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Abstract

We present and compare five approaches for capturing, synthesising and relighting real 3D
surface textures. Unlike 2D texture synthesis techniques they allow the captured textures to
be relit using illumination conditions that differ from those of the original. We adapted a
texture quilting method due to Efros and combined this with five different relighting
representations, comprising: a set of three photometric images; surface gradient and albedo
maps; polynomial texture maps; and two eigen based representations using 3 and 6 base
images. We used twelve real textures to perform quantitative tests on the relighting methods
in isolation. We developed a qualitative test for the assessment of the complete synthesis
systems. Ten observers were asked to rank the images obtained from the five methods using
five real textures. Statistical tests were applied to the rankings. The six-base-image eigen
method produced the best quantitative relighting results and in particular was better able to
cope with specular surfaces. However, in the qualitative tests there were no significant
performance differences detected between it and the other two top performers. Our
conclusion is therefore that the cheaper gradient and three-base-image eigen methods should
be used in preference, especially where the surfaces are Lambertian or near Lambertian.
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especially where the surfaces are Lambertian or near Lambertian.

1 Introduction

The majority of texture synthesis research is concerned with learning and
generating 2D (photographic) images of texture [Heeger95, Zhu00, DeBonet97,
Wei00, Efros99, Bar-Joseph99, Simoncelli98, Xu01, Efros01 & Ashikhmin01].
If the subjects are 3D surface textures (such as brick, woven or knitted textiles,
embossed wallpapers, etc.) then 2D techniques cannot provide the information
required for rendering under other than the original illumination. This presents
limitations for realistic rendering of textures in augmented and virtual reality
applications. Figure 1 illustrates the dramatic effect that varying illumination

direction can have on the appearance of a surface texture.



Figure 1. Two images of a 3D surface texture imaged under differing illumination (arrows

indicate direction of illumination).

1.1 Related Work

Few publications are available on 3D surface texture synthesis per se. Zalesny and
Van Gool, in [Zalesny00 & Zalesny01] present a multi-view texture model which can
synthesise new viewpoints. They do not however, consider varying illumination
which is the focus of this paper.

Shum and his colleagues[Liu01] used the CUReT database [Dana99] to develop
a method for the generation of bi-directional texture functions (BTFs). They applied
a shape-from-shading algorithm to recover surface height and albedo maps of
samples assuming Lambertian reflectance. These are used to synthesise larger
heightmap and image templates. The final images are synthesised by matching and
copying blocks between template images and the reference sample images.

In [Leung01] Leung and Malik proposed the use of 3D textons to synthesise
new images under arbitrary viewpoints and illuminations. In later work Shum et. al.
also exploited the idea of ‘textons’ and coupled this with a modified 2D texture
synthesis algorithm[Tong02]. As 3D texons use multi-element vectors the
computation is expensive. They therefore transform 3D textons to surface textons,
which are dot products of base vectors in 3D texton space, to provide an efficient

implementation.

1.2 Our Approach

There are many ways in which image relighting may be performed [Basri0O1,
Blinn78, Cook82, Epstein95, Malzbender0l, Nayar91, Nishino0l,
Ramamoorthi02, Rushmeier97, Shashua92, Woodham81 and Zhang98]. In

essence relighting takes multiple images of a subject, obtained under different
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illumination conditions, and compresses these data into some lower order R”
space. Synthesis of 3D surface texture can therefore simply be viewed as
extending an existing R’ algorithm to R” and coupling it to an appropriate
relighting scheme.

In this way we develop five ‘novel” and inexpensive 3D synthesis methods
each of which produces texture representations that can be rendered in real-time
in a modern desktop personal computer.

We compare these approaches in two stages. First, we quantitatively assess
the relighting methods. Second we assess the complete synthesis approaches

using psychophysical experiments coupled with statistical tests.

1.3  Organisation of Paper

This paper is organised as follows. Section 2 presents the overall framework that we
use for the synthesis of 3D surface texture images. Section 3 surveys and selects the
five relighting representations that we use. Section 4 introduces the basic synthesis
technique that we employ — it is derived from an efficient 2D algorithm. Section 5
describes each approach in detail and their corresponding assessments are presented

in section 6.

