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Abstract 
 
We present a new texture classification scheme which 

is invariant to surface-rotation. Many texture 
classification approaches have been presented in the past 
that are image-rotation invariant, However, image 
rotation is not necessarily the same as surface rotation. 
We have therefore developed a classifier that uses 
invariants that are derived from surface properties rather 
than image properties. Previously we developed a 
scheme that used surface gradient (normal) fields 
estimated using photometric stereo. In this paper we 
augment these data with albedo information and an also 
employ an additional feature set: the radial spectrum.  

We used 30 real textures to test the new classifier. A 
classification accuracy of 91% was achieved when 
albedo and gradient 1D polar and radial features were 
combined. The best performance was also achieved by 
using 2D albedo and gradient spectra. The classification 
accuracy is 99%. 
 
 
1. Introduction 

 
Many texture classification schemes have been 

presented that are invariant to image rotation [1,2,3]. 
They normally derive their features directly from a single 
image and are tested using rotated images. However, in 
many cases rotation of a textured surface produces 
images that differ significantly from those provided by 
pure image rotation (see Fig. 1). Few take into account 
these problems. Exceptions include Leung and Malik’s 
classification system which uses the images obtained 

under 20 different illumination and orientation conditions 
[8]; Nayer & Dana who developed histogram and 
correlation models of 3D surface textures by using 
CUReT database [16]; Dana et al. developed BTF (Bi-
directional Texture Function) database which described 
the appearance of a textured surface as a function of the 
illumination and viewing directions [17], and 
McGunnigle and Chantler who proposed rotation 
insensitive scheme that uses photometric stereo to obtain 
gradient information [9,10]. In [15] we presented an 
approach that uses polarograms of surface gradient fields 
estimated using photometric stereo.  

In this paper, we concern illumination effects due to 
frontal views. We augment the feature space in two ways. 
Firstly we use radial spectra in addition to the 
polarograms [6] (or polar spectra). Secondly we apply 
these feature generators to both albedo and gradient data.  

We use photometric stereo to obtain the gradient and 
albedo information. They are Fourier transformed and 
combined to provide a frequency domain function that 
does not contain the directional artifacts associated with 
partial derivatives. Polar and radial spectra of these data 
are compared with those of training classes. Radial 
spectra are rotation insensitive and therefore comparison 
is performed using a simple sum of squared differences 
metric. Polar spectra are rotation sensitive - a rotation of 
the surface corresponds to a translation of its polar 
spectrum.  Thus a test texture's polar spectrum must be 
translated through 180° to find the best match for each 
class. This provides an estimate of the orientation of the 
test texture as well as the comparison metric. 
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ϕ = 0°

ϕ = 60° ϕ = 90°

ϕ = 30°

 
Fig. 1 – Four images of the same directional 3D 
rotated surface texture with the constant illuminant. 
The surface has been rotated at angles of 0°, 30°, 
60°, and 90° (indicated by the white arrows). The 
illuminant tilt was kept constant at τ = 0° (indicated 
by the black arrows in white circles). 
 
 
2. The Components of the Classification 
Scheme 

 
This section briefly describes the photometric 

algorithm, the process that we use to remove the 
directional artefacts from the partial derivatives, and 
provides definitions of the radial and polar spectra.  

 
2.1. Photometric stereo 
 

We assume a Lambertain reflectance function. This 
can be expressed in terms the partial derivatives of the 
surface height function: 
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where: σ, τ are the illuminant's slant and tilt angles, 
ρ(x,y) is the albedo of the surface, and the partial 
derivatives are as defined below: 

xzyxp ∂∂=),(  (2) 

yzyxq ∂∂=),(  (3) 

Three images of the surface are taken under three 
different illumination conditions to provide three 

instances of eqn. 1. They are used at each (x,y) to solve 
for the three unknowns ρ(x,y), p(x,y), and q(x,y) [10, 13, 
14]. Fig. 2 shows an example of this process. 
 

original texture

gradient image

albedo imagePS

 
Fig. 2 – Extracting gradient and albedo data from 3D 
surface texture using photometric stereo. The 
gradient image was obtained by applying 
Lambertian rendering to the gradient fields p(x, y), 
and q(x, y). 
 

An approximation to the albedo image could be 
obtained more simply using flat overhead illumination, 
however, we would still require two additional images 
for the calculation of the gradient data. 
 
