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Abstract

We propose a novel classifier that both classifies surface texture and
simultaneously estimates the unknown illumination conditions. A new
formal model of the dependency of texture features on lighting direc-
tion is developed which shows that their mean vectors are trigonomet-
ric functions of the illuminations’ tilt and slant angles. This is used
to develop a probabilistic description of feature behaviour which forms
the basis of the new classifier. Given a feature set from an image of
an unknown texture captured under unknown illumination conditions
the algorithm first estimates the most likely illumination direction for
each possible texture class. These estimates are used to calculate the
class likelihoods and the classification is made accordingly.

The ability of the classifier to estimate illuminant direction, and to
assign the correct class, was tested on 55 real texture samples in two
stages. The classifier was able to accurately estimate both the tilt and
the slant angles of the light source for the majority of textures and
gave a 98% classification rate.

1 Introduction

This paper deals with the classification of surface textures on the basis
of their image texture. One characteristic of surface textures is that the
appearance of the surface is a function of the illuminant direction as well as
of the surface topography, Figure 1, [Cha95] [DN99]. If the image is affected
by the direction of lighting, then features drawn from the image will also be
affected. The same surface may be classified as belonging to different classes
depending on the direction from which it was lit. The effect can be modelled
and either accounted for [MC97], or counteracted [CM95], if the direction
of the illumination is known. However, in many cases this information is
not available. The aims of this paper therefore are:

1. to propose a new model of the dependency of texture features on light-
ing direction, and



Figure 1: Two images of the same surface texture sample captured using
different illuminant tilt angles

2. to use this theory to develop a novel classifier that can classify surface
textures and simultaneously estimate the illumination conditions.

Relatively little work has been published on these subjects. Chantler[Cha95]
verified and generalised Kube and Pentland’s model of the effect of illumi-
nation direction on fractal surfaces[KP88]. Dana, Nayar, van Ginneken and
Koenderink established the Columbia-Utrecht database of real world sur-
face textures which they used to investigate bidirectional texture functions
[DNvGK97]. Later they developed histogram [DN98, vGKD99] and correla-
tion models [DN99] of these textures. Leung and Malik [LM99, LM01] Cula
and Dana [OKO01] and Varma and Zisserman [MA02b, MA02a] all developed
classification schemes using filter banks and 3D ’textons’ for the purposes
of illumination and viewpoint invariant classification.

The emphasis of this paper however, is different from the empirical ap-
proaches discussed above as it develops a new theory of feature behaviour
from first principles. It is this theory that is used to develop a novel clas-
sifier that simultaneously estimates lighting direction and classifies surface
texture.

A deterministic model of the effect of the light source direction on tex-
ture features is developed and expressed in probabilistic terms. That is we
can state the probability of a particular feature vector occurring — for a
given texture illuminated under known lighting conditions. Using Bayes’
theorem we can therefore find the most likely lighting direction for each
class of texture. To classify, we assume that the test sample belongs to each
texture class in turn and estimate the most likely lighting direction given
that assumption. By comparing the relative likelihoods of each candidate
we can estimate to which class the test sample belongs, and implicitly from
which direction it was lit.

We assess the performance of the classifier in two stages. First we use 30
real textures to test its ability to estimate illumination tilt (azimuth) and to
perform texture classification given the illumination slant (zenith). Second,



we use another database of 25 real textures to assess how well the classifier
can perform when both the slant and the tilt angles of the illumination are
unknown.

The algorithm was found to be effective for tilt angle estimation. Slant
estimation was poorer though the dataset was limited. The classifier was
applied to the samples under 24 different lighting directions and achieved a
classification rate of 98%.

1.1 Organisation of paper

Section 2 presents our theory of the behaviour of texture features as a func-
tion of illumination direction. Section 3 uses this model to develop an illu-
minant invariant classification scheme. Section 4 presents the results from
experiments using two texture image databases.

2 Modelling Feature Vector Behaviour

This section derives an expression for the mean value of a texture feature as
a function of the illumination’s tilt and slant angles. First however, we define
the axis system we use and give a short derivation of the linear illumination
model, both of which are necessary for the development of the following
theory.

