 tick for a simple
“movl $0, %0” instruction, a
huge gain.

Ingo Molnar:

…4% speedup in a benchmark
test, making the optimization
very valuable. The same op-
timization cropped up in the
FreeBSD mailing list.

14

Why Care? – A Motivating Tale

Kernel Traffic #47 For
20 Dec 1999

1. spin_unlock() Optimization On Intel

20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin_unlock
optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock()
down from about 22 ticks for the "lock; btrl $0,%0" asm code, to 1
tick for a simple "movl $0,%0" instruction, a huge gain. Later, he
reported that Ingo Molnar noticed a 4% speed-up in a benchmark
test, making the optimization very valuable. Ingo also added that the
same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing,
saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster
timings. They will crash, eventually.

The window may be small, but if you do this, then
suddenly spinlocks aren't reliable any more.

The issue is not writes being issued in-order (although
all the Intel CPU books warn you NOT to assume that
in-order write behaviour - I bet it won't be the case in
the long run).

The issue is that you _have_ to have a serializing
instruction in order to make sure that the processor
doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally

delay a read that happened inside the critical region
(maybe it missed a cache line), and get a stale value for
any of the reads that _should_ have been serialized by
the spinlock.

Note that I actually thought this was a legal
optimization, and for a while I had this in the kernel. It
crashed. In random ways.

Note that the fact that it does not crash now is quite
possibly because of either

we have a lot less contention on our spinlocks these
days. That might hide the problem, because the
spinlock will be fine (the cache coherency still
means that the spinlock itself works fine - it's just
that it no longer works reliably as an exclusion
thing)
the window is probably very very small, and you
have to be unlucky to hit it. Faster CPU's, different
compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the
worst possible thing to use for this, and you might test
whether a simpler "xor+xchgl" might be better - it's still
serializing because it is locked, but it should be the
normal 12 cycles that Intel always seems to waste on
serializing instructions rather than 22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably
never show the problem in real life, but is instructive as
an example), imaging running the following test in a
loop on multiple CPU's:

int test_locking(void)
{

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;

mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;

}

Now, OBVIOUSLY the above always has to return 0,
right? All accesses to "a" are inside the spinlock, and we
always set it to zero before we read it into "b" and
return it. So if we EVER returned anything else, the
spinlock would obviously be completely broken,
wouldn't you say?

And yes, the above CAN return 1 with the proposed
optimization. I doubt you can make it do so in real life,
but hey, add another access to another variable in the
same cache line that is accessed through another
spinlock (to get cache-line ping-pong and timing
effects), and I suspect you can make it happen even with
a simple example like the above.

The reason it can return 1 quite legally is that your new
"spin_unlock()" isnot serializing any more, so there is
very little effective ordering between the two actions

b = a;
spin_unlock();

as they access completely different data (ie no data
dependencies in sight). So what you could end up doing
is equivalent to

CPU#1 CPU#2

b = a; /* cache miss, we'll delay
this.. */

spin_unlock();

spin_lock();

a = 1;

/* cache miss satisfied, the "a" line
is bouncing back and forth */

b gets the value 1

a = 0;

and it returns "1", which is wrong for any working
spinlock.

Unlikely? Yes, definitely. Something we are willing to
live with as a potential bug in any real kernel? Definitely
not.

Manfred objected that according to the Pentium Processor Family
Developers Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory reads to
be reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss) and
writes appear in-order." He concluded from this that the second CPU
would never see the spin_unlock() before the "b=a" line. Linus agreed
that on a Pentium, Manfred was right. However, he quoted in turn
from the Pentium Pro manual, "The only enhancement in the
PentiumPro processor is the added support for speculative reads and
store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you'll never see the problem.

But a Pentium is also very uninteresting from a SMP
standpoint these days. It's just too weak with too little
per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the
core do speculation (a Pentium doesn't need MTRR's, as
it won't re-order anything external to the CPU anyway,
and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above.
Using a mov instruction to unlock does work fine on a
486 or Pentium SMP system, but as of the PPro, this was
no longer the case, though the window is so
infintesimally small, most kernels don't hit it (Netware
4/5 uses this method but it's spinlocks understand this
and the code is writtne to handle it. The most obvious

aberrant behavior was that cache inconsistencies would
occur randomly. PPro uses lock to signal that the
piplines are no longer invalid and the buffers should be
blown out.

I have seen the behavior Linus describes on a hardware
analyzer, BUT ONLY ON SYSTEMS THAT WERE PPRO
AND ABOVE. I guess the BSD people must still be on
older Pentium hardware and that's why they don't know
this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also
replied to Linus, pointing out a possible misconception in his
proposed exploit. Regarding the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to
be serializing.

The only thing you need is to make sure there is a store
in "spin_unlock()", and that is kind of true by the fact
that you're changing something to be observable on
other processors.

The reason for this is that stores can only possibly be
observed when all prior instructions have retired (i.e.
the store is not sent outside of the processor until it is
committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock
have to have been externally observed for spin_lock to
be aquired (presuming a correctly functioning spinlock,
of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable
accesses. Speculation doesn't affect this. Also, stores
are not observed speculatively on other processors.

There was a long clarification discussion, resulting in a complete

turnaround by Linus:

Everybody has convinced me that yes, the Intel ordering
rules _are_ strong enough that all of this really is legal,
and that's what I wanted. I've gotten sane explanations
for why serialization (as opposed to just the simple
locked access) is required for the lock() side but not the
unlock() side, and that lack of symmetry was what
bothered me the most.

Oliver made a strong case that the lack of symmetry can
be adequately explained by just simply the lack of
symmetry wrt speculation of reads vs writes. I feel
comfortable again.

Thanks, guys, we'll be that much faster due to this..

Erich then argued that serialization was not required for the lock()
side either, but after a long and interesting discussion he apparently
was unable to win people over.

(

In fact, as Peter Samuelson pointed out to me after KT publication
(and many thanks to him for it):

"You report that Linus was convinced to do the spinlock optimization
on Intel, but apparently someone has since changed his mind back.
See <asm-i386/spinlock.h> from 2.3.30pre5 and above:

/*
* Sadly, some early PPro chips require the locked access,
* otherwise we could just always simply do
*
* #define spin_unlock_string \
* "movb $0,%0"
*
* Which is noticeably faster.
*/
#define spin_unlock_string \
"lock ; btrl $0,%0""

-- Ed: [23 Dec 1999 00:00:00 -0800]

Manfred Spraul:

We can shave spin_unlock()
down from about 22 ticks
for the “lock; btrl $0, %0”
asm code, to 1 tick for a simple
“movl $0, %0” instruction, a
huge gain.

Ingo Molnar:

…4% speedup in a benchmark
test, making the optimization
very valuable. The same op-
timization cropped up in the
FreeBSD mailing list.

Linus Torvalds:

It does NOT WORK!

Let the FreeBSD people use it,
and let them get faster timings.
They will crash, eventually.
As a completely made up exam-
ple, …

14

Why Care? – A Motivating Tale

Kernel Traffic #47 For
20 Dec 1999

1. spin_unlock() Optimization On Intel

20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin_unlock
optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock()
down from about 22 ticks for the "lock; btrl $0,%0" asm code, to 1
tick for a simple "movl $0,%0" instruction, a huge gain. Later, he
reported that Ingo Molnar noticed a 4% speed-up in a benchmark
test, making the optimization very valuable. Ingo also added that the
same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing,
saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster
timings. They will crash, eventually.

The window may be small, but if you do this, then
suddenly spinlocks aren't reliable any more.

The issue is not writes being issued in-order (although
all the Intel CPU books warn you NOT to assume that
in-order write behaviour - I bet it won't be the case in
the long run).

The issue is that you _have_ to have a serializing
instruction in order to make sure that the processor
doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally

delay a read that happened inside the critical region
(maybe it missed a cache line), and get a stale value for
any of the reads that _should_ have been serialized by
the spinlock.

Note that I actually thought this was a legal
optimization, and for a while I had this in the kernel. It
crashed. In random ways.