2.2. Deriving gradient and albedo spectra 

 
We use frequency domain features and so the gradient 

and albedo data must be Fourier transformed. 
Transforming equations (2) and (3) gives: 

P(u,v) = iuS(u,v) = iω cosθ S(ω,θ)  (4) 

Q(u,v) = ivS(u,v) = iω sinθ S(ω,θ) (5) 

where: S(u,v) and S(ω,θ) are the surface magnitude 
spectrum in its Cartesian and polar forms, u, v are spatial 
frequency variables, and ω, θ are their polar equivalents. 

Equations (4) and (5) show that both derivatives act as 
directional filters due to the cosθ and sinθ terms and can 
not therefore be used directly in a rotation invariant 
scheme. However, we may combine them to provide a 
gradient spectrum that is free of directional artifacts: 

[ ]222 ),(),(),(),( vuSvuQvuPM ωθω =+=      (6) 

From Fig. 3, which shows the M(ω,θ) gradient spectra 
of a selection of real textures, it can be seen that rotation 
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of each of the surfaces (from 30° to 90°) produces a 
corresponding rotation of their gradient spectra M(ω,θ). 

 

ϕ = 30° ϕ = 90°  
Fig. 3 – M(ω,θ) gradient spectra of real textures 
shown in montage format for two surface rotations 
(ϕ = 30° and 90°). The textures are gr2(left top), 
an4(right top), wv2(left bottom) and grd1(right 
bottom). 

 

The albedo function ρ(x, y) does not suffer from the 
same directional artifacts as the partial derivatives and 
may therefore be directly transformed and used: 

 A(ω,θ) = F[ρ(x, y)] (7) 

 
 
2.3. Polar and radial spectra 

 
For classification we need to match the spectra of test 

and training textures in a rotation invariant manner. 
Comparing the gradient and albedo spectra of a test 
texture with those of the training classes over a complete 
range of rotations is computationally prohibitive. We 
therefore use two functions to compress the data but 
maintain their major characteristics: the polar and radial 
spectra. 

We define the radial spectrum of the gradient data as:  

∫=Φ
π

α θθωω
2

0

),()( dM  (8) 

It summarizes the frequency content of the texture and 
is rotation insensitive as is shown in Fig. 4. 

In contrast the polar spectrum summarises the 
directional characteristics of the surface: 

∫
∞

=Π
0

),()( ωθωθα dM  (9) 

This spectrum is a function of surface rotation; if the 
surface is rotated by an angle ϕ then a polar spectrum 
Πϕ(θ) will be produced, such that: 

Πϕ(θ) = Π (θ +ϕ) (10) 

Gradient polar spectra of texture wv2 are shown in Fig. 5. 
They confirm that a rotated texture’s polar spectrum is 
approximately a translation of the non-rotated texture’s 
polar spectrum. 
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Fig. 4 – Radial gradient spectrum an4 at surface 
rotations of ϕ = 0°, 30°, 60°, 90°, 120° and 150°. 
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Fig. 5 – Polar spectra of wv2 at surface rotations of 
ϕ = 0°, 30°, 60°, 90°, 120° and 150°. 
 

Thus we must compare polar spectra over a range 
angular displacements (ϕtest = 0°, 1°, 2°, …, 180°) in 
order to determine the degree of correspondence and the 
relative angle of two surfaces. 

Polar and radial spectra of albedo data ρ(x, y) are also 
used in the classifier. These are used in a similar manner 
to the gradient spectra and are defined below:  

∫=Φ
π

β θθωω
2

0

),()( dA       (11) 

∫
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3. The Complete Classification Scheme 
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Fig. 6 – The surface rotation invariant classification 
scheme 
 

The complete classification scheme is shown in Fig. 6.  
The process is as follows: 
1. A photometric image set of the texture to be 

classified is captured (i.e. three images are taken at 
illuminant tilt angles of  0°, 90° and 180°).  

2. The photometric algorithm uses this image set to 
estimate the partial derivative and albedo fields: 
p(x,y), q(x,y) and ρ(x,y). 

3. These are Fourier transformed and processed to 
provide albedo and gradient polar and radial spectra.  

4. The polar spectra are compared with polar spectra 
obtained from training images over a range of 
angular displacements (ϕtest) using a sum of squared 
differences metric.  

5. The radial spectra are compared with radial spectra 
obtained from training images. This also uses a sum 
of squared differences metric but it does not need to 
be calculated over a range of angular displacements.  

6. The total sum of squared errors statistic is calculated 

from steps 4 and 5 and the best combination provides 
a classification decision and an estimate of the 
relative orientation of the test texture. 

