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Abstract

In this paper texture analysis techniques are used to segment rough surfaces into regions of homo-
geneous texture. The performance of three rough surface classifiers was assessed and compared. The
classifiers differ in their discrimination as well as their input and computational requirements. Simulation
and experiment were used to identify the limitations of the classifiers and to identify which classifier is

best suited to a particular task. A series of guidelines for the choice of classifier are presented and justified.
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I. INTRODUCTION

The visual texture of a surface is caused by light interacting with variations in the
surface’s reflection characteristics or with the surface topography. This paper is limited
to the second source of texture and deals with the classification of rough surfaces on
the basis of their image texture. Although many investigations have used this form of
texture implicitly—the majority of Brodatz textures [1] contain at least a component due
to surface topography—Ilittle work has been carried out on the phenomena associated
with this group. One characteristic of rough surface textures is that the appearance of
the surface is a function of the illuminant direction as well as of the surface topography
[2] [3] [4] [5]. For instance, rotation of a directional surface is not equivalent to rotation
of its image, [6], Figure 1. A surface rotation invariant classifier must take this effect into
account.

Texture analysis is an established field within computer vision. Because of the abun-
dance of textures in unconstrained environments and because of the importance of texture
as a stimulus to the human visual system, most research takes the image as the starting
point. The development of rotation invariant techniques for texture analysis has been
extensively researched [7] [8] [9] [10] [11] [12] [13]. However, these algorithms are invariant
to rotation of the image. This is not appropriate to rough surfaces—the visual texture on
the right of Figure 1 is completely different from the texture on the left of the figure. This
paper will assess when it is possible to classify using the image and when it is necessary
to infer surface properties.

The effect of directional illumination on classification can be reduced by decreasing the
(slant) angle between the light source and the vertical—though of course this suppresses
the visible texture. An alternative approach is to classify using the properties of the
surface rather than those of the image. Photometric stereo allows the estimation of surface
derivatives using several images of the same scene captured under different illumination
conditions. Critically, it does not need the smoothness constraint required by most single-
image shape from shading algorithms. Figure 2 shows a series of scatter plots of the
estimated surface derivatives, p and ¢, corresponding to the image series (Figure 1). The

joint distribution of p and ¢ is invariant, apart from a rotation. This makes the surface



derivatives an attractive feature for classification.

This paper compares the ability of three test classifiers—IRIS [11], Point [2] and SiRIS
[6]—to distinguish and segment Gaussian textured surfaces that obey Lambert’s law. The
IRIS and SiRIS classifiers have never before been tested on real, surface rotation data and
the Point classifier has only been previously tested on a limited data set. This paper is
also novel in its approach to assessment: we constrain the classification tasks so that the
classifiers must discriminate between similar textures. In this way, we can identify the
types of surface to which each classifier is suited, though this also results in relatively high
error rates.

The techniques are tested in an inspection task where imaging conditions are controlled:
we do not try to mimic the versatility of the human visual system. In many inspection tasks
the classifier deals with surfaces that have been formed by similar physical processes—that
is they differ in the degree, rather than the type, of processing. The experimental approach
of this paper is to test the ability of the classifiers to distinguish similar surfaces. Initially
the investigation uses simulation with physically based surface models to assess the tech-
nique. By varying the parameters of the model it is possible to control the similarity of
the surfaces. This allows the relative strengths of the classifiers to be assessed method-
ically. The natural textures used in this paper are grouped in montages according to
their underlying physical cause. We have tried to use sets of surfaces that are similar, but
which show a gradation in appearance. The natural surfaces are used to assess the relative
performance of the classifiers as well as their robustness to surface rotation.

We have found that the Point classifier is the least able to discriminate between surfaces
and is the most susceptible to low frequency trends. The SiRIS classifier performs better
than IRIS—except when the illuminant can be aligned to accentuate differences in surface
directionality. Most significantly we have confirmed that SiRIS is robust to surface rotation
(in the plane); and that IRIS is not.

Although the Point classifier is the worst classifier tested we do not rule it out for
applications: its simplicity makes it attractive where fast detection, or a fast, coarse clas-
sification, is required. For isotropic surfaces SIRIS improves on IRIS with little increase

in computation—though whether the improvement justifies the need for more images de-



pends on the application. For directional surfaces that are always presented at the same
orientation and when the lighting can be optimised, we recommend the IRIS classifier.
If the orientation of a directional surface cannot be predicted—we conclude that IRIS is

insufficient and a photometric approach such as SiRIS is necessary.