Note that the fact that it does not crash now is quite
possibly because of either

we have a lot less contention on our spinlocks these
days. That might hide the problem, because the
spinlock will be fine (the cache coherency still
means that the spinlock itself works fine - it's just
that it no longer works reliably as an exclusion
thing)
the window is probably very very small, and you
have to be unlucky to hit it. Faster CPU's, different
compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the
worst possible thing to use for this, and you might test
whether a simpler "xor+xchgl" might be better - it's still
serializing because it is locked, but it should be the
normal 12 cycles that Intel always seems to waste on
serializing instructions rather than 22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably
never show the problem in real life, but is instructive as
an example), imaging running the following test in a
loop on multiple CPU's:

int test_locking(void)
{

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;

mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;

}

Now, OBVIOUSLY the above always has to return 0,
right? All accesses to "a" are inside the spinlock, and we
always set it to zero before we read it into "b" and
return it. So if we EVER returned anything else, the
spinlock would obviously be completely broken,
wouldn't you say?

And yes, the above CAN return 1 with the proposed
optimization. I doubt you can make it do so in real life,
but hey, add another access to another variable in the
same cache line that is accessed through another
spinlock (to get cache-line ping-pong and timing
effects), and I suspect you can make it happen even with
a simple example like the above.

The reason it can return 1 quite legally is that your new
"spin_unlock()" isnot serializing any more, so there is
very little effective ordering between the two actions

b = a;
spin_unlock();

as they access completely different data (ie no data
dependencies in sight). So what you could end up doing
is equivalent to

CPU#1 CPU#2

b = a; /* cache miss, we'll delay
this.. */

spin_unlock();

spin_lock();

a = 1;

/* cache miss satisfied, the "a" line
is bouncing back and forth */

b gets the value 1

a = 0;

and it returns "1", which is wrong for any working
spinlock.

Unlikely? Yes, definitely. Something we are willing to
live with as a potential bug in any real kernel? Definitely
not.

Manfred objected that according to the Pentium Processor Family
Developers Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory reads to
be reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss) and
writes appear in-order." He concluded from this that the second CPU
would never see the spin_unlock() before the "b=a" line. Linus agreed
that on a Pentium, Manfred was right. However, he quoted in turn
from the Pentium Pro manual, "The only enhancement in the
PentiumPro processor is the added support for speculative reads and
store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you'll never see the problem.

But a Pentium is also very uninteresting from a SMP
standpoint these days. It's just too weak with too little
per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the
core do speculation (a Pentium doesn't need MTRR's, as
it won't re-order anything external to the CPU anyway,
and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above.
Using a mov instruction to unlock does work fine on a
486 or Pentium SMP system, but as of the PPro, this was
no longer the case, though the window is so
infintesimally small, most kernels don't hit it (Netware
4/5 uses this method but it's spinlocks understand this
and the code is writtne to handle it. The most obvious

aberrant behavior was that cache inconsistencies would
occur randomly. PPro uses lock to signal that the
piplines are no longer invalid and the buffers should be
blown out.

I have seen the behavior Linus describes on a hardware
analyzer, BUT ONLY ON SYSTEMS THAT WERE PPRO
AND ABOVE. I guess the BSD people must still be on
older Pentium hardware and that's why they don't know
this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also
replied to Linus, pointing out a possible misconception in his
proposed exploit. Regarding the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to
be serializing.

The only thing you need is to make sure there is a store
in "spin_unlock()", and that is kind of true by the fact
that you're changing something to be observable on
other processors.

The reason for this is that stores can only possibly be
observed when all prior instructions have retired (i.e.
the store is not sent outside of the processor until it is
committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock
have to have been externally observed for spin_lock to
be aquired (presuming a correctly functioning spinlock,
of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable
accesses. Speculation doesn't affect this. Also, stores
are not observed speculatively on other processors.

There was a long clarification discussion, resulting in a complete

turnaround by Linus:

Everybody has convinced me that yes, the Intel ordering
rules _are_ strong enough that all of this really is legal,
and that's what I wanted. I've gotten sane explanations
for why serialization (as opposed to just the simple
locked access) is required for the lock() side but not the
unlock() side, and that lack of symmetry was what
bothered me the most.

Oliver made a strong case that the lack of symmetry can
be adequately explained by just simply the lack of
symmetry wrt speculation of reads vs writes. I feel
comfortable again.

Thanks, guys, we'll be that much faster due to this..

Erich then argued that serialization was not required for the lock()
side either, but after a long and interesting discussion he apparently
was unable to win people over.

(

In fact, as Peter Samuelson pointed out to me after KT publication
(and many thanks to him for it):

"You report that Linus was convinced to do the spinlock optimization
on Intel, but apparently someone has since changed his mind back.
See <asm-i386/spinlock.h> from 2.3.30pre5 and above:

/*
* Sadly, some early PPro chips require the locked access,
* otherwise we could just always simply do
*
* #define spin_unlock_string \
* "movb $0,%0"
*
* Which is noticeably faster.
*/
#define spin_unlock_string \
"lock ; btrl $0,%0""

-- Ed: [23 Dec 1999 00:00:00 -0800]

Manfred Spraul:

We can shave spin_unlock()
down from about 22 ticks
for the “lock; btrl $0, %0”
asm code, to 1 tick for a simple
“movl $0, %0” instruction, a
huge gain.

Ingo Molnar:

…4% speedup in a benchmark
test, making the optimization
very valuable. The same op-
timization cropped up in the
FreeBSD mailing list.

Linus Torvalds:

It does NOT WORK!

Let the FreeBSD people use it,
and let them get faster timings.
They will crash, eventually.
As a completely made up exam-
ple, …

Manfred Spraul:

…according to the Pentium Processor Family Developers Man-
ual, Vol3, Chapter 19.2 Memory Access Ordering, “to optimize
performance, the Pentium processor allows memory reads to be
reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss)
and writes appear in-order.”

Your example cannot happen.

14

Why Care? – A Motivating Tale

Kernel Traffic #47 For
20 Dec 1999

1. spin_unlock() Optimization On Intel

20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin_unlock
optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock()
down from about 22 ticks for the "lock; btrl $0,%0" asm code, to 1
tick for a simple "movl $0,%0" instruction, a huge gain. Later, he
reported that Ingo Molnar noticed a 4% speed-up in a benchmark
test, making the optimization very valuable. Ingo also added that the
same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing,
saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster
timings. They will crash, eventually.

The window may be small, but if you do this, then
suddenly spinlocks aren't reliable any more.

The issue is not writes being issued in-order (although
all the Intel CPU books warn you NOT to assume that
in-order write behaviour - I bet it won't be the case in
the long run).

The issue is that you _have_ to have a serializing
instruction in order to make sure that the processor
doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally

delay a read that happened inside the critical region
(maybe it missed a cache line), and get a stale value for
any of the reads that _should_ have been serialized by
the spinlock.

Note that I actually thought this was a legal
optimization, and for a while I had this in the kernel. It
crashed. In random ways.

Note that the fact that it does not crash now is quite
possibly because of either

we have a lot less contention on our spinlocks these
days. That might hide the problem, because the
spinlock will be fine (the cache coherency still
means that the spinlock itself works fine - it's just
that it no longer works reliably as an exclusion
thing)
the window is probably very very small, and you
have to be unlucky to hit it. Faster CPU's, different
compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the
worst possible thing to use for this, and you might test
whether a simpler "xor+xchgl" might be better - it's still
serializing because it is locked, but it should be the
normal 12 cycles that Intel always seems to waste on
serializing instructions rather than 22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably
never show the problem in real life, but is instructive as
an example), imaging running the following test in a
loop on multiple CPU's:

int test_locking(void)
{

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;

mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;

}

Now, OBVIOUSLY the above always has to return 0,
right? All accesses to "a" are inside the spinlock, and we
always set it to zero before we read it into "b" and
return it. So if we EVER returned anything else, the
spinlock would obviously be completely broken,
wouldn't you say?

And yes, the above CAN return 1 with the proposed
optimization. I doubt you can make it do so in real life,
but hey, add another access to another variable in the
same cache line that is accessed through another
spinlock (to get cache-line ping-pong and timing
effects), and I suspect you can make it happen even with
a simple example like the above.

The reason it can return 1 quite legally is that your new
"spin_unlock()" isnot serializing any more, so there is
very little effective ordering between the two actions

b = a;
spin_unlock();

as they access completely different data (ie no data
dependencies in sight). So what you could end up doing
is equivalent to

CPU#1 CPU#2

b = a; /* cache miss, we'll delay
this.. */

spin_unlock();

spin_lock();

a = 1;

/* cache miss satisfied, the "a" line
is bouncing back and forth */

b gets the value 1

a = 0;

and it returns "1", which is wrong for any working
spinlock.