2 Basic Framework

The synthesis of 3D-surface descriptions naturally deals with more information than
its 2D counterpart. The later requires consistent texture patterns to be generated in a
single image that has no perceptual difference from the original. Synthesis is
therefore performed in an R’ (monochrome) or R’ (colour) space. In contrast, 3D
texture synthesis requires generation of an underlying geometric pattern in addition
and may involve the production of varying reflectance functions.

A single sample image does not normally provide enough information regarding
surface topology, albedo, and reflectance. Relighting techniques therefore employ
multiple images which are used to derive either implicit or explicit representations of
these surface properties. Furthermore, we would like the sample data to be captured
using off-the-shelf digital cameras, and the results to be capable of being rendered in
real-time on current desktop machines. Representations should therefore be of low

dimension and preferably capable of per-pixel-rendering using linear combinations.



Our framework for 3D surface texture synthesis (Figure 2) therefore comprises
of three parts:
1. Extraction of a suitable representation of the 3D surface texture sample from a
set of input images.
2. Use of the representation of the sample to synthesise a description of alarger
area of surface texture.
3. Rendering (or relighting) of the surface representation according to the

specified set of lighting conditions.
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Figure 2. The basic framework for 3D surface texture synthesis.

3 Surface Representations for Relighting

The first stage of our framework abstracts a surface representation of the sample
given multiple images of that sample. The choice of these representations has
significant impact both on the computational requirements and the quality of the final

result.

3.1 Available Representations

The subject of 3D surface texture representation and relighting has attracted many
researchers. Bi-directional reflectance distribution functions (BRDF) and surface
geometry provide what are perhaps the most sophisticated of these representations.
Dana and Nayer [Dana99] present a method for measuring BTFs (Bi-directional
Texture Functions) and BRDFs of a texture. Their database (CUReT) was built using
an extensive set of real-world textures imaged under a wide variety of illumination

and viewing conditions. It has been used for texture synthesis and modelling despite



the fact that the majority of the images require registration before use in relighting
and shape-from-shading algorithms.

Leung and Malik [Leung01] used the K-means algorithm to obtain a vocabulary
of 3D textons from 20 CUReT textures. For each material, 20 images obtained under
different viewing/lighting conditions were selected and processed to obtain sets of
“3D textons” (combinations of simple image texture elements). This vocabulary was
used to represent the sample textures.

Nayar and Dana [Dana99] proposed three BTF derived models for 3D surface
texture: a histogram model, a correlation model and a principal component analysis
(PCA) model. Using Principal Components to represent and relight 3D surface
texture has an advantage that it makes no assumptions about texture surface
reflectance [Dana99, Epstein95, Nishino01 and Zhang98]. It is widely used by many
researchers. Based on experiments, Epstein et. al. in [Epstein95] suggested that five
base images (plus or minus two) can be effectively used to represent arbitrary lighting
for many different objects. They concluded that this approach can accurately model
Lambertian surfaces with specular lobes, while specular spikes, small shadows and
occluders can be treated as residuals. Naturally both the specularity and the
complexity of surface geometry increases the number of base images required.

For Lambertian surfaces, images obtained for the purposes of 3-image
photometric stereo [Blinn78 and Woodham81] can be used to implicitly represent
surface normal and albedo maps. For example, Shashua[Shashua92] proposes that a
linear combination of three images can be used to generate images of the surface
illuminated from a new directions; and by analysing the spherical harmonics of
lighting, Basri and Jacobs[Basri01] showed that a 9D linear subspace can be used to
accurately approximate the set of images obtainable from a Lambertian object.

Malzbender et. al. [Malzbender01] introduced Polynomial Texture
Maps(PTMs), which use a biquadratic polynomial to model luminance. The
coefficients of the biquadratic polynomial are stored per pixel, and used to
reconstruct the surface colour under varying lighting conditions. PTMs can capture
variations due to surface self-shadowing and interreflection and have given

impressive looking results.

3.2 Selection of Approaches

As previously discussed one of our aims is to develop techniques that can be provide



real-time rendering when implemented in a desk top machine. This limits us to
relighting approaches that (a) use low dimensional representations, and (b) use
simple or common graphics calculations such as weighted sums of base images.
BTFs are too expensive in terms of the dimensionality required - we have therefore

selected five other methods listed below for further investigation:

3I: This method uses three images of the sample texture taken at an illumination

slant angle of 45° and tilt angles of 0°, 90° and 180° [Shashua92].