2.1 Axis system

Figure 2 defines the geometry of our setup. The optical axis of the camera is
aligned along the z-axis. The surface texture is placed in the z-y plane. The
slant (zenith) angle of the illumination is the angle the illumination vector
makes with the z-axis. The tilt (azimuth) angle is the angle the illumination
vector makes with the z-axis when it is projected onto the z-y plane.

2.2 A Linearised Model of Lambert’s Cosine Law

We assume that the surface is Lambertian, has low slope angles, is illumi-
nated by a distant point light source, that there are no significant shadows
or inter-reflections, and that the camera projection is orthographic. Ignoring
the albedo factor Lambert’s cosine rule may be expressed as:

— cos(7) sin(o)p(x, y) — sin(7) sin(o)q(z,y) + cos(o)

i(z,y) = (1)
VP (z,y) + ¢ (z,y) +1
where:
i(z,y) is the radiant intensity;
p(z,y) is the partial derivative of the surface height function in z direction;
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Figure 2: Axis system

q(z,y) is the partial derivative of the surface height function in y direction;
T is the tilt angle of the illumination; and
o is the slant angle of the illumination.

For p and ¢ € 1 we can use a truncated Taylor’s series to linearise this
equation about (p = 0,q = 0):

i(z,y) = — cos(7) sin(o)p(z,y) — sin(7) sin(o)q(z,y) + cos(o)

Transforming the above into the frequency domain and discarding the mean
term we obtain:

Z(w,0) = [—cos(T)sin(o)iw cos(f) — sin(7) sin(c) i w sin(8)]H (w, 0)

<— I(w,0) = —iw sin(o)cos(0 — 7)H(w,8) (2)
where:

Z(w,0) is the Fourier transform of the image intensity function;

H(w, ) is the Fourier transform of the surface height function; and

(w, ) are polar frequency coordinates.

In this paper it is more convenient to express equation 2 in its power spec-
trum form:

I(w,0) = w?cos?(0 — 7) sin?(0) H (w, 0) (3)

where:
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Figure 4: The feature generation model with illumination and linear filter
processes interchanged

I{w, ) is the image power spectrum; and
H(w,0) is the surface power spectrum.

Equations 2 and 3 are similar to Kube & Pentland’s fractal imaging model[KP88]

which was adapted and verified experimentally by Chantler and then Mc-
Gunnigle [Cha95, MCO01]. In the context of this paper the most important
features of this model are the cos(f — 7) and sin(o) factors. In particular
the cos term shows that the imaging function acts as a directional filter of
the surface height function.

2.3 The output of Linear Texture Filters and their Features

We define a Linear Texture Feature as a linear filter followed by a variance
estimator[RH99]. The process formed by applying such a feature to an image
is as shown in Fig. 3. Since the model of the illumination process (equation
3) is also linear we may exchange it with the linear filter (Fig. 4). We use
A(w, 0) to represent the notional power spectrum of the output of the linear
texture filter applied directly to the surface height function.

Thus to determine the mean output of a Linear Texture Filter we simply
have to apply Kube & Pentland’s model in the form of equation 3 to A(w,#)
and develop an expression for the variance of the subsequent output.

The mean output of a linear texture feature is the variance of the output
o(z,y) of its linear filter:

f(r,0) = VAR(o(z,y)) (4)

If we assume that o(x,y) has a zero mean and that O(w,8) is its power
spectrum expressed in polar co-ordinates then we may express equation 4
as:

2m

//wOw 0) df dw (5)
00



Using equation 3 we can express O(w, ) as follows:

Ow,8) = |F(w,0)w?cos®(6 — 7)sin’(0)H(w,8)
— O(w,0) = w?cos’(6 —7)sin’(0)A(w,0) (6)
where:
F(w, ) is the transfer function of the linear filter; and
Aw,0)  =H(w,0)|F(w,0)

Substituting equation 6 into equation 5 we obtain:

2m

f(r,0) = / WP sin? (o) / cos2(60 — 1) A(w, 6) 6 duw (7)
—00 0

U.sing cos?(x) = 1/2 (14cos(2z)) and cos(z—y) = cos(x) cos(y)+sin(z) sin(y)
gives:

o0 27
f(r,0) = / w3 sin? () / 1/2[1 + cos(20) cos(2r) + sin(26) sin(27)] A (w, ) d6 duw
0 0
(8)
hence:
f(r,0) = sin®(o)(a + beos(27) + csin(27)) (9)
and:
f(r,o) = sin®(0)(a + dcos(2T + ¢)) (10)
where:
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The above parameters (a, b etc.) are all functions of the surface height
function and the linear texture filter. None of them is a function of illumi-
nant tilt (7) or slant (o). Thus equation 10 predicts that the output of a
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texture feature based on a linear filter is proportional to sin?(c) and is also
a sinusoidal function of illuminant tilt ! with a period m radians.