Unlikely? Yes, definitely. Something we are willing to
live with as a potential bug in any real kernel? Definitely
not.

Manfred objected that according to the Pentium Processor Family
Developers Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory reads to
be reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss) and
writes appear in-order." He concluded from this that the second CPU
would never see the spin_unlock() before the "b=a" line. Linus agreed
that on a Pentium, Manfred was right. However, he quoted in turn
from the Pentium Pro manual, "The only enhancement in the
PentiumPro processor is the added support for speculative reads and
store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you'll never see the problem.

But a Pentium is also very uninteresting from a SMP
standpoint these days. It's just too weak with too little
per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the
core do speculation (a Pentium doesn't need MTRR's, as
it won't re-order anything external to the CPU anyway,
and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above.
Using a mov instruction to unlock does work fine on a
486 or Pentium SMP system, but as of the PPro, this was
no longer the case, though the window is so
infintesimally small, most kernels don't hit it (Netware
4/5 uses this method but it's spinlocks understand this
and the code is writtne to handle it. The most obvious

aberrant behavior was that cache inconsistencies would
occur randomly. PPro uses lock to signal that the
piplines are no longer invalid and the buffers should be
blown out.

I have seen the behavior Linus describes on a hardware
analyzer, BUT ONLY ON SYSTEMS THAT WERE PPRO
AND ABOVE. I guess the BSD people must still be on
older Pentium hardware and that's why they don't know
this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also
replied to Linus, pointing out a possible misconception in his
proposed exploit. Regarding the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to
be serializing.

The only thing you need is to make sure there is a store
in "spin_unlock()", and that is kind of true by the fact
that you're changing something to be observable on
other processors.

The reason for this is that stores can only possibly be
observed when all prior instructions have retired (i.e.
the store is not sent outside of the processor until it is
committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock
have to have been externally observed for spin_lock to
be aquired (presuming a correctly functioning spinlock,
of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable
accesses. Speculation doesn't affect this. Also, stores
are not observed speculatively on other processors.

There was a long clarification discussion, resulting in a complete

turnaround by Linus:

Everybody has convinced me that yes, the Intel ordering
rules _are_ strong enough that all of this really is legal,
and that's what I wanted. I've gotten sane explanations
for why serialization (as opposed to just the simple
locked access) is required for the lock() side but not the
unlock() side, and that lack of symmetry was what
bothered me the most.

Oliver made a strong case that the lack of symmetry can
be adequately explained by just simply the lack of
symmetry wrt speculation of reads vs writes. I feel
comfortable again.

Thanks, guys, we'll be that much faster due to this..

Erich then argued that serialization was not required for the lock()
side either, but after a long and interesting discussion he apparently
was unable to win people over.

(

In fact, as Peter Samuelson pointed out to me after KT publication
(and many thanks to him for it):

"You report that Linus was convinced to do the spinlock optimization
on Intel, but apparently someone has since changed his mind back.
See <asm-i386/spinlock.h> from 2.3.30pre5 and above:

/*
* Sadly, some early PPro chips require the locked access,
* otherwise we could just always simply do
*
* #define spin_unlock_string \
* "movb $0,%0"
*
* Which is noticeably faster.
*/
#define spin_unlock_string \
"lock ; btrl $0,%0""

-- Ed: [23 Dec 1999 00:00:00 -0800]

Manfred Spraul:

We can shave spin_unlock()
down from about 22 ticks
for the “lock; btrl $0, %0”
asm code, to 1 tick for a simple
“movl $0, %0” instruction, a
huge gain.

Ingo Molnar:

…4% speedup in a benchmark
test, making the optimization
very valuable. The same op-
timization cropped up in the
FreeBSD mailing list.

Linus Torvalds:

It does NOT WORK!

Let the FreeBSD people use it,
and let them get faster timings.
They will crash, eventually.
As a completely made up exam-
ple, …

Manfred Spraul:

…according to the Pentium Processor Family Developers Man-
ual, Vol3, Chapter 19.2 Memory Access Ordering, “to optimize
performance, the Pentium processor allows memory reads to be
reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss)
and writes appear in-order.”

Your example cannot happen.

Linus Torvalds:

from the Pentium Pro manual, “The only enhancement
in the PentiumPro processor is the added support for
speculative reads and store-buffer forwarding.”
A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you’ll never see the problem.

14

Why Care? – A Motivating Tale

Kernel Traffic #47 For
20 Dec 1999

1. spin_unlock() Optimization On Intel

20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin_unlock
optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock()
down from about 22 ticks for the "lock; btrl $0,%0" asm code, to 1
tick for a simple "movl $0,%0" instruction, a huge gain. Later, he
reported that Ingo Molnar noticed a 4% speed-up in a benchmark
test, making the optimization very valuable. Ingo also added that the
same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing,
saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster
timings. They will crash, eventually.

The window may be small, but if you do this, then
suddenly spinlocks aren't reliable any more.

The issue is not writes being issued in-order (although
all the Intel CPU books warn you NOT to assume that
in-order write behaviour - I bet it won't be the case in
the long run).

The issue is that you _have_ to have a serializing
instruction in order to make sure that the processor
doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally

delay a read that happened inside the critical region
(maybe it missed a cache line), and get a stale value for
any of the reads that _should_ have been serialized by
the spinlock.

Note that I actually thought this was a legal
optimization, and for a while I had this in the kernel. It
crashed. In random ways.

Note that the fact that it does not crash now is quite
possibly because of either

we have a lot less contention on our spinlocks these
days. That might hide the problem, because the
spinlock will be fine (the cache coherency still
means that the spinlock itself works fine - it's just
that it no longer works reliably as an exclusion
thing)
the window is probably very very small, and you
have to be unlucky to hit it. Faster CPU's, different
compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the
worst possible thing to use for this, and you might test
whether a simpler "xor+xchgl" might be better - it's still
serializing because it is locked, but it should be the
normal 12 cycles that Intel always seems to waste on
serializing instructions rather than 22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably
never show the problem in real life, but is instructive as
an example), imaging running the following test in a
loop on multiple CPU's:

int test_locking(void)
{

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;

mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;

}

Now, OBVIOUSLY the above always has to return 0,
right? All accesses to "a" are inside the spinlock, and we
always set it to zero before we read it into "b" and
return it. So if we EVER returned anything else, the
spinlock would obviously be completely broken,
wouldn't you say?

And yes, the above CAN return 1 with the proposed
optimization. I doubt you can make it do so in real life,
but hey, add another access to another variable in the
same cache line that is accessed through another
spinlock (to get cache-line ping-pong and timing
effects), and I suspect you can make it happen even with
a simple example like the above.

The reason it can return 1 quite legally is that your new
"spin_unlock()" isnot serializing any more, so there is
very little effective ordering between the two actions

b = a;
spin_unlock();

as they access completely different data (ie no data
dependencies in sight). So what you could end up doing
is equivalent to

CPU#1 CPU#2

b = a; /* cache miss, we'll delay
this.. */

spin_unlock();

spin_lock();

a = 1;

/* cache miss satisfied, the "a" line
is bouncing back and forth */

b gets the value 1

a = 0;

and it returns "1", which is wrong for any working
spinlock.

Unlikely? Yes, definitely. Something we are willing to
live with as a potential bug in any real kernel? Definitely
not.

Manfred objected that according to the Pentium Processor Family
Developers Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory reads to
be reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss) and
writes appear in-order." He concluded from this that the second CPU
would never see the spin_unlock() before the "b=a" line. Linus agreed
that on a Pentium, Manfred was right. However, he quoted in turn
from the Pentium Pro manual, "The only enhancement in the
PentiumPro processor is the added support for speculative reads and
store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you'll never see the problem.

But a Pentium is also very uninteresting from a SMP
standpoint these days. It's just too weak with too little
per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the
core do speculation (a Pentium doesn't need MTRR's, as
it won't re-order anything external to the CPU anyway,
and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above.
Using a mov instruction to unlock does work fine on a
486 or Pentium SMP system, but as of the PPro, this was
no longer the case, though the window is so
infintesimally small, most kernels don't hit it (Netware
4/5 uses this method but it's spinlocks understand this
and the code is writtne to handle it. The most obvious

aberrant behavior was that cache inconsistencies would
occur randomly. PPro uses lock to signal that the
piplines are no longer invalid and the buffers should be
blown out.