Gradient: The second method uses surface gradient and albedo maps derived

using photometric stereo [ Woodham81 and Rushmeier97].

PTM: This approach uses Polynomial Texture Maps (PTM), due to Malzbender
et. al. [Malzbender01].

Eigen3: The fourth method uses the first three PCA base images.

Eigen6: This is identical to the previous method except that it uses the first six

base images.

These approaches are described in detail in Section 5.

4 Synthesis methods

The second stage of our framework synthesises representations of larger surfaces
given suitable representations of the sample textures. As discussed in the introduction
this form of texture synthesis can be viewed as an extension of existing 2D
algorithms. That is we simply extend synthesis in R’ or R’ to synthesis in R".
Many 2D approaches are based on statistical models or assumptions
[Heeger95, Zhu00, DeBonet97, Wei00, Efros99, Bar-Joseph99, Simoncelli98,
Xu01, Efros01 & Ashikhmin0O1]. However, Efros and Leung [Efros99] presented
a simple method which exploits the Markov random field assumption. It selects
output pixels by matching neighbourhoods between the sample and synthesised
images to produce realistic results for many textures. Wei and Levoy [Wei00] used
multi-resolution images to accelerate this synthesis process. More recently, two
quilting algorithms [Xu01 & Efros01] have been shown to be capable of producing
remarkable results while requiring little computation. We have therefore selected

Efros and Freeman’s 2D image quilting method [Efros01] as the basis for our



synthesis approach.

Efros and Freeman’s method synthesizes a new image by ‘stitching’ together
small patches from the sample image. The new image is generated in raster order.
First, a block is randomly selected from the sample image and pasted into the new
image beginning at the first row and the first column. Then another block is selected
as a candidate neighbour. This is placed next to the first block so that they overlap one
another. The overlapping area between the two blocks is used to test the goodness of
fit of the candidate using an L2 norm. This is repeated for different candidates and the
one with the minimum SSD is selected as the final neighbour. A minimum error
boundary cut is calculated in the overlapping area so that the boundary looks smooth.
Both vertical and horizontal overlapping areas are used for selecting best-matched
blocks inside the new image. This whole process is repeated until an output image of
the required size has been generated.

We have made three small modifications to this quilting algorithm. First, instead
of locating the best-matching block using search, we more often select the
corresponding neighbour of last selection. This simplification dramatically increases
the speed of the algorithm without apparently affecting the output [Ashikhmin01].
Second, we perform synthesis in R" space, where m is the dimensionality of the
surface representation we are using. Third, we use an error metric based on a sum of

absolute differences rather than more expensive L2 norm.

5 The Five Methods

This section describes each of the five approaches: 31, Gradient, PTM, Eigen3 and
Eigen6, in detail. First however, we describe the image capture stage which is

common to all of these approaches.

5.1 Image Capture

We use a fixed 12-bit monochrome CCD camera to capture a 36 images of each
sample. A light-source located approximately at Im from the sample is used at three
slant angles and twelve tilt angles. The tilt angles are separated by intervals of 30°.
All images used in this paper are available from our online image database.
(www.cee.hw.ac.uk/texturelab/database) With the exception of the 37 (three image)

method all of the approaches use the full set of 36 images.



5.2 The 3/ method

Under the assumption of Lambertian reflectance, Shashua[Shashua92] proposes that
a linear combination of three base images can be used to generate new images under

different illuminant directions. According to the Lambertian reflectance law:
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1 is the intensity of an image pixel at position x, y
A is the incident intensity to the surface
O is the albedo value of the Lambertian reflection
T is the tilt angle of illumination
0O is the slant angle of illumination
pand g are the partial derivatives of the surface height function in the x and y
directions respectively
From (1) we can express /,; 4 an image captured under an illuminant direction of (7, 0)

as a linear sum of three images captured using non-colinear illuminant vectors. Thus:
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We use 3 images captured with illumination separated by 90° in tilt. That is the
illumination is provided at a common slant (45° in our case) and at tilt angles of 0°,
90° and 180°. These images are used directly in equation 2 for rendering, no
intermediate images are used.