 
 
4. Results of Experiments 

 
Experiments were performed using 30 real textures 

(Appendix A).  A selection of the results is shown here 
which illustrate the nature of the features and the 
performance of the classifier. 
 
4.1. Feature characteristics 

 
Fig. 4 shows that radial spectra are insensitive to 

surface rotation while Fig. 5 shows that polar spectra 
undergo a translation as proposed previously.  

 
Fig. 7 and Fig. 8 show that both radial and polar 

spectra contain useful discriminatory information. 
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Fig. 7 – Polar plots of selective 4 real textures (an4, 
gr2, grd1 and wv2) on M(ω,θ) at surface rotation of 
ϕ = 0°. 
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Fig. 8 – Radial plots of selective 4 real textures 
(an4, gr2, grd1 and wv2) on M(ω,θ) at surface 
rotation of ϕ = 0°. 
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4.2. Classification results 
 
The classifier was trained using photometric image 

sets (512×512) from 30 surfaces obtained at a surface 
rotation angle of ϕ = 0°. This provided the 'training' 
radial and polar spectra.  

Classification data was obtained from photometric 
image sets of the 30 texture samples obtained over a 
variety of surface rotation angles (30° to 180° in 30° 
increments). Each of the photometric sets was divided 
into nine smaller photometric sets each comprising three 
256×256 images. This gave a total of 1620 (6×9×30) 
photometric test samples. Each of these test samples 
provided four spectra (gradient radial, gradient polar, 
albedo radial and albedo polar). 

Fig.  9 shows the classification results per texture for 
three versions of the classifier by using polar and radial 
spectra. The "albedo" classifier used only the albedo 
radial and polar spectra to achieve a classification 
accuracy of 77%, using gradient only data ("gradient") 
improved this figure to 86%, while combining gradient 
and albedo data pushed the classification rate up to 91%. 
It also shows that integration of the feature generators of 
gradient and albedo together provides more 
discriminative ability and comprehensive information for 
the classifier. 

While these results are not quite as high as those 
published for some image rotation invariant schemes they 
are good considering the difficulties involved in rotation 
of real surface textures. In order to justify the cost and 

problems caused by photometric stereo imaging, such as 
shadow presented on texture “rkb1”, a comparison to 
the-state-of-art single image based methods will be done 
in future work. 
 
 
4.3. Improved classification results by using 2D 
spectra 

 
Why did misclassification happen? One reason is that 

the classification algorithm stops too soon. Step 6 in 
classification scheme compares 1D spectra only, 
however, these 1D spectra (polar and radial) are integrals 
of the original 2D spectra (gradient or albedo). Two 
textures with different 2D spectra may well have the 
same 1D spectra. Therefore a final verification step 
should be included where the 2D spectra are compared. 
This 2D comparison would not be costly because the 
rotation angles are already known from their 1D polar 
spectra. The complete classification scheme is shown in 
Fig.  10. 

Fig.  11 shows the classification results per texture for 
three versions of the classifier by using 2D spectra. The 
classification accuracy of 95% was achieved by using 2D 
gradient spectra only, and 93% was achieved by using 
2D albedo spectra only. The best performance was also 
improved by combining 2D gradient and albedo spectra. 
The classification accuracy is 99%, a better result than 
that was presented in Fig.  9 by using 1D spectra. 
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Fig.  9 – Classification results for 30 real textures by using 1D polar and radial spectra. 
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Fig.  10 – Surface rotation invariant classification scheme using 2D spectra comparison. 
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Fig.  11 – Classification results for 30 real textures by using 2D spectra.
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5. Conclusions 
 
1. We have presented a new surface rotation invariant 

texture classification scheme that combines radial 
and polar spectra of albedo and gradient data. 

2. We have presented theory and experimental results 
that show that the basic feature sets of radial and 
polar spectra of gradient and albedo data are free of 
directional artifacts.  

3. Our results using 30 real textures show that 
combining albedo and gradient data improves the 
classification's performance to provide a successful 
classification rate of 99%.  
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APPENDIX A. 30 samples in our photometric texture database 

 
(http://www.cee.hw.ac.uk/texturelab/database) 

 

     
an1 an2 an3 an4 an5 

     

     
an6 bn1 bn2 bn3 bn4 

     

     
gr1 gr2 grd1 nd1 rkb1 

     

     
rkd1 tl1 tl2 tl3 tl4 

     

     
tl5 tl6 wd1 wpd1 wpd2 

     
wps1 wps2 wps3 wv2 wv3 
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