I have seen the behavior Linus describes on a hardware
analyzer, BUT ONLY ON SYSTEMS THAT WERE PPRO
AND ABOVE. I guess the BSD people must still be on
older Pentium hardware and that's why they don't know
this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also
replied to Linus, pointing out a possible misconception in his
proposed exploit. Regarding the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to
be serializing.

The only thing you need is to make sure there is a store
in "spin_unlock()", and that is kind of true by the fact
that you're changing something to be observable on
other processors.

The reason for this is that stores can only possibly be
observed when all prior instructions have retired (i.e.
the store is not sent outside of the processor until it is
committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock
have to have been externally observed for spin_lock to
be aquired (presuming a correctly functioning spinlock,
of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable
accesses. Speculation doesn't affect this. Also, stores
are not observed speculatively on other processors.

There was a long clarification discussion, resulting in a complete

turnaround by Linus:

Everybody has convinced me that yes, the Intel ordering
rules _are_ strong enough that all of this really is legal,
and that's what I wanted. I've gotten sane explanations
for why serialization (as opposed to just the simple
locked access) is required for the lock() side but not the
unlock() side, and that lack of symmetry was what
bothered me the most.

Oliver made a strong case that the lack of symmetry can
be adequately explained by just simply the lack of
symmetry wrt speculation of reads vs writes. I feel
comfortable again.

Thanks, guys, we'll be that much faster due to this..

Erich then argued that serialization was not required for the lock()
side either, but after a long and interesting discussion he apparently
was unable to win people over.

(

In fact, as Peter Samuelson pointed out to me after KT publication
(and many thanks to him for it):

"You report that Linus was convinced to do the spinlock optimization
on Intel, but apparently someone has since changed his mind back.
See <asm-i386/spinlock.h> from 2.3.30pre5 and above:

/*
* Sadly, some early PPro chips require the locked access,
* otherwise we could just always simply do
*
* #define spin_unlock_string \
* "movb $0,%0"
*
* Which is noticeably faster.
*/
#define spin_unlock_string \
"lock ; btrl $0,%0""

-- Ed: [23 Dec 1999 00:00:00 -0800]

Manfred Spraul:

We can shave spin_unlock()
down from about 22 ticks
for the “lock; btrl $0, %0”
asm code, to 1 tick for a simple
“movl $0, %0” instruction, a
huge gain.

Ingo Molnar:

…4% speedup in a benchmark
test, making the optimization
very valuable. The same op-
timization cropped up in the
FreeBSD mailing list.

Linus Torvalds:

It does NOT WORK!

Let the FreeBSD people use it,
and let them get faster timings.
They will crash, eventually.
As a completely made up exam-
ple, …

Manfred Spraul:

…according to the Pentium Processor Family Developers Man-
ual, Vol3, Chapter 19.2 Memory Access Ordering, “to optimize
performance, the Pentium processor allows memory reads to be
reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss)
and writes appear in-order.”

Your example cannot happen.

Linus Torvalds:

from the Pentium Pro manual, “The only enhancement
in the PentiumPro processor is the added support for
speculative reads and store-buffer forwarding.”
A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you’ll never see the problem.

Jeff V. Markey:

I have seen the behavior Linus describes on a hard-
ware analyzer, BUT ONLY ON SYSTEMS THAT
WERE PPRO AND ABOVE. I guess the BSD peo-
ple must still be on older Pentium hardware and
that’s why they don’t know this can bite in some
cases.

14

Why Care? – A Motivating Tale

Kernel Traffic #47 For
20 Dec 1999

1. spin_unlock() Optimization On Intel

20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin_unlock
optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock()
down from about 22 ticks for the "lock; btrl $0,%0" asm code, to 1
tick for a simple "movl $0,%0" instruction, a huge gain. Later, he
reported that Ingo Molnar noticed a 4% speed-up in a benchmark
test, making the optimization very valuable. Ingo also added that the
same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing,
saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster
timings. They will crash, eventually.

The window may be small, but if you do this, then
suddenly spinlocks aren't reliable any more.

The issue is not writes being issued in-order (although
all the Intel CPU books warn you NOT to assume that
in-order write behaviour - I bet it won't be the case in
the long run).

The issue is that you _have_ to have a serializing
instruction in order to make sure that the processor
doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally

delay a read that happened inside the critical region
(maybe it missed a cache line), and get a stale value for
any of the reads that _should_ have been serialized by
the spinlock.

Note that I actually thought this was a legal
optimization, and for a while I had this in the kernel. It
crashed. In random ways.

Note that the fact that it does not crash now is quite
possibly because of either

we have a lot less contention on our spinlocks these
days. That might hide the problem, because the
spinlock will be fine (the cache coherency still
means that the spinlock itself works fine - it's just
that it no longer works reliably as an exclusion
thing)
the window is probably very very small, and you
have to be unlucky to hit it. Faster CPU's, different
compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the
worst possible thing to use for this, and you might test
whether a simpler "xor+xchgl" might be better - it's still
serializing because it is locked, but it should be the
normal 12 cycles that Intel always seems to waste on
serializing instructions rather than 22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably
never show the problem in real life, but is instructive as
an example), imaging running the following test in a
loop on multiple CPU's:

int test_locking(void)
{

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;

mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;

}

Now, OBVIOUSLY the above always has to return 0,
right? All accesses to "a" are inside the spinlock, and we
always set it to zero before we read it into "b" and
return it. So if we EVER returned anything else, the
spinlock would obviously be completely broken,
wouldn't you say?

And yes, the above CAN return 1 with the proposed
optimization. I doubt you can make it do so in real life,
but hey, add another access to another variable in the
same cache line that is accessed through another
spinlock (to get cache-line ping-pong and timing
effects), and I suspect you can make it happen even with
a simple example like the above.

The reason it can return 1 quite legally is that your new
"spin_unlock()" isnot serializing any more, so there is
very little effective ordering between the two actions

b = a;
spin_unlock();

as they access completely different data (ie no data
dependencies in sight). So what you could end up doing
is equivalent to

CPU#1 CPU#2

b = a; /* cache miss, we'll delay
this.. */

spin_unlock();

spin_lock();

a = 1;

/* cache miss satisfied, the "a" line
is bouncing back and forth */

b gets the value 1

a = 0;

and it returns "1", which is wrong for any working
spinlock.

Unlikely? Yes, definitely. Something we are willing to
live with as a potential bug in any real kernel? Definitely
not.

Manfred objected that according to the Pentium Processor Family
Developers Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory reads to
be reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss) and
writes appear in-order." He concluded from this that the second CPU
would never see the spin_unlock() before the "b=a" line. Linus agreed
that on a Pentium, Manfred was right. However, he quoted in turn
from the Pentium Pro manual, "The only enhancement in the
PentiumPro processor is the added support for speculative reads and
store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you'll never see the problem.

But a Pentium is also very uninteresting from a SMP
standpoint these days. It's just too weak with too little
per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the
core do speculation (a Pentium doesn't need MTRR's, as
it won't re-order anything external to the CPU anyway,
and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above.
Using a mov instruction to unlock does work fine on a
486 or Pentium SMP system, but as of the PPro, this was
no longer the case, though the window is so
infintesimally small, most kernels don't hit it (Netware
4/5 uses this method but it's spinlocks understand this
and the code is writtne to handle it. The most obvious

aberrant behavior was that cache inconsistencies would
occur randomly. PPro uses lock to signal that the
piplines are no longer invalid and the buffers should be
blown out.

I have seen the behavior Linus describes on a hardware
analyzer, BUT ONLY ON SYSTEMS THAT WERE PPRO
AND ABOVE. I guess the BSD people must still be on
older Pentium hardware and that's why they don't know
this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also
replied to Linus, pointing out a possible misconception in his
proposed exploit. Regarding the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to
be serializing.

The only thing you need is to make sure there is a store
in "spin_unlock()", and that is kind of true by the fact
that you're changing something to be observable on
other processors.