Figure 5 shows the behaviour of four texture features that are typical ? of
the results that we obtained using 30 real textures [CSPMO02]. They clearly
show that the features’ outputs are sinusoidal functions of the illuminant’s
tilt angle (7).
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Figure 5: Typical sinusoidal behaviour of texture features. Each plot shows
how one output of one feature varies when it is repeatedly applied to the
same physical texture sample, but under varying illuminant tilt angles. Dis-
crete points indicate measured output and the curves show the best-fit sinu-
soids. The vertical axis indicates mean feature output, while the horizontal
axis indicates illuminant tilt angle.

Tn the case of A(w, 6) being isotropic (for instance if both the surface and the filter are
isotropic) the response will be independent of 7. However, if an isotropic filter is applied
to a directional surface then A(w,8) will not be isotropic and the tilt response will be a
sinusoidal function of tilt.

*For display we selected the four feature/texture combinations that gave results that
were closest to the median error when they were used to find the best-fit sinusoid functions.



2.4 Behaviour in a Multi-Dimensional Feature Space

As texture classifiers normally exploit the output of several features it is im-
portant to investigate the behaviour of texture features in a multi-dimensional
decision space.

If two different features are derived from the same surface texture, the
results can be plotted in a two-dimensional z, y feature space. Applying our
sinusoidal model (equation 10) to each feature we obtain:

z = fi(r,0) = sin?(0)(ay + dy cos(27 + ¢1))

y = fo(r,0) = sinz(a)(ag + dg cos(27 + ¢2))

Changes of the illuminant slant (o) therefore simply scale the 2D feature
vector plot. However, variation of tilt causes a more complex behaviour.
Since the frequency of the two cosines is the same these two equations form
two simple harmonic motion components. Therefore the trajectory in 2D
feature space as a function of tilt is in general an ellipse.

There are two special cases. If the surface is isotropic and the two filters
are identical except for a difference in direction of 90°, the mean value and
the oscillation amplitude of the two features are the same and the phase
difference becomes 180°. Thus the scatter plot for an isotropic texture and
two identical but orthogonal filters is a straight line.

If the surface is isotropic and the two filters are identical except for a
difference in direction of 45°, the mean value and the oscillation amplitude
of the two features are again the same but the phase difference is now 90°.
In this case the scatter plot is a circle.

The line and the circle are the two special cases of all possible curves. In
the general case of two or more filters the result is an ellipse or a trajectory
on a super-ellipse.

Figure 6 shows the behaviour of two Gabor filters (F25A45com and
F25A0com) as a function of illuminant tilt, for six real textures. It clearly
shows the elliptical behaviour of the cluster means.

2.5 A Probabilistic Model of Feature Behaviour

In practice a feature’s actual behaviour (f;) will differ slightly from the
model’s prediction (equation 9). We model the difference as a zero mean,
normally distributed random variable with standard deviation s. We can
now express the relationship between the feature and lighting direction for
a given texture class k£ in probabilistic terms:

1 s — sin®(o)(a; + b; 27) + ¢; sin(27))]?
(flr ) = o apl- L= Ot BN £ saBOLy ()

i

where pi(f;|7,0) is the probability of the event of feature ¢ having value f;
occurring, given that the texture k is lit from (7, 0).



The feature vector, F, is composed of ¢ features. Assuming these are
independent the joint distribution is:

Pe(Flr,0) = H 1 expl— [f; — sin®(o)(a; + b; (3025(27) +¢ sin(27'))]2]
i Si\/2_7r QS,L-
(12)
Thus our probabilistic model of the behaviour of an i-dimensional feature
vector F' requires the estimation of 47 parameters (i.e. i sets of a;, b;, ¢; and
s;) for each texture.