II. TEST CLASSIFIERS

Tuceryan and Jain identify four general approaches to texture classification: statistical
approaches, geometric methods (including structural techniques), model-based techniques
and signal processing methods [14]. The classifiers we consider fall into the signal process-
ing category—filtering followed by an energy measure. Recently several authors have used
alternatives to energy measures. Pietikdinen et al. first of all compare feature distributions
to select the most likely class, then apply the k nearest neighbour algorithm to assign the
final classification [15]. The Point classifier omits the filtering operation—however in all
other respects it is equivalent to the other classifiers. This class of technique is derived
from classical detectors and a discriminant is used to set a series of thresholds which de-
termine the mapping from feature value to estimated class. This may be implemented in
several ways, e.g. neural nets [16], nearest neighbour classifiers [18], or statistical classifiers
[17]. We used a simple Bayes Linear classifier, see [28], with all the classifiers tested. We
chose a linear statistical classifier because of its popularity in the literature. This paper
deals with the robustness of features to rotation: the performance of different discrimants
will vary, however they are all beset by the same problem of feature variation, and the
differences in their performance will, in general, be small relative to the variations caused
by surface rotation.

In [2] we proposed a classifier (Point) that used photometric stereo to estimate the
surface derivatives then extracted features from the point statistics of the derivative fields.
In this classifier feature extraction corresponds to measuring the local distribution of the
surface derivatives, p and ¢, and estimating its major and minor axes. The features
encapsulate surface roughness and directionality and are rotation invariant. Subsequently,
we have concluded that the sum of the squares of the surface derivatives, although a less
powerful feature, is more robust and better suited for classification: this is the form used

in this paper. This is similar to the approach pursued by Smith [25], where he extracted a



series of descriptive features from the point statistics of derivative fields. In [6] a Surface
Rotation InSensitive (SiRIS) classifier was proposed that used isotropic Gabor filters and
was insensitive to surface directionality and therefore robust to surface rotation. The
algorithm first decomposes the surface derivative fields into a series of bandlimited fields,
then calculates the sum of the squares of the filtered surface derivatives for each band.
The third technique investigated is the Image Rotation InSensitive (IRIS) classifier. This
is based on the scheme proposed in [11], though in this paper it is used to classify on a
pixel by pixel basis rather than to classify image blocks. SiRIS is almost identical to IRIS
except that IRIS operates on image data rather than inferred surface characteristics. The
three classifiers are summarised in Figure 3.

All of the classifiers considered ignore phase and discriminate on a sampling of the
power spectrum of either the image or the surface derivatives. A stationary random
process may be completely characterised by its power spectrum if the process is Gaussian.
The assumption that the surface height distributions are Gaussian is common in the
rough surface literature. Experimental results suggest that, although not universal, the
Gaussian assumption is valid for many natural surfaces [22]. Since differentiation is a linear
operation, the assumption also holds for surface derivatives. Furthermore, if the surface
facets are not too steep, Lambertian reflection may be modelled as a linear operator [23],
and the Gaussian assumption can be extended to the distribution of image intensities. In
this paper, surfaces are assumed to be characterised solely by their power spectrum.

The classifiers differ in their requirements for data and computation. The IRIS scheme,
which is a conventional image-based classifier, needs only one image. The Point and
SiRIS classifiers rely on photometric stereo and require a minimum of three images for a
Lambertian surface. However in this paper we use four images because we have found that
a fourth image makes the estimator more robust to shadows. The Point classifier requires
least computation. SiRIS and IRIS require similar amounts of calculation. Although
SiRIS applies each filter to two images (or derivative fields), whereas IRIS applies each
filter to only one, the image pair can be treated as being a single, complex image and
filtered simultaneously, see [19] P.511 for explanation. In this way there is no substantial

overhead for filtering pairs of surface derivatives rather than single images. This point is
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confirmed by comparing the CPU times of the different algorithms, Table I. Point is the
fastest by a large margin and IRIS is only slightly faster than SiRIS. Given the relative
costs of the classifiers it is desirable to identify when the extra expenditure is necessary or

useful.