The reason for this is that stores can only possibly be
observed when all prior instructions have retired (i.e.
the store is not sent outside of the processor until it is
committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock
have to have been externally observed for spin_lock to
be aquired (presuming a correctly functioning spinlock,
of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable
accesses. Speculation doesn't affect this. Also, stores
are not observed speculatively on other processors.

There was a long clarification discussion, resulting in a complete

turnaround by Linus:

Everybody has convinced me that yes, the Intel ordering
rules _are_ strong enough that all of this really is legal,
and that's what I wanted. I've gotten sane explanations
for why serialization (as opposed to just the simple
locked access) is required for the lock() side but not the
unlock() side, and that lack of symmetry was what
bothered me the most.

Oliver made a strong case that the lack of symmetry can
be adequately explained by just simply the lack of
symmetry wrt speculation of reads vs writes. I feel
comfortable again.

Thanks, guys, we'll be that much faster due to this..

Erich then argued that serialization was not required for the lock()
side either, but after a long and interesting discussion he apparently
was unable to win people over.

(

In fact, as Peter Samuelson pointed out to me after KT publication
(and many thanks to him for it):

"You report that Linus was convinced to do the spinlock optimization
on Intel, but apparently someone has since changed his mind back.
See <asm-i386/spinlock.h> from 2.3.30pre5 and above:

/*
* Sadly, some early PPro chips require the locked access,
* otherwise we could just always simply do
*
* #define spin_unlock_string \
* "movb $0,%0"
*
* Which is noticeably faster.
*/
#define spin_unlock_string \
"lock ; btrl $0,%0""

-- Ed: [23 Dec 1999 00:00:00 -0800]

Manfred Spraul:

We can shave spin_unlock()
down from about 22 ticks
for the “lock; btrl $0, %0”
asm code, to 1 tick for a simple
“movl $0, %0” instruction, a
huge gain.

Ingo Molnar:

…4% speedup in a benchmark
test, making the optimization
very valuable. The same op-
timization cropped up in the
FreeBSD mailing list.

Linus Torvalds:

It does NOT WORK!

Let the FreeBSD people use it,
and let them get faster timings.
They will crash, eventually.
As a completely made up exam-
ple, …

Manfred Spraul:

…according to the Pentium Processor Family Developers Man-
ual, Vol3, Chapter 19.2 Memory Access Ordering, “to optimize
performance, the Pentium processor allows memory reads to be
reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss)
and writes appear in-order.”

Your example cannot happen.

Linus Torvalds:

from the Pentium Pro manual, “The only enhancement
in the PentiumPro processor is the added support for
speculative reads and store-buffer forwarding.”
A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you’ll never see the problem.

Jeff V. Markey:

I have seen the behavior Linus describes on a hard-
ware analyzer, BUT ONLY ON SYSTEMS THAT
WERE PPRO AND ABOVE. I guess the BSD peo-
ple must still be on older Pentium hardware and
that’s why they don’t know this can bite in some
cases.

Erich Boleyn (Architect, Intel):

It will always return 0. You don’t need
“spin_unlock()” to be serializing.

14

Why Care? – A Motivating Tale

Kernel Traffic #47 For
20 Dec 1999

1. spin_unlock() Optimization On Intel

20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin_unlock
optimization(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock()
down from about 22 ticks for the "lock; btrl $0,%0" asm code, to 1
tick for a simple "movl $0,%0" instruction, a huge gain. Later, he
reported that Ingo Molnar noticed a 4% speed-up in a benchmark
test, making the optimization very valuable. Ingo also added that the
same optimization cropped up in the FreeBSD mailing list a few days
previously. But Linus Torvalds poured cold water on the whole thing,
saying:

It does NOT WORK!

Let the FreBSD people use it, and let them get faster
timings. They will crash, eventually.

The window may be small, but if you do this, then
suddenly spinlocks aren't reliable any more.

The issue is not writes being issued in-order (although
all the Intel CPU books warn you NOT to assume that
in-order write behaviour - I bet it won't be the case in
the long run).

The issue is that you _have_ to have a serializing
instruction in order to make sure that the processor
doesn't re-order things around the unlock.

For example, with a simple write, the CPU can legally

delay a read that happened inside the critical region
(maybe it missed a cache line), and get a stale value for
any of the reads that _should_ have been serialized by
the spinlock.

Note that I actually thought this was a legal
optimization, and for a while I had this in the kernel. It
crashed. In random ways.

Note that the fact that it does not crash now is quite
possibly because of either

we have a lot less contention on our spinlocks these
days. That might hide the problem, because the
spinlock will be fine (the cache coherency still
means that the spinlock itself works fine - it's just
that it no longer works reliably as an exclusion
thing)
the window is probably very very small, and you
have to be unlucky to hit it. Faster CPU's, different
compilers, whatever.

I might be proven wrong, but I don't think I am.

Note that another thing is that yes, "btcl" may be the
worst possible thing to use for this, and you might test
whether a simpler "xor+xchgl" might be better - it's still
serializing because it is locked, but it should be the
normal 12 cycles that Intel always seems to waste on
serializing instructions rather than 22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:

As a completely made-up example (which will probably
never show the problem in real life, but is instructive as
an example), imaging running the following test in a
loop on multiple CPU's:

int test_locking(void)
{

static int a; /* protected by spinlock */
int b;

spin_lock()
a = 1;

mb();
a = 0;
mb();
b = a;
spin_unlock();
return b;

}

Now, OBVIOUSLY the above always has to return 0,
right? All accesses to "a" are inside the spinlock, and we
always set it to zero before we read it into "b" and
return it. So if we EVER returned anything else, the
spinlock would obviously be completely broken,
wouldn't you say?

And yes, the above CAN return 1 with the proposed
optimization. I doubt you can make it do so in real life,
but hey, add another access to another variable in the
same cache line that is accessed through another
spinlock (to get cache-line ping-pong and timing
effects), and I suspect you can make it happen even with
a simple example like the above.

The reason it can return 1 quite legally is that your new
"spin_unlock()" isnot serializing any more, so there is
very little effective ordering between the two actions

b = a;
spin_unlock();

as they access completely different data (ie no data
dependencies in sight). So what you could end up doing
is equivalent to

CPU#1 CPU#2

b = a; /* cache miss, we'll delay
this.. */

spin_unlock();

spin_lock();

a = 1;

/* cache miss satisfied, the "a" line
is bouncing back and forth */

b gets the value 1

a = 0;

and it returns "1", which is wrong for any working
spinlock.

Unlikely? Yes, definitely. Something we are willing to
live with as a potential bug in any real kernel? Definitely
not.

Manfred objected that according to the Pentium Processor Family
Developers Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to
optimize performance, the Pentium processor allows memory reads to
be reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss) and
writes appear in-order." He concluded from this that the second CPU
would never see the spin_unlock() before the "b=a" line. Linus agreed
that on a Pentium, Manfred was right. However, he quoted in turn
from the Pentium Pro manual, "The only enhancement in the
PentiumPro processor is the added support for speculative reads and
store-buffer forwarding." He explained:

A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you'll never see the problem.

But a Pentium is also very uninteresting from a SMP
standpoint these days. It's just too weak with too little
per-CPU cache etc..

This is why the PPro has the MTRR's - exactly to let the
core do speculation (a Pentium doesn't need MTRR's, as
it won't re-order anything external to the CPU anyway,
and in fact won't even re-order things internally).

Jeff V. Merkey added:

What Linus says here is correct for PPro and above.
Using a mov instruction to unlock does work fine on a
486 or Pentium SMP system, but as of the PPro, this was
no longer the case, though the window is so
infintesimally small, most kernels don't hit it (Netware
4/5 uses this method but it's spinlocks understand this
and the code is writtne to handle it. The most obvious

aberrant behavior was that cache inconsistencies would
occur randomly. PPro uses lock to signal that the
piplines are no longer invalid and the buffers should be
blown out.

I have seen the behavior Linus describes on a hardware
analyzer, BUT ONLY ON SYSTEMS THAT WERE PPRO
AND ABOVE. I guess the BSD people must still be on
older Pentium hardware and that's why they don't know
this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also
replied to Linus, pointing out a possible misconception in his
proposed exploit. Regarding the code Linus posted, Erich replied:

It will always return 0. You don't need "spin_unlock()" to
be serializing.

The only thing you need is to make sure there is a store
in "spin_unlock()", and that is kind of true by the fact
that you're changing something to be observable on
other processors.