3 Classification

From the 2D scatter diagram (figure 6) it is obvious that linear and higher
order classifiers are likely to experience difficulty in dealing with this clas-
sification problem. We have therefore chosen to exploit the hyper-elliptical
model of feature behaviour described above.

The easiest way to understand the classifier is to consider the 2D case
(Figure 6). In this system a test texture’s feature vector is represented
as a single point on the scatter diagram. The classification task therefore
becomes one of finding the point on each class ellipse which is closest (in
a probabilistic sense) to the feature vector. The distances to these points,
weighted by class variances, provide class likelihoods. The test texture is
assigned to the class with the largest likelihood.

The classifier is therefore trained by parameterising the elliptical prob-
abilistic model (equation 12) for each candidate class. Each texture sample
must be imaged under different illumination directions and features calcu-
lated from these images. We recommend that at least three images should
be taken at two or more slants. In this work we use 12 images at two slant
angles. The parameter values of the model are calculated to give the best fit
to the data. This allows us to predict the likelihood of a particular feature
value F', for a given texture class k, lit from a given direction (7, 0).

Presented with a feature vector, the classifier uses a probabilistic model
to identify the most likely lighting direction and texture class. The prob-
ability of a texture having been illuminated from (7,0) given a particular
feature vector can be related to Equation 12 using Bayes’ theorem:

Py(F|1,0)Py(1,0)

P]c(T,O"F): Pk(F)

(13)

Now, assuming all lighting directions are, a prior, equally likely, P(r,0) is
constant and because we are only interested in the relative probabilities of
the values of o and 7 at a given F we may replace P;(F') with a constant,
ie.

Py(1,0|F) = aPy(F|r,0) (14)



The most likely direction of the light source, 7, & for each texture is esti-
mated by mazimising the likelihood function of that texture.

ArgM
#6= "9V p(F|r,0) (15)

T,0

To find the maximum we take logs:

In Py (F|r,0)

2
2s;

lnH ny [f; + sin?(0)(a; + b; cos(2T) + ¢; sin(27))]?
3

(16)
obtain the partial derivatives w.r.t. 7 and ¢ and equate both to zero. The
trig. terms are simplified by substituting = sin?(¢) and y = cos27 and
the two resulting equations are solved to provide a 12** order polynomial
in z. This quite straight forward manipulation results in a long series of
expressions that contain many terms. It is therefore not repeated here as
the full treatment may be obtained from [Pen02]. The polynomial is solved
using a standard Matlab routine. The resulting multiple solutions are tested
to obtain the values of 7 and & that maximise 16.

We now have a series of £ competing hypotheses about the class of the
sample and the direction it was lit from. Again, we are interested only in
relative probabilities. If we assume the classes are, initially, equally likely,
the most likely class can be identified by finding the highest class probability,
i.e. by evaluating Equation 17.

ArgMazx

k= f Py (F| 7y, o) (17)

3.1 Summary of Classification Process

In this section we have developed a classifier assuming that that the surface
is Lambertian and of constant albedo, that it has low slope angles, that it
is illuminated by a distant point light source, that there are no significant
shadows or inter-reflections, and that the camera projection is orthographic.
The classification process comprises five steps:

Train the classifier: Use the training images to estimate the 4¢ parame-
ters (a;, b;, ¢;, s; for each texture class).

Calculate the feature vector: Calculate F' = [f1, fo....f;] from the image
of the test texture imaged under unknown illumination conditions.

Calculate the maximum likelihoods: Use the optimisation procedure
described above, and the feature vector F', to find the illumination
conditions (7, 0) that maximises equation 16 for each of the k training
textures.
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Classify: Assign the unknown texture to the class k with the largest of the
log-likelihoods Py found in the previous step.

Output: The selected texture class k together with the estimate of the
illumination angles for that class (7, 0%) are returned as the classifier’s
output. The value of the corresponding probability P (F|7y,d}) can
be returned as the confidence in the classification result.

4 Experiments

For evaluation we used two databases that contained images of surface tex-
tures captured under a wide variety of known illumination conditions. The
first contained 30 real images obtained using only variation in illuminant tilt.
The second, comprising 25 surface textures, was captured using variation in
both tilt and slant.