III. SIMULATIONS WITH SYNTHETIC SURFACES

The classifiers’ ability to distinguish two classes of surface was assessed. Simulation
using parametric surface models was used to vary the similarity of the test surfaces—and

the difficulty of discrimination—in a controlled manner.

A. Method

To allow comparison, all the classifiers used the same training data and the same Gaus-
sian low pass filter (with a standard deviation of 4 cycles per image). The IRIS and SiRIS
classifiers also shared the same sampling of the frequency spectrum: Gabor filters with
centre frequencies of 32, 64, 96 and 128 cycles per image (¢/i) and a Gaussian low pass fil-
ter, all with a standard deviation of 16 ¢/i. A Bayes linear discriminant was used to make
the final classification for each algorithm. The classifiers were trained on one sixteenth
of the test image. Each montage is 256 x 256 pixels and consists of two textures. The
image textures were formed by rendering realisations of stochastic surface models using
Lambert’s law. The synthetic surfaces were illuminated from a slant of 50°, and tilt angles
of 0°, 90°, 180° and 270°. As the surfaces become more similar, the error rate approaches
50%. In fact it rarely reaches this value because information specific to each realisation is
implicitly incorporated into the discrimination rule.

The surface models are parametric expressions of the power spectrum of the surface
height field. Phase spectra are random—different realisations of a model are obtained using
different phase spectra. Two isotropic surface models were used: Sayles [20] and Mulvaney
[21]. The two dimensional expressions are shown in Equations 1 and 2, respectively. A

directional model, Ogilvy [22], is shown in Equation 3.
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S(w) is the two dimensional power spectrum
w is the radial frequency
w. is the cut-off frequency

Esay, kmar and kog are constants

u and v are the cartesian frequency coordinates
w, and w, are the cut-off frequencies in the z and y directions.

The Sayles model is fractal and is parameterised by the factor kg, or equivalently by
the root mean square (rms) slope. This parameter is varied in Simulation 1. The classifiers
must make a series of discriminations between two fractal surfaces: the first has an rms
slope of 0.25, the rms slope of the other is varied between 0.21 and 0.29. Figure 4 shows
the effect of varying rms slope from 0 to 0.5. The second simulation repeats the first,
except that a Mulvaney surface, with a cut-off frequency of 32 ¢/i, is used. The accuracy
of classification for Simulations 1 and 2 is shown in Figures 7 and 8 respectively.

The Mulvaney model has an additional parameter that controls the frequency at which
the transition from white noise to fractal behaviour occurs: when the cut-off frequency
is low the model approximates the Sayles model. In Simulation 3 the first surface has a
cut-off frequency of 16 c¢/i and the cut-off frequency of the second is varied from 1 to 32
c¢/i. Unlike the previous experiment, the test surfaces now differ in the shape as well as the
power of the spectrum. As we change the cut-off frequency we rescale the power spectrum
so that the amplitude of the high frequencies remains unchanged. This is designed to
simulate a wear process which affects the high amplitude, low frequency, components first.
The visual effect is shown in Figure 5. The accuracy of classification is shown in Figure

9, and an example segmentation for each classifier is shown in Figure 10.



The Ogilvy model has three parameters: the scaling parameter, k,y, and the vertical
cut-off frequency, wy, are held constant for both surfaces (w,=4); the horizontal cut-off
frequency, w, is set to 16 c/i for one surface and varied from 1 to 32 ¢/i for the second.
The visual effect is shown in Figure 6. Since the appearance of a directional surface varies
with the direction of illumination, IRIS is tested for two cases: when the illuminant is
perpendicular to the surface grain (IRISO) and when it is parallel (IRIS90). The photo-
metric classifiers use illumination from both of these directions, so only one set of results

is needed for each of these classifiers. The effect on the classifiers is shown in Figure 11

B. Simulation Results and Discussion

The Point classifier is significantly less accurate than the SiRIS classifier in Simulation
1, Figure 7. This is surprising since it directly and parsimoniously measures the experi-
mental variable. However, when the experiment was repeated with the Mulvaney surface
(Simulation 2) it performs well relative to the others. This suggests that the Point classifier
is more sensitive to low frequency trends than the spectral classifiers which isolate—and
can therefore ignore—low frequency signal components.

The Point classifier also performs more poorly than the other classifiers in Simulations 3
and 4 where roughness is varied indirectly; though it does outperform the IRIS classifier in
Simulation 4 when the surface grain is parallel with the illuminant, Figure 11. Despite this
poor performance, measured in absolute terms it is able to discriminate between similar
surfaces and may be sufficient in many applications.