The complete synthesis procedure and sample images are shown in Figure 3.
The three photometric images (a, b & c) of the sample are captured. These are used to
synthesise (in R’ space) three larger images (a’, b’ & ¢’) which form the base images

for relighting using equation 2.
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Figure 3. Synthesis directly using 3 photometric sample images (the 31 method)

5.3 The Gradient Method

Photometric stereo commonly uses three images to estimate the gradient and albedo
maps of a Lambertian surface. Additional images lead to an over-constrained system,
which may be solved using least squares techniques to provide potentially more
accurate solutions. Given 36 images we obtain 36 equations that are expressed in

matrix product form in (3).
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where:

al(x,y) is the product of albedo ©0(x, y) and the constant incident intensity A

Thus we can use surface gradient and albedo maps to represent 3D surface texture.
By synthesizing and relighting surface gradient and albedo maps, we can generate
new images under arbitrary illumination. We call this the Gradient method. The

complete synthesis process is similar to the method shown in Figure 3.



5.4 The PTM Method

Malzbender proposed the use of a quadratic function (4) as the base representation

for relighting surfaces[Malzbender01].

L(x, y;lv, y) = ao(x, Y)ix* +ai(x, )b +a(x, y)ldy + a3(x, y)lx + ad(x, y)ly + as(x, y) (4)

where:

(Iv,ly) is the projection of the normalized light vector into the local texture
coordinate system (x, y)

L is the resultant surface luminance,

(ao(x, y)—as(x, y)) are coefficients stored as spatial maps and named Polynomial
Texture Maps(PTMs).
For each sample texture, 6 coefficient maps (PTM) are generated by using SVD to
solve the over-determined system (i.e. the 36 equations in the form of 4) for every
location (x, y) . This method can produce realistic results for those textures with cast
shadows and inter-reflections.
We use all 36 images to generate Polynomial Texture Maps (PTMs) of the
sample. These sample PTMs are used to synthesise a new set of output PTMs (in R’

space). New images under arbitrary illuminations are obtained by using the new

lighting vector (/x,/y) to relight of the output PTMs according to the equation (4).

The whole process is shown in Figure 4.
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Figure 4. Synthesis ousing Polynomial Texture Maps (the PTM method).

5.5 The Eigen3 & Eigen6 Methods

In these approaches we use 3 or 6 base images in eigen-space to represent and
synthesise 3D surface textures. We perform Singular-Value Decomposition (SVD) on
the 36D sample image space.

Let M be a mxn real matrix, where m is the number of images and »n is the

number of pixels per image; by SVD we can write

M= vzy ! (5)

where U is a mxm orthonormal matrix, X is mxm diagonal matrix, and V' is a mxn
orthonormal matrix. Let X =diag(01,02,...,0m), where 0i is the singular value of
matrix M and oi=0i+1. By tolerating a small information loss, we may use
s = diag(on,...,0r,0,...,0) to approximate X =diag(01,02,...,0m) providing the
singular values decrease quickly. Then each row of matrix = V" represents a base
image. The first 3 (or 6) base images of the sample are used in R’ (or R% space to
synthesize larger base images. The relighting process then simply consists of
generating linear combinations of these new base images. Figure 5 shows the
complete procedure.

The advantage of using an eigen-space approach is that we may synthesize

11



textures with arbitrary reflectance functions, although specular spikes will involve

require large numbers of base images.
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Figure 5. Synthesis using base images in eigen-space. (The example texture used in the

figure is “aci”, which contains specular reflectance.)

5.6  Summary of Approaches

This section provides a tabular summary (Table 1) of the five approaches that we

have developed and will report on in the next section.