4.1 Robustness to Tilt

This section describes experiments that were performed in order to test the
ability of our classification scheme to classify textures of unknown class and
unknown illuminant tilt, but of known illuminant slant. Since the slant was
known, a slightly simpler version of the classifier was employed - essentially
equation 16 was optimised over a single variable (7) rather than two.

4.1.1 The Image-set

Thirty physical texture samples were used in these experiments. 512x512 8-
bit monochrome images were obtained from each sample using illumination
tilt angles ranging between 0° and 180° incremented by either 10° or 15°
steps. All textures were illuminated at a slant angle of 45°. The illumination
source was mounted approximately 1.5m from the target.

This arrangement clearly did not approximate a point source at infinity
as a smooth illumination gradient was observed on a flat test surface. We
have compensated for this illumination gradient in previous experiments
and while we have seen that this makes a significant difference to global
height estimation it has little affect on band pass filters such as Gabors.
We therefore chose not to compenstate for these effects in the experiments
reported here.

The final dataset contains over 600 images. Appendix 1 contains one
example image of every texture.

4.1.2 The Feature-set

The classifier’s features are estimates of the variance of images produced
by filtering the input image with a set of Gabor[JF91] and Laws[Law80)]

11



Table 1: Tilt only experiment: classification errors.

Percentage of Classification errors
Number of Filters ‘ ST ‘ five ‘ four
‘ Detected errors ‘ 0.81% | 2.02% | 3.77%

filters. Gabor filters are Gaussians modulated by complex exponentials—

they have a centre frequency w and orientation ¢. In our nomenclature they

are denoted by comFwA¢, where w is specified in cycles per image and ¢ is

in degrees. Laws developed his filters purely empirically from a set of three

very simple spatial filters. They normally have a much wider bandwidth

than Gabor filters and in our experience often provide a useful complement

to Gabors.

The Gabor filters used were comF25A0, comF25A45, comF25A90, comF25A135,

comF50A45 while the Laws filters selected were L5E5 and E5L5. Three
combinations of features were used:

set six: four complex Gabor Filters and two Laws Filters.
set five: five complex Gabor Filters.

set four: four complex Gabor Filters.

4.1.3 Tilt Classification Results

Both classification accuracy and the accuracy of illuminant tilt estimation
were investigated.

Figures 7 and 8 show the errors that occurred in estimating the illumi-
nant tilt angles. Figure 7 shows the root mean square error in tilt (the mean
being calculated over each set of test images obtained from a single texture
for a particular classifier). Figure 8 shows a histogram of the all the errors
that occurred. Both of these charts show that in the majority of cases the
illuminant tilt is estimated to within 5°. Only in a very small number of
cases, such as card! and and7, does the error exceed 10°.

Table 1 shows the texture classification error rates that occurred. Table
2 details the misclassifications for the six and five filter feature sets. For
instance it shows that using six filters, the classifier misclassified slabjd
imaged using an illuminant tilt angle of 70°, as michael6 imaged at a tilt
angle of 18°. Examining the images in the appendix explains some of the
misclassifications e.g. twins45, strifd and iso45 appear similar. Others look
quite different from one another e.g. radial{5 and michael3. However, it
should be noted that the distinction between these two textures blurs when
michael3 is imaged at 90° of tilt, as this filters out much of the 0° spaghetti
texture.

12



Table 2: Tilt only experiment: misclassification details.

Misclassification

Input

siz filters

four filters

texture |tilt

texture [tilt

texture [tilt

stones2 | 50

chipsl | 23

stones2 | 170

michael7| 2.2

radial45| 170

michael3| 90

slab45 | 70

michael6| 18

michael6| 22

twins45 | 90

stri4b | 93

iso45 | 90

michael2| 170

michael8| 180

4.2 Robustness to Tilt and Slant

This section describes the experiments that were performed in order to test
the classification scheme’s ability to classify images of texture captured un-
der unknown illumination slant and tilt angles.

4.2.1 The Image-set

12-bit 512x512 monochrome images of 25 different samples of surface texture
were captured at slant angles of 45° and 60° and tilt angles of 30° increments.
Half were used for training and half kept for testing. Example images are
shown in appendix 2.