SiRIS classifies using the filtered surface derivatives: IRIS uses the filtered image inten-
sity. Nonetheless, they can be usefully compared. The reflectance function may be ap-
proximated as being linear: that is the intensity of a facet can be treated as the weighted
sum of its partial derivatives. This simplifies comparison of the two techniques.

In the case of isotropic textures (Simulations 1-3) SiRIS is, in most cases, superior
(Figures 7-9). For an isotropic surface the linear approximation allows the image to be
treated as a single scaled and rotated derivative field. In this way the IRIS classifier
discriminates on the basis of the square of one (scaled) derivative field. The SiRIS classifier
discriminates on the sum of the squares of two derivative fields. Since the surface is

isotropic, the derivative fields are uncorrelated and have identical distributions. The sum



Fig. 6. Ogilvy surface: the effect of varying horizontal cut-off frequency.
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of the squared fields will have twice the mean but only v/2 times the standard deviation
of a single squared field. A feature based on two fields will have less overlap between
distributions of different classes, and therefore less misclassification.

In Simulation 3 the superiority of SiRIS is most pronounced where the surfaces differ at
low frequencies. A given low pass filter will be less effective at reducing the variance of a low
frequency band than of a high frequency band. It follows that any scheme that increases
the mean relative to the standard deviation will make its most significant improvements
at low frequencies. This explanation is consistent with the simulations.

For the directional surface (Simulation 4) the performance of the IRIS classifier depends
on the direction of the illuminant relative to the orientation of the surface, Figure 11. This
is due to the directional filtering effect of the illuminant demonstrated in Figure 1. If the
surface grain is parallel to the light source (IRIS90) IRIS performs significantly worse than
both the Point and SiRIS classifiers. If the surface grain is perpendicular to the illuminant
(IRISO) it is more effective than either. Parallel to the grain the illuminant suppresses the
differences between the surfaces; perpendicular it accentuates them and makes discrimi-
nation easier. In the case of Ogilvy simulations the differences are predominantly in the
z-direction and are concentrated in the p-derivative field—the ¢-field effectively adds noise
to the classification. When the surface is oriented in the optimum direction the directional
effect of the illuminant attenuates this noise—making [RIS more accurate.

The simulations lead us to the following conclusions: first the Point classifier has least
discrimination and is the most vulnerable to low frequency trends. Secondly, SiRIS is
consistently more accurate than IRIS, except where the test surfaces differ in one direc-
tion and the illuminant can be constrained to accentuate these differences. Finally, the
IRIS classifier is sensitive to the relative orientation of the illuminant and the surface

directionality.

IV. EXPERIMENTS WITH NATURAL SURFACES
A. The Effect of non-Lambertian Reflection

Both the Point and SiRIS classifiers use photometric stereo to recover the surface deriva-

tives. For classification the estimates need not be accurate, but they must be consistent.



In this section we test the consistency of the estimate for groups of surfaces that violate,
to varying degrees, the assumptions of this paper.

The sample is held stationary and two sets of photometric images are captured; one with
7 = 0°,90°,180° and 270°, and one with 7 = 60°,150°,240° and 330°. The two estimates
of the p-derivative were compared and the standard deviation of the difference measured.
We used three groups of surfaces: Fractures—these fit our assumptions and are our control
group, though the roughest exhibits obvious shadowing. The repeating primitives group
have a specular component in addition to the diffuse component of reflection, and exhibit
significant shadowing. The vertically milled surfaces are metal and highly specular, unlike
the other samples these are lit from a slant angle of 75° to reduce the amount of specular
reflection reaching the camera.

The consistency of the estimate, Table II, is clearly related to the group: the control
group—which fit our assumptions—give the most consistent results; the repeating prim-
itive group show some degradation; the vertical milled surfaces cannot be consistently
estimated with this photometric algorithm and we will not pursue any further experi-

ments with these surfaces.

B. Classification Experiments

The classification experiments with natural surfaces had two aims: to assess the classi-
fiers’ discrimination and to test the robustness of the classifiers to surface rotation.