Table 1. Summary of the 5 approaches

Approach 1* phase 2" phase 3" phase
No processing required in this R’ synthesis _ Lo
31 phase as the three (a, b, ¢) images (produces 3 large photometric Image-based relighting

are used directly images a’, b’, ¢) (produces final image)

R’ synthesis

Produces sample gradient(p,q) and Gradient-based

Gradient . (produces large gradient and Co
albedo maps (al) using all sample albedo maps) relighting
images
Generate sample Polynomial R’ synthesis
PTM P Y (produces large Polynomial ~PTM- based Relighting
Texture Maps
Texture Maps)
. R’ synthesis . o
Eigen3 Generate 3 ba.se images of sample (produces large eigen base Eigen-based relighting
in eigen-space -
images)
Generate 6 base images of sample R’ synthesis Eigen-based relighting
Eigen6 L (produces large eigen-base
in eigen-space .
images )
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6 Assessment of results

We compare the five approaches in two stages. First, we quantitatively assess the
relighting methods. Second, we assess the complete synthesis approaches using

psychophysical experiments coupled with statistical tests.

6.1 Quantitative Assessment of Relighting Methods

If we remove the synthesis stage from our framework we can quantitatively assess
relighting methods by directly comparing relit images with their corresponding real
(input) images. We use 12 textures with reflectance properties ranging from diffuse to
strongly specular. Some include shadows and interreflections. These texture samples

are shown in Figure 6.

ach

Figure 6. Sample textures.

We relight these textures using same illumination conditions that were used to

capture the input images. The results are compared using a normalised root mean
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square difference (€ ) metric.

PR ©)

o == [2 =iy

0, is the standard deviation of image &,

NM is the size of the images in pixels,
i(x,) is the x,y" pixel of an input image,
r(x,y) is the x, y’h pixel of a relit image,

The results of performing these comparisons are shown Figure 7in (a) and (b) .
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(a) Relighting error vs texture for the five approaches
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Figure 7. Quantitative relighting results for the five methods

Example output images and their absolute difference images are shown in Figure 8.
These three sets of results are representation of the images we obtained for
Lambertian, Lambertian with shadows, and specular surfaces.

From these results it can be seen that the 3/ method produces the worst
performance. This is not surprising given that it uses three input images whereas the
other four methods use 36. The reason is that 3 images that can only produce

accurate results when the textures have pure Lambertian surfaces with no shadowing.
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Figure 8. Example output from the five methods for the three textures “aar”, “add” and
“ach”. (For each texture, the first image of the first row is the real image, and the second
to the fifth images are synthesis result; the second row contains difference images

between real and synthesised images.) look at this again??

Of the remaining methods, two (Eigen6 & PTM) use more expensive R’
representations while Gradient & Eigen3 use R’. We would therefore expect the first
pair of techniques to outperform the latter, and on aggregate the PTM method does
indeed provide the best figure. However, the performance of the PTM approach can
not really be separated from that of its cheaper Eigen3 competitor. It must be
cautioned however, that these numerical results may not necessarily agree with

qualitative judgements.
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6.2 Qualitative Assessment of the Five Synthesis Approaches

Despite the significant quantity of research on texture synthesis approaches little has
been published concerning their assessment. Direct numerical comparison is difficult
as the output textures have no conventional ground-truth. The majority of researchers
therefore simply display their results alongside those of their competitors and leave
the comparison to readers [DeBonet97, Wei00, Efros99, Xu0l, Efros01 &
AshikhminO1]. Few provide any experimental support. Copeland et al did use a
psychophysical experiment with ten observers to assess the ability of a numerical
error metric to model the perceptual differences between texture patterns
[Copeland01] but there is very little has been published on the systematic qualitative
assessment of texture synthesis results per se. We have therefore developed a simple
qualitative approach which uses nonparametric statistical tests and psychophysical
experiments.

We asked a set of ten human observers to rank different synthesis methods by
comparing output images with input images. These results were tested to see if the
rankings were statistically significant.

Five textures representative of different reflectance functions and topology were
selected. They included surfaces that exhibited pure Lambertian reflectance,
Lambertian reflectance with shadows, and interreflections. These images are shown
at the end of this paper (aaj, aas, ace, adc, add). For each texture, we used each of the
five methods to synthesise two output images under illuminations of (7 =60°,
0 =120°) and (7 =60°, 0 =120°) Observers were asked to rank the results for each
of the five textures from the best to the worst. No other instructions were given
concerning as to what qualities to look for when comparing methods. Thus we
collected 50 sets of rankings (10 observers x 5 textures).

Since each observer performed their ranking independently we used Friedman’s
nonparametric two-way Analysis of Variance (ANOVA) and a multi-comparison
method to test their significance.