The reason for this is that stores can only possibly be
observed when all prior instructions have retired (i.e.
the store is not sent outside of the processor until it is
committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:

Since the instructions for the store in the spin_unlock
have to have been externally observed for spin_lock to
be aquired (presuming a correctly functioning spinlock,
of course), then the earlier instructions to set "b" to the
value of "a" have to have completed first.

In general, IA32 is Processor Ordered for cacheable
accesses. Speculation doesn't affect this. Also, stores
are not observed speculatively on other processors.

There was a long clarification discussion, resulting in a complete

turnaround by Linus:

Everybody has convinced me that yes, the Intel ordering
rules _are_ strong enough that all of this really is legal,
and that's what I wanted. I've gotten sane explanations
for why serialization (as opposed to just the simple
locked access) is required for the lock() side but not the
unlock() side, and that lack of symmetry was what
bothered me the most.

Oliver made a strong case that the lack of symmetry can
be adequately explained by just simply the lack of
symmetry wrt speculation of reads vs writes. I feel
comfortable again.

Thanks, guys, we'll be that much faster due to this..

Erich then argued that serialization was not required for the lock()
side either, but after a long and interesting discussion he apparently
was unable to win people over.

(

In fact, as Peter Samuelson pointed out to me after KT publication
(and many thanks to him for it):

"You report that Linus was convinced to do the spinlock optimization
on Intel, but apparently someone has since changed his mind back.
See <asm-i386/spinlock.h> from 2.3.30pre5 and above:

/*
* Sadly, some early PPro chips require the locked access,
* otherwise we could just always simply do
*
* #define spin_unlock_string \
* "movb $0,%0"
*
* Which is noticeably faster.
*/
#define spin_unlock_string \
"lock ; btrl $0,%0""

-- Ed: [23 Dec 1999 00:00:00 -0800]

Manfred Spraul:

We can shave spin_unlock()
down from about 22 ticks
for the “lock; btrl $0, %0”
asm code, to 1 tick for a simple
“movl $0, %0” instruction, a
huge gain.

Ingo Molnar:

…4% speedup in a benchmark
test, making the optimization
very valuable. The same op-
timization cropped up in the
FreeBSD mailing list.

Linus Torvalds:

It does NOT WORK!

Let the FreeBSD people use it,
and let them get faster timings.
They will crash, eventually.
As a completely made up exam-
ple, …

Manfred Spraul:

…according to the Pentium Processor Family Developers Man-
ual, Vol3, Chapter 19.2 Memory Access Ordering, “to optimize
performance, the Pentium processor allows memory reads to be
reordered ahead of buffered writes in most situations. Internally,
CPU reads (cache hits) can be reordered around buffered writes.
Memory reordering does not occur at the pins, reads (cache miss)
and writes appear in-order.”

Your example cannot happen.

Linus Torvalds:

from the Pentium Pro manual, “The only enhancement
in the PentiumPro processor is the added support for
speculative reads and store-buffer forwarding.”
A Pentium is a in-order machine, without any of the
interesting speculation wrt reads etc. So on a Pentium
you’ll never see the problem.

Jeff V. Markey:

I have seen the behavior Linus describes on a hard-
ware analyzer, BUT ONLY ON SYSTEMS THAT
WERE PPRO AND ABOVE. I guess the BSD peo-
ple must still be on older Pentium hardware and
that’s why they don’t know this can bite in some
cases.

Erich Boleyn (Architect, Intel):

It will always return 0. You don’t need
“spin_unlock()” to be serializing.

Linus Torvalds:

I feel comfortable again.

Thanks, guys, we’ll be that much
faster due to this…

14

Lecture Plan

1 Introduction

2 SC and x86-TSO Memory Models

3 ARM, Power, RISC-V Memory Models

4 Programming Language Memory Models: C11 and Release Acquire

5 What next? Reasoning over Weak Memory Models

15

Recall: Dekker/SB test

Initially: x = 0; y = 0;
Thread 0 Thread 1

x := 1;
r0 := y;

y := 1;
r1 := x;

Finally: r0 = 0 ∧ r1 = 0 ??

Forbidden on SC
Observed on x86

How come?

16

Microarchitecture Interlude: Store Buffering

Storing to memory is expensive
Thread has to gain exclusive ownership of location

In practice, thread buffers stores
…letting the thread go ahead if it can

We think x86 has FIFO store buffers

17

An Explanation

Thread 0 Thread 1

T0’s
Store
Buffer

T1’s
Store
Buffer

(Shared) Memory

x = y = 0 initially
Thread 0 Thread 1
x := 1 y := 1
r0 := y r1 := x

18

Another Test: SB+rfi-pos

Initially: x = 0; y = 0;
Thread 0 Thread 1

x := 1;
r2 := x;
r0 := y;

y := 1;
r3 := y;
r1 := x;

Finally: r0 = 0 ∧ r1 = 0 ∧ r2 = 0 ∧ r3 = 0??

Not observed on x86

Threads required to read from local store buffer

19

Regaining order when needed

Suppose you wanted to program, e.g. mutual exclusion

Need to regain strong ordering

MFENCE memory barrier

20

Fences: SB+mfences

Initially: x = 0; y = 0;
Thread 0 Thread 1

x := 1;

MFENCE();
r0 := y;

y := 1;

MFENCE();
r1 := x;

Finally: r0 = 0 ∧ r1 = 0 ??

Not observed on x86

Store buffer must be emptied (flushed) at fence

21

Atomics

x86 is very much not RISC

Instructions like INCrement
Can be made atomic by using a LOCK prefix
…in the early days, literally locked the bus

Instructions like LOCK CMPXCHG
Atomic (either exchanges if memory as expected, or not)

Store Buffers must be empty
Note: fence effect

22

Atomics

x86 is very much not RISC

Instructions like INCrement
Can be made atomic by using a LOCK prefix
…in the early days, literally locked the bus

Instructions like LOCK CMPXCHG
Atomic (either exchanges if memory as expected, or not)

Store Buffers must be empty
Note: fence effect

22

Atomics

x86 is very much not RISC

Instructions like INCrement
Can be made atomic by using a LOCK prefix
…in the early days, literally locked the bus

Instructions like LOCK CMPXCHG
Atomic (either exchanges if memory as expected, or not)

Store Buffers must be empty
Note: fence effect

22

x86-TSO: An abstract machine

Thread Thread• • •

Store
Buffer

Store
Buffer

• • •
Lock

Shared Memory

23

x86-TSO: An abstract machine

Thread Thread• • •

Store
Buffer

Store
Buffer

• • •
Lock

Shared Memory

FIFO Store Buffer
per thread

Threads in order

Global lock for exclusive
memory access

23

x86-TSO: An abstract machine

Thread Thread• • •

Store
Buffer

Store
Buffer

• • •
Lock

Shared Memory

⊇beh
6=hw

Force: Of the internal optimizations of processors, only per-thread FIFO
write buffers are visible to programmers.

Still quite a loose spec: unbounded buffers, nondeterministic
unbuffering, arbitrary interleaving

24

Formalising Models

Syntactic Domains:
r Local variables
x Shared locations
v Values (integers)

Commands:
e ::= r | v | e1 + e2 | …
c ::= skip | c1; c2 | r := e | r := x | x := e |

if r then c | …

Programs:
p ::= c1 | . . . | cn

25

Operational Models

We sketched an abstract machine

Relatable to microarchitectural intuitions

Formalised as a (Labelled) Transition System

26

Formalisation: Outcomes

The transition system has states, initialised to initial values

Behaviour is a function on the final state (representing a final
observation)

A satisfying state is reachable iff behaviour allowed

27

Model Structure

Typically, (inspired by microarchitectural intuitions):

Separate

Thread subsystem (what the thread knows and can execute by itself)

from

Storage subsystem (what the interconnection knows and can execute)

Synchronising when they communicate (hence the labels)

Not a forced decision (we can divide responsibility almost arbitrarily)
…but turns out simpler to abstract actual hardware

28

Model Structure

Typically, (inspired by microarchitectural intuitions):

Separate

Thread subsystem (what the thread knows and can execute by itself)

from

Storage subsystem (what the interconnection knows and can execute)

Synchronising when they communicate (hence the labels)

Not a forced decision (we can divide responsibility almost arbitrarily)
…but turns out simpler to abstract actual hardware

28

Sequential Consistency, Operationally – 1

Thread subsystem: execute thread local operations in order

T-Store
x := v , s t:Wxv−−−−→ skip, s

T-Load
r := x , s t:Rxv−−−→ skip, s[r 7→ (v)]

and rules for composition and local (silent) transitions

29

Sequential Consistency, Operationally – 2

Storage subsystem: state is just a
Memory M : loc → val

SCS-Store
M t:Wxv−−−−→ M[x 7→ v]

M(x) = v
SCS-Load

M t:Rxv−−−→ M

Thread and storage subsystems synchronise when their labels match
(and can take silent transitions when they are unlabelled transitions)

30

x86-TSO, Operationally – 1

Same thread subsystem as in SC

Storage subsystem: store is a combination of
Memory M : loc → val
Buffers B : threadid → (loc × val)?