The classifiers used for the experiments on natural surfaces were identical to those used
in the simulations except that the IRIS and SiRIS classifiers sample the spectrum at 0,
64, 128, 192 and 256 (c/i) with a standard deviation of 32 ¢/i. An extra post-processing
stage was also added, the classified image was filtered with a 10 x 10 pixel mode filter.
The classifiers were trained on one sixteenth of the image, i.e. a 64 x 64 pixel block from
the centres of each test sample. In the case of rotation experiments the classifiers were
trained prior to rotation.

Photometric image sets were captured by illuminating the surfaces from a slant angle of
50°, and tilt angles of 45°, 135°, 225° and 315°. The first four groups of natural surfaces
are made of plaster and are near-Lambertian. This simplifies photometric estimation,

however, photometric stereo is not limited to this case and has been applied to a much



wider range of surface reflectance functions both with, and without, prior calibration, [26]
[27].

The test surfaces (Figure 13) are grouped into one of five (512 x 512) montages, depend-
ing on the physical process that formed them. Fracture surfaces were formed by impact
fractures of solid blocks of plaster. They vary from the relatively smooth, ceramic-like
fracture of Fracture 1 to the much rougher, more fractal, Fracture 4 surface. Deposit
surfaces were formed by the deposition of plaster powder on a plaster flat. These surfaces
differ in the amount of powder deposited on the surface. Ground surfaces were formed by
grinding plaster flats. Ground I was prepared by grinding in two orthogonal directions;
the other surfaces in this group are unidirectional and vary because of the different length
of grinding stroke used in their preparation. Ripple surfaces were formed by wave action
and differ in directionality and frequency.

In addition to these groups we have also included a group of surfaces that are outwith
the assumptions of the paper. The Repeating Primitive surfaces are composed of many,
randomly placed and oriented, primitives. This group violate three assumptions: they
have specular reflection; they are phase rich and exhibit significant shadowing.

The natural surfaces are used in five experiments. The first experiment assesses the
ability of the classifiers to discriminate between similar surfaces, i.e. we apply the classifiers
to montages of the samples from each group, Table III. The remaining experiments test
the robustness of the classifiers to surface rotation. We could not include the Fracture 1
sample in this experiment: the physical sample is too small to completely fill the image
when the sample is rotated. Rather than use different imaging conditions from the rest of
the samples we decided not to use this surface for rotation experiments.

We combine Fractures 2 and 4 and Deposits 1 and 4 to form the Iso montage. The
classifiers are trained at 0° of rotation and tested on surfaces rotated in 30° increments.

At each rotation a photometric image set is captured.

C. Experimental Results and Discussion

In Experiment 1 the ability of the classifiers to discriminate between closely related
surfaces was tested (Table III). The segmentations of the Deposit montage are shown

in Figure 14. For all montages the SiRIS classifier was the most effective and the Point



classifier was the worst. However, except for the Ripple montage, the Point classifier
is performing a degree of discrimination; this may be adequate for some applications.
Both the simulations and the experimental results indicate that SiRIS is a more robust
classifier than IRIS, however, the experiments show a greater advantage than we would
have predicted from the simulations.

Experiment 2 tests the classifiers’ robustness to the rotation of isotropic surfaces. Unsur-
prisingly, all the classifiers are unaffected (Figure 15). The relative accuracies are similar
to those found for the isotropic montages in Experiment 1.

Experiments 3 and 4 (Figures 16 and 17) test the classifiers’ robustness to rotation of
directional surfaces. In both experiments the IRIS classifier fails catastrophically as the
surface is rotated. This is due to the directional filtering effect of illumination shown in
Figure 1 and Simulation 4. This is a limitation of single image classifiers. Asin Experiment
1 the Point classifier is completely unable to discriminate any of the Ripple textures. It
s able to discriminate between the Ground surfaces—though it does show a degree of
sensitivity to rotation: classification is most accurate when the surface directionality is
aligned with a pair of illuminants. The SiRIS classifier gives the lowest misclassification
and maintains a low level in both experiments.

In our final experiment we tested the classifiers on a series of phase rich surfaces that
showed specular reflection and shadowing. Our aim was to assess how breaking our as-
sumptions affected the photometric classifiers. In the event both the SiRIS and Point
classifiers performed consistently, with SiRIS giving the better classification, Figure 18.
IRIS, as in Experiment 2, is more accurate than Point but less accurate than SiRIS. How-
ever the main point is that the photometric classifiers do not seem to be adversely affected
by either the shadowing or specularity present in this data set.