4.2.2 The Feature-set

As the classification task was more challenging, a larger set of 12 Gabor
filters was used. These filters were combined into banks as indicated in
Table 3.

4.2.3 Tilt and slant Classification results

The classifier was again assessed both in terms of its ability to estimate the
illumination angles and its ability to perform classification.

The accuracy of tilt estimation is shown in Figure 9 (top). 76% of the
estimates were within 5° of the correct value, and 82% were within 10°.
Only one texture sample was more than 20° in error.

The accuracy of slant estimation is shown in Figure 9 (bottom). There
are several points to note regarding this. First, two training slants, separated
by 15° were used. 26% of the tests were more than 7.5° in error. Second,
estimation from 45° was significantly more accurate than estimation from
60° (52% of samples have less than 2° of error for the 45° case, compared to

13



filter Gabor filter bank
12/10]8[6[4]3]2

comF20A0 X1 XX X|X|X|X

comF20A45 X | X |X

comF20A90 X1 X | XX |X|[X]|X

comF20A135 || X | X | X

comF30A0 X

comF30A45 X[ X | X[|X|X|X

comF30A90 X

comF30A135 | X | X | X | X | X

comF40A0 X[ XXX

comF40A45 X | X

comF40A90 XX | X | X

comF40A135 | X | X

Table 3: Tilt and slant experiment: Gabor filter bank configurations.

only 4% for the 60°case). Third, the image samples that perform poorly for
tilt estimation correspond to those that perform badly for slant estimation—
these tend to be drawn from the AD* and AF* groups (repeating primitives
and fabrics) both of which experience significant shadowing. The last two
points suggest that the prime source of inaccuracy is shadowing.

The second, more important criterion for the classifier is classification
accuracy. We applied 6 feature sets composed of between 3 and 12 Ga-
bor filters to the dataset, i.e. 25 samples lit from 24 different directions.
The overall error rate is shown in Figure 10. The most effective feature
vector, composed of 10 features, gave a 98% classification rate. Increasing
the number of features gave a small increase in the error rate and also led
to problems in obtaining numerical solutions to the polynomial. Reducing
the number of features increased the error rate—with the most significant
increase occurring for sets of less than 6 features.

5 Conclusions
In this paper we have:

1. presented a completely new and formal model of texture feature be-
haviour as a function of the lighting vector (equation 10)

2. we have used this new theory to develop a novel classifier that can
classify surface textures and simultaneously estimate the illumination
conditions.
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The first point above is the more significant. The model is general to a large
class of conventional texture features and it explains, from first principles,
why these features are simple trigonometric functions of the illumination
conditions.

Hence, given better a priori information (i.e. the model) it should be
possible to build a variety of improved applications ranging from illuminant
estimators through to classifiers and segmentation tools.

We applied the model to the texture classification process and found
that, despite the many assumptions that were made during its derivation,
it represents the behaviour of the Gabor features that we computed sur-
prisingly well. Admittedly the test set was limited to images taken of 30
textures and contained no really specular surfaces. However, shadowing,
local illumination effects, and albedo variation are clearly evident in many
of our images. We therefore feel that, with the exception of highly specu-
lar surfaces, the model has proven to be robust to violation of many of the
initial assumptions.

This has allowed us to develop a reliable classifier that simultaneously
estimates the direction of the illumination while performing the classification
task. Tests with 25 real textures have shown that the system is capable of
reliably classifying a range of surface texture while accurately resolving the
illumination’s tilt angle, and to a lesser extent its slant angle.
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Figure 6: The behaviour of six textures in the comF25A0/comF25A45 fea-
ture space together with the best fit ellipses. Each point on an ellipse corre-
sponds to a different value of illuminant tilt. All points on the same ellipse
correspond to the same surface.
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Figure 7: Tilt only experiment: root mean square tilt estimation errors (in
degrees) for the use of four, five and six feature measures for each surface
texture.

g0

6o

70 1

B0 1

50 1

4n 4

number of results

30 1

20 4

1 2 3 4 5 B 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 W® X B/ 29 0 A

ahsolute tilt difference

|I:|mne Filter @five Filter mfour Filter |
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Appendix 1: Tilt only Database

One example image of each texture is shown below:
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Appendix 2: Tilt and Slant Database
One example image of each texture is shown below:
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