31

x86-TSO, Operationally – 2

Important storage subsystem rules:

TSOS-Store
〈M,B〉 t:Wxv−−−−→ 〈M,B[t 7→ 〈x , v〉 · B(t)]〉

B(t) = b · 〈x , v〉
TSOS-Mem

〈M,B〉 ε−→ 〈M[x 7→ v],B[t 7→ b]〉

M(x) = v B(t) is free of loc x
TSOS-LoadMem

〈M,B〉 t:Rxv−−−→ 〈M,B〉

B(t) = b1 · 〈x , v〉 · b2 b2 is free of loc x
TSOS-LoadBuf

〈M,B〉 t:Rxv−−−→ 〈M,B〉

32

Axiomatic Models

Can be much more abstract in modeling

Axiomatic (or declarative) models are very different in style

The idea: consider candidate executions of a program, containing all
events (memory events) in one execution

Have a set of rules (axioms) to say if each such is legal

Turns out most axioms can be phrased as
rules over binary relations and their composition (algebra of relations)

33

Axiomatic Models

Can be much more abstract in modeling

Axiomatic (or declarative) models are very different in style

The idea: consider candidate executions of a program, containing all
events (memory events) in one execution

Have a set of rules (axioms) to say if each such is legal

Turns out most axioms can be phrased as
rules over binary relations and their composition (algebra of relations)

33

Axiomatic Models

Can be much more abstract in modeling

Axiomatic (or declarative) models are very different in style

The idea: consider candidate executions of a program, containing all
events (memory events) in one execution

Have a set of rules (axioms) to say if each such is legal

Turns out most axioms can be phrased as
rules over binary relations and their composition (algebra of relations)

33

Candidate Executions - Part 1

A candidate execution is: a set of memory events (stores, loads, fences
etc), together with …

the memory events corresponding to a complete execution path through
each thread

with loads getting some values

34

Illustration

x = y = 0 initially
Thread 0 Thread 1
x := 1 y := 1
r0 := y r1 := x

Execution 1

i:W x 0 i:W y 0

0: W x 1 1: W y 1

0: R y 0 1: R x 0

Execution 2

i:W x 0 i:W y 0

0: W x 1 1: W y 1

0: R y 1 1: R x 42

…

35

Candidate Executions - Part 2

A candidate execution is: a set of memory events (stores, loads, fences
etc), together with relations:

program-order (po);
reads-from (rf);
…

Reads-from relates a Store to a Load that gets its value

36

Illustration – 2

x = y = 0 initially
Thread 0 Thread 1
x := 1 y := 1
r0 := y r1 := x

Execution 1

i:W x 0 i:W y 0

0: W x 1 1: W y 1

0: R y 0 1: R x 0

rfrf

Execution 2

i:W x 0 i:W y 0

0: W x 1 1: W y 1

0: R y 1 1: R x 42
rf

…

37

An axiomatic SC model

Suppose E is a candidate execution

If there is a total order S on the events of E ;
such that E .po ⊆ S; and
E .rf ⊆ S; and
if (W ,R) ∈ E .rf then there is no W ′ 6= W to the same location between
W and R in S;

then E is SC-consistent

Basically Lamport’s definition: “some sequential order, respecting the
order specified by the program.”

38

Execution Candidate (last piece): Coherence Order

Coherence order (co): For every location, a linear order of stores to that
location

All common hardware platforms ensure there is one such order per location
such that all observations are consistent with the order

…Because hardware (cache protocols) are designed for this

39

Coherence implications

This leads to an important derived relation:

fr ≡ rf−1; co

Intuition: reads-before in coherence order

40

An alternative axiomatic SC model

Suppose E is a candidate execution

If (E .po | E .rf | E .co | E .fr)? is acyclic,

then E is SC-consistent

Equivalent to Lamport’s definition

41

Alternative model advantages

Phrased as an acyclicity check

This lets us generate tests which have cycles in certain relations

The diy7 tool will let us generate litmus tests from such a definition

0: W x 1: W y

0: R y 1: R x

po pofr
fr

42

Alternative model advantages

Phrased as an acyclicity check

This lets us generate tests which have cycles in certain relations

The diy7 tool will let us generate litmus tests from such a definition
i:W x 0 i:W y 0

0: W x 1 1: W y 1

0: R y 0 1: R x 0

po pofr
fr

co co
rfrf

42

Axiomatic vs Operational

Axiomatic Models
Easier to state
Checking behaviour is easier
Entire executions; modularising is not obvious

Operational Models
State machine intuition
Abstracts machine behaviour
Can perform incremental calculation

43

Relating the Models

Naturally, want both styles

…and want them to be equivalent

Operationally allowed behaviours should all be axiomatically allowed
(look at traces)

Axiomatically allowed behaviours should all be operationally allowed
(use nondeterminism in operational models)

44

An axiomatic x86-TSO model

x86-TSO has a more complex (than SC) model, but not much more

Essentially have to account for:
Store-to-Load on same thread is not part of globally enforced order
Loads get ordered only if they see a value from other threads
Same-thread coherence violations are not allowed
Fences order everything before to everything after

See x86tso.cat distributed with herd7 for more details

45

Outline

1 Introduction

2 SC and x86-TSO Memory Models

3 ARM, Power, RISC-V Memory Models

4 Programming Language Memory Models: C11 and Release Acquire

5 What next? Reasoning over Weak Memory Models

46

Weaker memory models

x86-TSO is a relatively strong memory model
SPARC is similar

IBM Power much weaker (more interesting)
ARM similar (since ARMv8 stronger in a particular way)
RISC-V “RVWMO” similar to ARMv8

47

Litmus test: Message Passing (MP)

Initially: d = 0; f = 0;
Thread 0 Thread 1

d := 1;
f := 1;

while (f == 0)
{};

r := d;

Finally: r = 0 ??

Forbidden on SC
Forbidden on x86-TSO

Observed on Power7 (1.7G/167G)
…and on ARM Tegra3 (138k/16M)

48

Explaining MP via Microarchitecture

Three possible explanations (at least):
Thread core execution does stores out of order
Stores propagate between threads out of order
Thread core execution does loads out of order

Power and ARM and RISC-V can do all three

49

LB test

Initially: x = 0; y = 0;
Thread 0 Thread 1

r0 := y;
x := 1;

r1 := x;
y := 1;

Finally: r0 = 1 ∧ r1 = 1 ??