It is useful to reconsider the simulations in the context of these results. The simulations
led us to three conclusions. First, that Point had least ability to discriminate surfaces than
the other classifiers. Secondly, SiRIS is more accurate than IRIS except when the surface
directionality is aligned with the lighting vector. Thirdly, IRIS is sensitive to the realtive
orientation of the lighting and surface directionality. The first and third conclusions are

fully vindicated by the experiments with real surfaces. The second conclusion is partially



vindicated—we found that even when the surface was aligned with the lighting SiRIS was
still more accurate. One explanation is that the real data is more noisy than the synthetic

data and that SiRIS, using more images, is more robust to that noise.

V. CONCLUSIONS

In this paper three techniques that classify rough surfaces by their appearance were
compared. Simulations and experiments on natural surfaces indicate that the SiRIS clas-
sifier is the most effective. In most cases the IRIS classifier is slightly poorer; however, if
the test surfaces are directional, and their orientation is unpredictable, the IRIS classifier
can fail catastrophically. The Point technique has the least ability to distinguish surfaces.
It is able, however, to discriminate to some degree all the surfaces except those in the
Ripple montage.

The choice of classifier is specific to the application. Where a rapid, rough classification
is required, the computational simplicity of the Point classifier makes it an attractive
option. If finer discrimination is required then one of the spectral classifiers should be
used. We recommend IRIS if surfaces are presented at a known orientation and the
illuminant direction can be optimised. If the classifier must deal with directional surfaces
that are presented at arbitrary orientations then the IRIS classifier is inadequate and SiRIS
should be used. If the surfaces are isotropic the choice is less clear: SiRIS does give more
accurate classification than IRIS with no significant increase in computation, however, it
does require a photometric set. Whether the improvement in accuracy outweighs the extra

imaging requirements will depend on the application.
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Classifier Point | IRIS | SiRIS
User Time (s) 8 151 | 158

TABLE 1

COMPARISON OF CPU TIMES FOR FEATURE EXTRACTION (INCLUDES SURFACE ESTIMATION.)

Surface P,..s | rms difference
Fracturel 0.052 0.007
Fracture2 0.037 0.002
Fracture3 0.037 0.003
Fractured 0.022 0.002
Lentils 0.026 0.007
Barley 0.041 0.013
Peas 0.034 0.007
Mixture 0.039 0.013
Milled 125pum | 0.016 0.031
Milled 63pm | 0.012 0.019
Milled 32pm | 0.006 0.007
Milled 16pm | 0.003 0.004
TABLE II

CONSISTENCY OF PHOTOMETRIC ESTIMATION.

Montage | Point | IRIS | SiRIS
Fracture | 31.72 | 24.57 | 18.31
Deposit | 30.87 | 18.96 | 12.15
Ground | 40.42 | 21.23 | 14.20
Ripple | 68.83 | 14.44 | 12.95

TABLE III

EXPERIMENT 1: MISCLASSIFICATION (%).
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Fig. 8. Simulation 2: Accuracy of classifiers with scaled Mulvaney surfaces
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Fig. 9. Simulation 3: Variation of accuracy of classifiers with surface cut-off frequency for Mulvaney

surfaces.



Fig. 10. Simulation 3: Segmentation of Mulvaney montage (with cut-off frequencies of 8 and 16 c¢/i ) by
Point, IRIS and SiRIS classifiers.
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Fig. 11. Simulation 4: Variation of accuracy with horizontal cut-off frequency of Ogilvy surfaces.



Fig. 12. Test surfaces for consistency experiments: Row 1—Control group; Row 2—Repeating Primitives,

Milled Surfaces.

Row 3



Fig. 13. Classification test surface: Row 1—Fracture surfaces, Row 2—Deposit, surfaces, Row 3—Ground

Surfaces, Row 4—Ripple surfaces, Row 5—Repeating Primitives.



Fig. 14. Experiment 1: Segmentation of Deposit montage by Point, IRIS and SiRIS classifiers.
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Fig. 15. Experiment 2: Classification accuracy with rotated montage of isotropic surfaces.
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Fig. 16. Experiment 3: Classification accuracy with rotated Ground montage.
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Fig. 17. Experiment 4: Classification accuracy with rotated Ripple montage.
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Fig. 18. Experiment 5: Classification accuracy with rotated Repeating Primitives montage.