Friedman’s nonparametric two-way Analysis of Variance (ANOVA) is designed
to determine if we may conclude from sample evidence that there is difference among
treatment effects. In our experiments we firstly wished to decide whether there was
any significant difference between the performance of the methods. We therefore

constructed a matrix which contains one column for each method. Each column

17



contains 50 rank data (10 observers x 5 textures). Friedman’s test compares the
means of these columns (see [Daniel90] for more details). The null hypothesis Hj is
that all five methods make no significant difference for synthesis of 3D surface
texture, while the alternative hypothesis H, is that at least one is different. The test

statistic is defined as:

,_ 12 Lo wk+nd
Xr_bk(k+1);§j > H

where.
b is total number of rank data for each method (50)

k is the number of methods to be compared (5), and

R) is the sum of rank data for each method.

The test result indicated that there is at least one method which performs significantly
differently from the others at a confidence level of (1.0 - 2.3e-14) x 100% (effectively
100%).

We therefore used a multiple comparison test of means that is designed to
provide an upper bound on the probability that any comparison will be incorrectly
found to be significant [Hochberg87]. The result is shown in Figure 9. Each group
mean is represented by a small circle within an interval. Two means are significantly
different if the associated intervals are disjoint, and are not significantly different if

their intervals overlap.
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Figure 9. Multiple comparison test of the five methods. Small circles and lines represent
the group means and their intervals. The horizontal axis indicates rank values. Two

means are significantly different if their intervals are disjoint.

Based on the results of this test in which the confidence levels of the intervals are
99% (a =0.01) we make the following observation. There are no significant
differences between the performances of the Gradient, Eigen3, and Eigen6 methods.
However, each of these methods does outperform both 3/ and PTM.

Although Eigen6 produced the best quantitative relighting results, its qualitative
performance in the synthesis experiments was not significantly better than its two
nearest competitors: Gradient and Eigen3. This maybe because synthesis is
performed in R space which is more prone to matching errors. These errors often
introduce discontinuities, which are particularly noticeable to human observers.

If we take computation complexity into account, we find that synthesis in R
space is of course the most expensive - in our approaches, it exactly doubles the
computation time compared with R’ synthesis.

The conclusion therefore from this limited test is that Gradient and Eigen3

would appear on average offer as good a performance as of any of the other methods
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and to provide it for low computational cost. In theory the more expensive Eigen6
should offer better performance for non-Lambertian surfaces as was indicated by the
quantitative relighting tests. Finally, if low computational and image-acquisition
requirements have to be kept low then the 3/ method that uses only three photometric

images provides relighting at the cost of lower quality output.

7 Conclusions

We have presented and compared five approaches for capturing, synthesising and
relighting real 3D surface textures. We adapted a texture quilting method due to Efros
and combined this with five different relighting representations:

31— three photometric images,

Gradient — gradient and albedo maps

PTM — Polynomial texture Maps

Eigen3 — Three base eigen images

Eigen6 — Six base eigin images
We performed quantitative tests on the relighting methods, and we developed a
qualitative test for the assessment of the complete synthesis systems.

All the methods used thirty-six images except for 3/ that only uses three. This
reduced data usage was reflected in the performance of this method, which is only
capable of rendering unshadowed Lambertian surfaces successfully.

The six-base-image eigen method produced the best quantitative relighting
results and in particular it was shown to be better at relighting specular surfaces.
However, in the qualitative tests, no significant performance differences were
detected between it and the other two top performers: Eigen3 and Gradient. However,
the computational complexity of Eigen6 is approximately twice that of these two R’

based competitors.
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Table 2. Synthesis and relighting results from the five methods for 12 textures. The first five
textures(“aaj”,”aas”,”ace”,”’adc”,”’add”) are used in the qualitative tests. The left most
images are from the sample, the remainder are synthesis results. Arrows indicate
illumination direction.

Sample
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Sample 31 Method Gradient Method PTM Method FEigen3 Method Eigen6 Method
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31 Method Gradient Method PTM Method FEigen3 Method Eigen6 Method

23



Sample 31 Method Gradient Method PTM Method FEigen3 Method Eigen6 Method
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