SC and TSO forbid this

ARM, Power, RISC-V allow this
…though current hardware do not show this

50

Fences

All these architectures have a full fence like MFENCE

But also weaker fences which are (usually) cheaper to only stop some
reorderings

Power: lwsync only orders stores-to-stores, loads-to-loads and stores;
eieio only orders stores-to-stores

ARM: dmb.ld only orders loads-to-loads and stores;
dmb.st only orders stores-to-stores

RISCV: fence p,s for all combinations p, s ⊆ r ,w

51

Dependencies

In MP, if the stores are somehow stopped from being reordered
(store-store fence), load reordering can still show us the questionable result

But usually, algorithms are written with some dependencies (when you do
a load and use the resulting value)

Some (but not all) dependencies are guaranteed to be respected by
hardware

…and some code (e.g. Linux RCU) does really depend on this

52

Dependencies

Address Dependency
value read by one load is used to calculate address of subsequent
load/store

Data Dependency
value read by one load is used to calculate value of subsequent store

53

Dependencies

Address Dependency
value read by one load is used to calculate address of subsequent
load/store

Data Dependency
value read by one load is used to calculate value of subsequent store

Control Dependency
value read by one load is used to calculate whether to perform subsequent
events

53

Dependencies

Address Dependency
value read by one load is used to calculate address of subsequent
load/store

Data Dependency
value read by one load is used to calculate value of subsequent store

Control Dependency
value read by one load is used to calculate whether to perform subsequent
events

Control-Isync Dependency
value read by one load is used to calculate whether to perform subsequent
events, with intervening isync

53

Dependencies

Address Dependency
value read by one load is used to calculate address of subsequent
load/store

Data Dependency
value read by one load is used to calculate value of subsequent store

Control Dependency
value read by one load is used to calculate whether to perform subsequent
events

Control-Isync Dependency
value read by one load is used to calculate whether to perform subsequent
events, with intervening isync

Sometimes naturally in algorithm

“Fake” dependencies respected as well

53

Microarchitectural explanation

Address dependency means the subsequent memory event cannot
be issued by the thread

Data dependency means the subsequent store cannot be issued by
the thread

Control dependency is respected for loads-to-store, as stores are not
speculated;
…but loads are (observably!) speculated by branch prediction;
load-to-load not respected

Control-isync dependency is respected (all speculation is stopped)

54

Doing MP on POWER: MP+lwsync+ctrlisync

Initially: d = 0; f = 0;
Thread 0 Thread 1

st d 1;
lwsync;
st f 1;

loop: ld f rtmp;
cmp rtmp 0;
beq loop;

isync;
ld d r;

Finally: r = 0 ??

Forbidden (and not observed) on POWER7, and ARM

lwsync prevents store-store reordering
control-isync dependency prevents load speculation

55

Thread subsystem

(Unlike x86-TSO)
Power/ARM/RISC-V have very interesting thread subsystems

Allow reordering of memory accesses to different locations
Allow speculation past branches not (yet) known to be taken
Pay attention to dependencies
Forbid reordering across fences of appropriate kinds

56

Inter-thread communication

In x86-TSO, once a store becomes visible to one other thread, it becomes
visible to all other threads

On Power, that is not necessarily the case

Technically called lack of Multi-copy Atomicity

57

Litmus test: Iterated Message Passing (WRC)

Initially: d = 0; f = 0;
Thread 0 Thread 1 Thread 2
d := 1; while (d == 0)

{};
f := 1;

while (f == 0)
{};

isync();
r := d;

Finally: r = 0 ??

The dependencies forbid in-thread reordering
Observed on Power

Store on d making its way to Thread 1 does not mean it has also
made its way to Thread 2

58

Litmus test: Iterated Message Passing (WRC)

Initially: d = 0; f = 0;
Thread 0 Thread 1 Thread 2
d := 1; while (d == 0)

{};
f := 1;

while (f == 0)
{};

isync();
r := d;

Finally: r = 0 ??

The dependencies forbid in-thread reordering
Observed on Power

Store on d making its way to Thread 1 does not mean it has also
made its way to Thread 2

58

Cumulativity in non-Multi-Copy-Atomicity

To restore SC, fences have to do more than just stop reordering

“It’s not just reordering”

Have to make sure current thread-local view is transferred with fence

Hardware folk like to call this “cumulative barriers”

59

Storage subsystem

For Power, the storage subsystem can just be combination of each thread’s
local view of memory

Together with point-to-point communication
(no single point of truth aka memory)

60

Multi-Copy Atomicity

ARM used to be (ARMv7) non-multi-copy-atomic in architecture

Since ARMv8, now multi-copy atomic

Turns out their implementations were not utilising the freedom of the
specification

…and they think it is unnecessary

61

Outline

1 Introduction

2 SC and x86-TSO Memory Models

3 ARM, Power, RISC-V Memory Models

4 Programming Language Memory Models: C11 and Release Acquire

5 What next? Reasoning over Weak Memory Models

62

Programming Language Models

Program in higher level languages... are you safe?

1 Has to be compiled to run on hardware

2 Furthermore, compiler can optimise as well

63

Message Passing, Again

Initially: data = 0; flag = 0;
Thread 0 Thread 1

data = 1;
flag = 1;

r0 = data;
while (flag == 0)

{};
r = data;

Finally: r = 0

Compiler doing Common Subexpression Elimination
Can produce unexpected results even on SC hardware

64

Message Passing, Again

Initially: data = 0; flag = 0;
Thread 0 Thread 1

data = 1;
flag = 1;

r0 = data;
while (flag == 0)

{};
r = r0;

Finally: r = 0

Compiler doing Common Subexpression Elimination
Can produce unexpected results even on SC hardware

64

Data Race Free Models

Should you even be writing programs like that?
Idea: No! Programmer mistake to write Data Races

Basis of C11 Concurrency

65

DRF as a programming model

Programs that do not have races (race-free) have only SC behaviour

Programs that have a race in some execution are Bad

In C/C++ terms, undefined behaviour

66

Well, how do you avoid races?

Option 1: Only do “normal” shared-memory accesses guarded by
mutexes/locks

But how do we program locks?
How about optimisations?

Option 2: Syntactically mark synchronisation accesses
Since C11/C++11 called atomic accesses
…_Atomic (Node *) t in C, or std::atomic<Node *> t in C++;
These are treated specially by compilers

67

What about low-level algorithms?

C11 introduces marked atomic operations
Races on these are ignored

Can be given parameters (strengths)
Sequentially consistent (the default)
Release; Acquire; AcqRel
Consume
Relaxed

68

Happens-before

The C11 model is phrased as an axiomatic model

…with the key relation called happens-before

Nonatomic accesses unrelated by happens-before are data races (UB)

Relaxed accesses do not create happens-before, but do not create data
races

69

Release and Acquire

Happens-before between unlocks and subsequent locks

This is a very common pattern

Essentially, transfer view of one thread at the lock release to the thread
acquiring the lock

Release-acquire synchronisation abstracts this phenomenon (when an
acquire atomic load reads-from a release atomic store)

70

MP in C11: mark atomics

Mark atomic variables (accesses have memory order parameter)

Initially: d = 0; f = 0;
Thread 0 Thread 1

d.store(1,rlx);
f.store(1,rlx);

while (f.load(rlx) == 0)
{};

r = d.load(rlx);

Finally: r = 0 ??

(Forbidden on SC) (also forbidden on TSO)

Defined, and possible, in C/C++11
Allows for hardware (and compiler) optimisations

71

MP in C11 (contd.): release-acquire synchronisation

Mark release stores and acquire loads

Initially: d = 0; f = 0;
Thread 0 Thread 1

d.store(1,rlx);
f.store(1,rel);

while (f.load(acq) == 0)
{};

r = d.load(rlx);

Finally: r = 0 ??

Forbidden in C/C++11 due to release-acquire synchronisation
Implementation must ensure result not observed

72

Outline

1 Introduction

2 SC and x86-TSO Memory Models

3 ARM, Power, RISC-V Memory Models

4 Programming Language Memory Models: C11 and Release Acquire

5 What next? Reasoning over Weak Memory Models

73

Working with Formal Memory Models

Can we implement the C11 model on hardware?

We can now prove correctness of implementation schemes

Compilers require this (they earlier sometimes got it wrong)

Shows correspondence of notions
Release-acquire synchronisation 7→ lwsync and ctrlisync
Transitive part of happens-before 7→ cumulativity
…

74

Model Checking

Model checking of code is mature technology

In the concurrent setting, can detect race bugs (but state-space
explosion problems)

What happens with weak memory?

75

Model Checking over Weak Memory

Considering interleavings not sufficient

Operational models can be explored (nondeterministic interleavings of
transition systems
…but state space has lots of (unnecessary?) machinery

76

Program Logics

Hoare-style assertion reasoning is mainstay of program verification

Concurrent Separation Logic is a huge success story in concurrent
verification

The standard “heap model” assumes SC

Not sound for weak memory

77

Program Logics over Weak Memory

Can adapt heap model to weak memory (most successful for TSO-like
models)

Can transfer ideas in the opposite way: Release-Acquire is transferring
a “view”

Basis of several RA style logics (work ongoing to scale up to C11)

78

Much Exciting Research to be Done!

Thank you!

	Introduction
	SC and x86-TSO Memory Models
	ARM, Power, RISC-V Memory Models
	Programming Language Memory Models: C11 and Release Acquire
	What next? Reasoning over Weak Memory Models

